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Impact of Acquired Immunity and Dose-Dependent
Probability of Illness on Quantitative Microbial
Risk Assessment

A. H. Havelaar*>* and A. N. Swart!

Dose-response models in microbial risk assessment consider two steps in the process ulti-
mately leading to illness: from exposure to (asymptomatic) infection, and from infection to
(symptomatic) illness. Most data and theoretical approaches are available for the exposure-
infection step; the infection-illness step has received less attention. Furthermore, current mi-
crobial risk assessment models do not account for acquired immunity. These limitations may
lead to biased risk estimates. We consider effects of both dose dependency of the condi-
tional probability of illness given infection, and acquired immunity to risk estimates, and
demonstrate their effects in a case study on exposure to Campylobacter jejuni. To account
for acquired immunity in risk estimates, an inflation factor is proposed. The inflation factor
depends on the relative rates of loss of protection over exposure. The conditional probability
of illness given infection is based on a previously published model, accounting for the within-
host dynamics of illness. We find that at low (average) doses, the infection-illness model has
the greatest impact on risk estimates, whereas at higher (average) doses and/or increased
exposure frequencies, the acquired immunity model has the greatest impact. The proposed
models are strongly nonlinear, and reducing exposure is not expected to lead to a propor-
tional decrease in risk and, under certain conditions, may even lead to an increase in risk.
The impact of different dose-response models on risk estimates is particularly pronounced
when introducing heterogeneity in the population exposure distribution.
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1. INTRODUCTION

Quantitative microbial risk assessment com-
prises several steps. Exposure assessment aims to
estimate the (distribution of) exposure of a human
population to a specified pathogenic microorganism,
for example, by food. Dose-response (DR) modeling
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aims to quantify the probability of infection and ill-
ness as a function of the ingested dose. Risk char-
acterization combines the results of exposure assess-
ment and DR modeling to arrive at an estimate of the
risk of illness in the population, expressed per year,
per consumption, or otherwise. The standard ap-
proach to microbial DR modeling is to consider the
processes ultimately leading to illness as a sequence
of events (exposure — infection — illness) and to es-
timate the conditional probabilities for an exposed
individual to progress through this sequence.(!**)
Both probabilities are assumed to depend on the
ingested dose and parameters are estimated from
sparse data sets (volunteer experiments) where
subjects were exposed to known (average) doses.
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Available data often do not allow conclusions on
dose dependence of the conditional probability of ill-
ness given infection and models with constant proba-
bility (i.e., independent of the ingested dose) are sug-
gested as a reasonable default.®) Alternatively, DR
parameters may be fitted using outbreak data.®~7)
Fitting DR models to outbreak data implies direct
estimation of the exposure—illness probability. If, as
typically done, the same models are used as for fitting
exposure—infection data, then implicit assumptions
about the conditional infection—illness probability
are being made. In risk characterization, it is typically
assumed that the outcomes of subsequent exposures
are statistically independent. Our work on modeling
the effects of acquired immunity on the dynamics of
enteric infections has suggested that this standard ap-
proach overestimates the risk of illness, in particu-
lar at a high force of infection.®) Furthermore, by
comparing model results for campylobacteriosis with
observational data on the incidence of illness in the
Dutch population, it was suggested that the probabil-
ity of illness given infection is overestimated when
data from volunteer experiments exposed to high
(>10° cfu?) doses are used, and that it may be (much)
lower at more realistic low (<103 cfu) ingested doses.
We present a novel approach to risk characteriza-
tion, taking into account both the impact of ac-
quired immunity and dose dependence of the condi-
tional probability of illness given infection and illus-
trate our approach by example of risk estimates for
Campylobacter jejuni.

2. DOSE-RESPONSE MODELS

2.1. Current Approach in Microbial Risk
Assessment, Independent Exposures

In the simplest case, the exponential DR model
is used:

Pnt=1—e"", (1)

where pjy is the probability of infection for an in-
dividual, given a single exposure to a sample of
food from a batch in which bacteria are Poisson dis-
tributed with arithmetic mean dose D (cfu), and r
(cfu™!) is the DR parameter, or single-hit probabil-
ity: the probability for a single organism to survive
and initiate infection.!~ In this context, infection is
defined as a state in which at least one of the organ-
isms in the inoculum has survived all barriers to reach

3cfu: colony forming unit.
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a site suitable for colonization and actively multiplies
in the body of the host.

If there is variability in the host-pathogens inter-
action, r can be described by a Beta distribution at
the cost of an extra parameter, and

pinf(D) =1 —1F1 (u, a—+ b, — D) (2)

Here | F; denotes the Kummer confluent hyper-
geometric function.”) If 8 >> 1 and @ << B, the sim-
plified Beta-Poisson model holds:

P =1— (1 + ED) 3)

We will not pursue this further and use the hy-
pergeometric model in our calculations.

As suggested previously,” we introduce the
probability of illness conditional on infection as
Pilljint> and note that piy = pinjint Pint-

The risk of illness at exposure event j may be de-
pendent on the history of exposures. However, if we
assume illness outcome is independent of previous
exposures, then the probability of illness at exposure
jis pi(D;) and, the illness event (X; = 1) is Bernoulli
distributed:

Xj ~ Ber(pu(D;). 4)

If we assume a fixed number of exposures (E) in
a specified period of time (e.g., a year), then:

E E
> E(x) =Y pu(D))
1 j=1

i

—

E

= Z pijint( D)) pint(D;)- ®)
j=1

For a population of size N, the number of ill-
nesses (/) is:

E
I=>">" puint(D;.) pin(D; )- (6)

N
k=1 j=1

In the special case where the probability of ill-
ness given infection is independent of the exposure
dose, we write pijinr = 7. Then, the unconditional
probability of illness given a single exposure is:

pit = 7 Pine( D) (7

and, for constant average dose D for each individual
at each exposure event:

I = NE7 pius (D). )
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Table I. Parameter and Symbol List for Sources of Parameter Estimates for C. jejuni (See Text).

Parameter Description Estimate Unit Source

Pint Probability of infection Calculated - -

r Probability of 1 cfu causing infection 0.018 cfu~! (Ref. (1))

D Arithmetic mean dose per exposure occasion Variable cfu -

a, b Parameters of the () variability distribution of r 0.145,8.007 (Ref. (1))

pill Probability of illness Calculated - -

Pilljint Conditional probability of illness given infection Calculated -

b Fixed probability of illness given infection 0.33 - (Ref. (27))

E Number of exposures Variable year~! -

i Number of illnesses in an exposed person Calculated year~! -

N Population size 16.5 million - CBS?

1 Number of illnesses in the population Calculated year~! -

A Force of infection (S— P transition) Calculated year~! -

o Loss of full immunity (P— Q transition) 13 year~! (Ref. (8))

y Loss of partial immunity (Q— S transition) 1 year™! (Ref. (8))

A Life span of an individual 80 year (Ref. (8))

R Number of S— P transitions per lifespan Calculated -

R, Naive estimate for R (not accounting for immunity) Calculated - -

T Inflation factor (ratio between R and R;;) Calculated -

n, p Dose-response parameters for illness given infection 515 x 107*,1.67 x 107! cfu~! (Ref. (16))®

aStatistics Netherlands, www.cbs.nl/en
PFit to data as published.

Table II. Probability of Illness, and Incidence of Illness in the
Dutch Population for Several Models, Evaluated at E = 52
year—! and D =1 cfu

Incidence per Incidence in

Person per the Population
Py Year per Year
Naive 53x 1073 2.7 x 1071 4.5 x 100
Binomial 53 x 107! 2.4 x 107! 4.0 x 10°
Immunity 53 %1073 1.4 x 1071 2.3 x 10°
Dose 1.4 x 107 71 x 1073 12 x 103
Dose-immunity 1.4 x 107° 3.7 x 107 6.0 x 107

Note that in this case the size of the exposed
group and the number of exposures can be used
interchangeably. N persons having E exposures is
equivalent to E persons having N exposures. We de-
scribe the above as the naive model for risk charac-
terization.

A numerical example of the naive model uses
parameter values typical for C. jejuni as shown in
Table I. Data were obtained from References 1, 10,
and 11. Results were calculated in R version 3.0.1.(1?)
For a single exposure to an average dose D = 1
cfu, pins = 1.6 x 1072 and py = 5.3 x 1073, For re-
peated exposures (E = 52 year™!), i = 2.7 x 107!
year~!. The number of illnesses in the Dutch pop-
ulation (N = 16.5 million) would be approximately

I=4.5 x 10° year~!, orders of magnitude higher than
the observed 9.2 x 10* year~! (95% CI 1.3 x 10* to
2.5 x 10*) from epidemiological studies.('®) Table II
gives an overview of the results of this model, and the
following models.

2.2. Binomial Model for Multiple Exposures

A slightly more involved approach assumes that
illness can only occur once in an individual over a
specified unit of time (e.g., a year). This approach
can be interpreted as a simplified approach to ac-
count for acquired immunity. Note that the period of
one year is arbitrary and could be chosen to match
the (average) duration of protection by acquired
immunity for a specific pathogen. Again assuming
that the outcomes of subsequent exposures are in-
dependent, we estimate the probability of X cases
of illness occurring in an individual by a binomial

model:*14.1)
E
P(Xx=0)=]]1- pu(D)):
j=1
E
P(X=1)=1- 1_[ (1 = pu(Dy)). ©)

j=1

Note that this distribution is obtained by collaps-
ing all probability mass of the binomial distribution



on i > 1 onto i = 1, thereby artificially maximiz-
ing the infection events to one. If all D; are equal,
then:

P(X: 1) =1- (1 — pi”)E ~ Epi” for smallpi“. (10)

The expected number of illnesses in a popu-
lation is simply obtained by multiplying p(X = 1)
with the population size. If py; is not small, the
size of the exposed group and the number of ex-
posures can no longer be used interchangeably. In
our example, we find i = E(X) = P(X = 1) =
2.4 x 107! year~!, close to the naive estimate because
the binomial function is approximately linear at a
low probability of illness. If the dose per exposure
event were higher, say 100 per exposure occasion, the
naive approach to risk characterization would predict
that i = 4.6 year™!, whereas the binomial approach
would predict that i is at its maximum value of 1

year !,

2.3. Incorporating the Effects of Acquired
Immunity

Swart et al.® have introduced a simple com-
partmental model to account for the effects of ac-
quired immunity under an imposed force of in-
fection, such as from an animal reservoir, food,
or the environment. In this model, it is assumed
that:

e all individuals are born susceptible (5);

¢ individuals may become (asymptomatically) in-
fected with force of infection A; incorporating
both the intensity of exposure and the DR func-
tion;

¢ when infected, there is a fixed probability 7 of
developing symptomatic illness;

¢ an infected individual is immediately fully pro-
tected (P) against subsequent infection;

¢ waning of immunity is represented by transi-
tions from P to a state of partial protection (Q)
with rate « and then back to S with rate y;

e when a partly protected individual is exposed
(with force of infection 1), the immune status
is boosted to full protection (Q — P) without
clinical illness.

These authors introduce R, the number of times
that an individual makes the § — P transition in a
lifespan of A years. The number of illness episodes
during this lifespan is 7 R. When A is large compared
to the average residence time in any of the compart-
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ments S, P, and Q, then R can be approximated by:

ay

R=hAG sy = M (11)

The force of infection may be expressed as:
A= Epm[(D). (12)
The factor 7 is obtained from Equations (9) and
(10),
— @y
INCESICETY
— ay
~ (a+ Epine(D)) (v + Epint(D))’

T

(13)

In the naive approach to risk characterization
(i.e., not accounting for acquired immunity), R would
be estimated as A A. Hence, the impact of acquired
immunity can be characterized by the inflation factor
7 appearing in Equation (12). Note that this is also
the fraction of susceptibles in the population as A —
0,

The inflation factor can be used as a multiplier
for pint, to scale the naive risk estimate to an estimate
that takes immunity into account. We describe this as
the immunity model:

I = ‘L’NEﬂpinf(D). (14)

Note that 7 is a nonlinear function of pi, (Equa-
tion (13)), hence I is dependent on dose. Further-
more, note that N and E are not interchangeable,
since 7 is a function of E via .

Swart et al.®) have estimated the immune-related
parameters from a volunteer challenge-rechallenge
experiment;!®) see Table 1. Using these parameter
estimates, Fig. 1 shows 7 as a function of D and E. At
low values of both D and E, there is little impact of
acquired immunity on the risk estimate. At increas-
ing doses, the impact of acquired immunity becomes
more pronounced, in particular for E > 14. Note that
the protective effect of acquired immunity in the pop-
ulation is of particular importance at high average
doses. More precisely,

oy

T — m, forD - o0 (15)

Since pine(D) tends to one for D — oo, the maxi-
mum number of cases is limited to I = tNEx. When
E — o0, we have t — 0 and I — O for all values of D.
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Fig. 1. Reduction of the risk of illness by accounting for acquired immunity compared to a naive approach to microbial risk assessment.
Left panel: Inflation factor (7) as a function of average dose (D) for different intensities of exposure (E). Right panel: Inflation factor () as

a function of intensity of exposure (E) for different average doses (D).

Furthermore, note that the expression for t can
be rearranged to the form
T il
(@ + pint) (7 + Pint)
by introducing the dimensionless quantities & =
a/ E, 7 = y/E. Thus, the relevant parameters for the
inflation factor are the quotients of the rates of loss
of protection over exposure.

For our example, we use A = 8.3 x 107! year~
and v = 5.1x1071.(® Hence, the risk of illness while
accounting for acquired immunity is i = 1.4 x 107!
year~!. The predicted number of cases in the Dutch
population would decrease to 2.3 x 10° year™!, still
far higher than the observed number.

(16)

1

2.4. Incorporating the Effects of Dose-Dependent
Conditional Probability of Illness

The above approach does not include the pos-
sibility that the probability of illness given infection
Dinjint 1S dependent on the ingested dose. There is very
little literature on infection-illness modeling. Teu-
nis et al.(”) propose a model, in which pjjjint can ei-
ther be constant, increase, or decrease with dose.
Using scarce literature data, they show that exam-
ples of each of these results can be found in exist-

ing data sets. For the data set on volunteer exper-
iments with C. jejuni published by Black et al.,1®
a decrease of pjyjjinr With dose was found. However,
this data set may be subject to randomization bias
due to a small number of volunteers per dose group
and the possible inclusion of volunteers with pre-
existing immunity to C. jejuni. It is likely that, by
chance, volunteers with preexisting immunity were
included in the high-dose groups as not all volun-
teers were infected even by a dose of 10° cfu. Sub-
sequent experiments by Tribble et al.,(') who pre-
selected volunteers based on serological testing for
IgA, showed that all immunologically naive vol-
unteers exposed to C. jejuni became infected and
ill at doses of 10° cfu and above, and that the
probability of illness given infection increased with
dose.

We adopt the model as proposed by Teunis
et al."") for pyyine increasing with dose:

pitint = 1 — (1 + D)7, 17)

where p and n D are the shape and scale parameters
of an underlying Gamma distribution for the dura-
tion of infection, respectively.

Using the data supplied by Tribble et al.('®) for
illness in infected individuals (100% infection rate),
we estimate 7 = 5.15 x 10™* and p = 1.67 x 107!
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Fig. 2. Unconditional probability of illness as a function of dose
(indicated by dots and corresponding values) for dose-response
models with conditional probability of illness given infection ei-
ther constant (horizontal axis) or dose dependent (vertical axis).
The dashed horizontal line indicates the limiting value pj; = 7 for
high dose. The line of equality is added for comparative purposes.
Note that pj,r is dose dependent in both cases.

using maximum likelihood estimation. We confirmed
that neither the constant nor the decreasing model
performed better than the increasing model by the
likelihood ratio test.

By substituting Equation (17) into Equation (5),
and again assuming a constant average dose D for
each individual at each exposure event, we find the
dose model:

I=NEQ1—-(1+nD) )pu(D).  (18)

Note that N and E can still be used interchange-
ably.

Fig. 2 shows the impact of introducing dose de-
pendency of pjyinr by comparison of the uncondi-
tional probability of illness for the dose model and
the naive model at single exposure to average doses
ranging between 1072 and 10° cfu. The naive model
predicts illness risks that are 3—-6 orders of magnitude
higher than the dose model for doses below 1 cfu.
The risk predicted by the naive model is lower than
the prediction of the dose model at doses greater
than approximately 10° cfu because the naive model
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asymptotically reaches its maximum value 7. In con-
trast, the maximum value of the dose model is 1,
which is in accord with observed data sets from out-
breaks.

For the dose model, we find i = 7.1 x 1077 ill-
nesses per individual per year, amounting to / = 1.2
x 103 illnesses in the general population, well below
the epidemiological estimate.

2.5. Combined Model with Immunity and Dose
Dependence

The dose-immunity model combines the effects
of acquired immunity and dose-dependent condi-
tional probability of illness:

I'=tNEQ—-(1+4nD)")pu(D).  (19)

We now find i = 3.7 x 107> and I = 6.0 x 10? at
D =1, reducing the number of illness cases further
below the prediction from the dose model.

3. COMPARING THE DIFFERENT MODELS

The expected incidence of disease [ as a function
of exposure D depends very strongly on the model
used, as is illustrated in Fig. 3. In the models that
do not account for immunity, / increases steeply with
D. The increase is monotonous; hence, any decrease
in exposure leads to a predicted decrease in the pre-
dicted incidence of illness. In models that do take im-
munity into account, / levels off at higher doses. The
binomial model reaches a constant value, whereas
the immunity model reaches a maximum, with de-
creasing values of I at higher doses. This would im-
ply that there are situations in which decreasing ex-
posure would lead to increasing disease incidence.
Introducing dose dependency of the probability of
illness given infection shifts the illness-dose curve
to the right but beyond a certain dose, a steep in-
crease of the predicted incidence of illness is still ob-
served. In the models that account for immunity, the
disease incidence is bounded. Comparing the differ-
ent curves, it is clear that at low doses, disease in-
cidence estimates are mainly affected by the choice
for dose dependency of the probability of illness,
whereas at higher doses, the impact of immunity
dominates.

Fig. 4 shows, for parameter estimates as dis-
cussed before, how the epidemiological estimate
of human disease incidence can be reconstructed,
using the dose-immunity model. The figure shows
that the estimated incidence is mainly sensitive to
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Fig. 3. Incidence of illness / as a func-
tion of the mean dose D, for different as-
sumptions about immunity and dose de-
pendence of the the probability of ill-
ness given infection. Parameter estimates
are described in the text. The horizon-
tal line indicates the epidemiological es-
timate. The right-most panel zooms in on
the region where the models predicts out-
comes close to this estimate.
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Fig. 4. Contour plot of selected values of logio(/) (values indi-
cated at the top of the curves) as a function of D and E for the
dose-immunity model. The two thick curves are the 2.5% and
97.5% confidence limits for the epidemiological estimate of dis-
ease incidence. The dotted curve is the most likely epidemiological
estimate.

the dose per exposure event. The epidemiologi-
cal estimate would be reconstructed with doses of
approximately 1.5 to 3.0 log cfu per event, with little
impact of the exposure frequency above five events
per year. However, such average doses are consid-
erably higher than previously estimated.(!”) As the
parameters for both immunity and dose dependency
of the conditional probability of illness are based
on few data, such discrepancies may well be re-
lated to parameter uncertainty. We therefore per-
formed a sensitivity analysis, in which both param-
eters of the immunity model (¢ and y) and one
parameter of the dose-dependent model (p) were
varied. We did not vary the n parameter in the dose-
dependent model, as the results are not very sensi-
tive to changes in this parameter (results not shown).
Since there is little guidance in choosing appropriate
distributions and ranges for the uncertainty analysis,
we chose to vary the parameters by uniformly sam-
pling from the range spanned by half the default es-
timate and double the default estimate. We find (see
Fig. 5) that the uncertainty region rapidly grows with
increasing dose. The asymmetry of the uncertainty
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Fig. 5. Sensitivity analysis for the number of illness cases as a func-
tion of dose at an exposure of E = 52 year—!. The dotted line rep-
resents the curve at the maximum likelihood estimate of parame-
ters. The shaded area represents the 95% confidence area under
variation of parameters as detailed in the main text.

band around the maximum likelihood estimate sug-
gests that at the default values of parameters, we are
more likely to underestimate incidence rather than
overestimate.

4. HETEROGENEITY IN POPULATION
EXPOSURE

In the preceding discussion, we ignored any kind
of heterogeneity: heterogeneity between individuals
and heterogeneity for individuals over time. This is
true for both the time between exposures, and the
magnitude of the dose. We acknowledge that all
these heterogeneities are of importance; however,
some of them are hard to model within our current
framework.

Considering heterogeneity for a single individ-
ual, having variation in the time between exposures
and the magnitudes of doses (e.g., sporadic high
doses, interspersed with frequent low doses), the his-
tory of infection becomes important. The immune
system responds based on previous exposures, and
bestows a measure of protection on the individual.
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Table III. Exposure Scenarios for C. Jejuni in Subgroups of the
Dutch Population

Exposure Population E D
Scenario Pathway Fraction (f) (Year™!) (cfu)
L/L Recreational water 0.31 0.2 1
L/H Raw chicken liver 0.01 2 149
H/L Sheep and goats 0.004 183 6.5
H/H Petting zoos 0.02 52 16
AVG Average exposure 1.00 24 1

This implies that the basic parameter r, the infectiv-
ity of a single organism, becomes dependent on the
history of infection in some (yet) unclear fashion.
This takes us out of the scope of established DR the-
ory.

The other kind of heterogeneity, that is, between
individuals in the population, is more straightforward
to model. In the simplest case of groups of individuals
with clear exposure profiles, we may simply run the
models for each group.

We evaluate the impact of different DR mod-
els for illness in four exposure scenarios, based on
quantitative estimates of the Dutch population to C.
jejuni by different pathways as presented by Evers
et al.(1%1%) Four exposure scenarios are analyzed; see
Table III:

e Low frequency of exposure, low dose (L/L)—
recreational water.
On average, Dutch adults (84% of the popula-
tion) visit surface water recreational sites 0.61
year~!. There is no information on the distribu-
tion of visits around this average. We assume
that adults who visit recreational surface water
do so twice a year, hence E = 2 year~! and the
fraction of adults who do so is 36%, which is
30% of the total population (f = 0.3). The av-
erage dose per exposure is defined by ingestion
of 0.01 I per exposure occasion with a mean con-
centration of 10 cfu/L, hence D = 0.1 cfu. As in
models accounting for immunity, N and E are
not interchangeable, we need to account for the
fact that exposure can only take place to dis-
crete organisms, hence we modify this scenario
to E =02 and D = 1 cfu (keeping the prod-
uct ED, the total dose, constant). We ignore the
(very small) probability that the Poisson aver-
age D = 0.1 implies a realized exposure greater
than 1 cfu.

e Low frequency of exposure, high dose (L/H)—
consumption of raw chicken liver.
In a two-day period, 2/6,250 respondents in the
Dutch Food Consumption Survey indicated to
have eaten raw or undercooked chicken livers.
We assume that consumers who eat chicken liv-
ers do so once per two months. The prevalence
of Campylobacter on chicken livers is 33%,
hence E = 2 year™! and f = 0.01. The average
portion size per eating occasion is 85 g and the
concentration of Campylobacter is 1.75 cfu/g;
hence D = 150 cfu.

® High frequency of exposure, low dose (H/L)—
direct animal contact with sheep and goats (i.e.
farmers).
About 0.4% of the Dutch population has reg-
ular contacts with sheep and goats. On aver-
age, 50 contacts with animals are assumed per
day, with 1% probability of exposure to fe-
cal material per contact; thus E ~ 180 year™!.
The amount of feces transferred per contact is
0.001 g with a Campylobacter concentration of
1 x 10* cfu/g and prevalence of 65%, hence D
= 6.5 cfu.

® High frequency of exposure, high dose (H/H)—
petting zoos.
On average, 0.3% of the Dutch population vis-
its a petting zoo on any given day. If we assume
that those who do regularly visit petting zoos
do so once per week, then E = 52 year~! and
f = 0.02. The average dose per visit can be es-
timated from the prevalence and concentration
of Campylobacter in petting zoo animals (9.5%
and 2.8 x 10° cfu/g, respectively) and the num-
ber of animals contacts per day (20), the proba-
bility of fecal transfer per contact (0.01) and the
amount of feces transferred (0.003 gram); hence
D =16 cfu.

® The average exposed person.
To evaluate the impact of heterogeneity in ex-
posure patterns, we also calculate a hypothetical
exposure scenario, in which every individual in
the population would be exposed weekly to an
average dose, based on the four exposure sce-
narios described above, that is, f = 1.00; £ = 52
year™!, resulting in D = 0.48 cfu. As discussed
for recreational water, we modify this scenario
to E =24 year ! and D =1 cfu.

Note that these four scenarios should not be con-
strued as a partitioning of the population into dis-
joint subgroups. An individual may be a member of
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Table IV. Disease Incidence for Different Exposure Scenarios for C. Jejuni According to Five Dose-Response Models
(a) Individual Risk
. Incidence of Illness (person/year)
Scenario Exposure Annual Dose
(E/D) Pathway (ctu/person/year) Naive Binomial Immunity Dose Dose-Immunity
L/L Recreational water 0.2 11x107% 11x103%  1.0x1073 27 x 1077 2.7 x 1077
L/H Raw chicken liver 300 2.0 x 1071 1.9 x 107! 12 x 107! 7.4 x 1073 4.4 x 1073
H/L Sheep and goats 1,200 4.3 x 10° 9.9 x 107! 1.5 x 107! 73 x 1073 2.6 x 107*
H/H Petting zoos 830 2.1 x 10° 8.9 x 107! 1.9 x 107! 8.8 x 1073 74 x 107
AVG Average exposure 24
1.3 x 107! 1.2 x 107! 8.9 x 1072 33x 107 23 x 1077
(b) Population Risk
. . Incidence of Illness (population, year~!)
Scenario Exposure Population Average
(E/D) Pathway Dose (cfu/person/year) Naive Binomial Immunity Dose Dose-Immunity
L/L Recreational water 0.06 54x10°  54x100 54x10°  14x10° 1.4 x 10°
L/H Raw chicken liver 3.0 33x 10 31x10*  20x10* 12x10° 7.3 x 102
H/L Sheep and goats 4.8 28 x10° 6.5 x 10* 1.0 x 10+ 4.8 x 102 1.7 x 10!
H/H Petting zoos 17 70x10° 29x10°  63x10* 29 x10° 2.6 x 107
SUM Sum of four scenarios 25 1.0 x 106 3.9 x 10° 9.8 x 10* 4.6 x 103 1.0 x 10
AVG Average exposure 24 2.1 x 10° 2.0 x 10° 1.5 x 10° 5.4 x 102 3.8 x 102

none, one, or more of the defined groups. Still, it is
interesting to compare the specific scenarios to the
population average.

In Table IV, we see that the average dose
for the total Dutch population varies between
0.2 cfu/person/year in the L/L scenario to 1,186
cfu/person/year for the H/L scenario. The average
person in this population would be exposed to 24
cfu/year. Table IV also shows risk estimates at in-
dividual and population level. The latter are graph-
ically shown in Fig. 6.

The different DR models have marked effects on
the estimated individual and population risks, but the
impact of the different models depends on the ex-
posure scenario. Incorporating immunity in the DR
model has an impact on scenarios with frequent ex-
posures, as expected. The risk according to immu-
nity models is estimated approximately 10x lower
than for models that do not take immunity into ac-
count for both the H/L (sheep and goats) and H/H
(petting zoos) scenarios. The impact of high doses
(also a parameter in the inflation factor 7) is less
pronounced, as can be seen from risk estimates for
chicken liver. Dose dependence of pijins has a very
strong impact in scenarios with exposure to low
doses, again as expected. In the L/L (recreational
water) and AVG (average exposed person) scenar-

ios, risk estimates are reduced more than 1,000-
fold. In scenarios with exposure to higher doses, the
effects are less strong (approximately 10-fold risk
reduction).

The sum of the estimated population incidence
for all four scenarios together is lower than the inci-
dence estimated for the AV G scenario for the naive,
binomial, and immunity models, whereas it is higher
for the models including dose dependence of pijjins.
This is related to heterogeneity in exposure with
some individuals being exposed to doses that are con-
siderably higher than average. The sum of popula-
tion incidence estimates of the immunity model is in
the same order of magnitude as the epidemiologi-
cal estimate. Note the contrast with the AVG sce-
nario, indicating that simultaneously accounting for
immunity and heterogeneity in the population ex-
posure distribution has a profound impact on risk
estimates.

Table V presents the impact of different DR
models on attribution. This table also includes attri-
bution based on exposure only, as suggested by Ev-
ers et al.,"” who found that direct animal contact
(as in petting zoos) was the most important source
of exposure to C. jejuni. Most DR models also sug-
gest that this exposure pathway is the main risk fac-
tor for illness with attributable fractions (AF) varying



Acquired Immunity and Dose-Dependent Probability

11

1.E+07
< <> s

1.E+06 T o
c O [ |
'-g 1.E+05
‘—5“ ' O [ |
a [ ] ()
3 [ J
= 1.E+04 =
a O O O
g ] <& Average exposure
= [ ]
5 1E+03 & [ ] B Petting zoos
o
2 ﬁ [ Sheep and goats
2 1E+02
g ® Raw chicken liver
£ - .

1.E+01 O Recreational water

1.E+00 T T T O T O |

& & Q e Q
é'b& (\o@\ @00\ o8 6‘0(\\
b & &
¢
S
o~

Dose-response model

Fig. 6. Disease incidence for different exposure scenarios according to five dose-response models.

Table V. Attribution of Disease Incidence to Different Exposure Pathways According to Five Dose-Response Models

Scenario Exposure Pathway Exposure Naive Binomial Immunity Dose Dose-Immunity
L/L Recreational water 0.2% 0.5% 1.4% 5.5% 0.0% 0.1%
L/H Raw chicken liver 11.4% 32% 7.9% 20.3% 26.2% 72.4%
H/L Sheep and goats 18.9% 27.5% 16.6% 10.2% 10.5% 1.7%
H/H Petting zoos 69.5% 68.8% 741% 64.0% 63.3% 25.8%
between 64% and 74%. In contrast, the dose- given infection. We show that these modifications

immunity model only estimates AF = 26% for pet-
ting zoos. According to this model, foodborne ex-
posure (raw chicken liver) would be the main risk
factor (AF = 72%). The AF for recreational water
is low according to all DR models, even though it is
6% according to the immunity model.

5. DISCUSSION

By combining previously published modeling ap-
proaches, we propose an extension of current DR
theory for microbial risk assessment to account for
the impact of acquired immunity on the risk related
to repeated exposures, and for the dose-dependent
behavior of the conditional probability of illness

have a pronounced effect on the estimated inci-
dence of human disease. Based on an existing ex-
posure model, we recalculate the expected incidence
of campylobacteriosis in the Netherlands, and com-
pare the results with independent estimates from
epidemiological research. The standard approach to
risk characterization overestimates the incidence of
campylobacteriosis by several orders of magnitude.
Bouwknegt et al.?” have systematically analyzed
possible sources of uncertainty in both estimates and
identified DR models including lack of considera-
tion of acquired immunity as key factors. In this arti-
cle, we propose methods to quantify the impact of
such factors. Accounting for immunity reduces the
risk estimate after repeated exposures by an inflation
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factor equal to the (dose-dependent) fraction of sus-
ceptibles in the population. However, the incidence
of campylobacteriosis is still overestimated. In this
model, the probability of illness as a function of dose
has a maximum value; hence decreasing the exposure
may, under some circumstances, lead to increased
disease risk. Introducing dose dependency of the
probability of illness given infection strongly reduces
the risk estimate. Applying this conditional proba-
bility (parameterized using very few data) leads to
underestimation of the incidence of campylobacte-
riosis as compared to the epidemiological estimate.
When combined with the impact of acquired immu-
nity we find an even stronger underestimation. In
this combined dose-immunity model, the incidence is
bounded for D — oo.

Fig. 4 illustrates how dose and exposure frequen-
cies determine disease incidence. We observe that in
order to conform to epidemiological estimates, the
dose range should be in a narrow band between ap-
proximately 1.5 and 3 log cfu, almost independently
of the number of exposures. Such high exposure lev-
els do not appear realistic when compared to existing
exposure models. 1011

The impact of acquired immunity appears to
limit the disease incidence at higher exposure fre-
quencies, whereas dose dependency of the probabil-
ity of illness given infection has a major impact at
low (average) doses. Hence, depending on the sce-
narios to be evaluated, simpler model choices (and
hence less demanding parameter estimations) might
be chosen in future risk assessments. The naive ap-
proach, with constant probability of illness given in-
fection and no impact of acquired immunity, appears
to yield unrealistically high results under all circum-
stances. As this model has been applied in many
published risk assessments, it is important to further
evaluate the impact of our new approach to risk char-
acterization on typical results of risk assessment stud-
ies, such as the public health risk of pathogen/food
pairs. Because of the nonlinear nature of the models
including immunity even the impact of interventions
in the food chain aimed at reducing exposure dose
and/or frequency may be wrongly estimated in cur-
rent risk assessments.

The different impact of DR models on risk es-
timates is clearly illustrated by the scenario studies
introducing heterogeneity in exposure in the popu-
lation. The choice of DR model has a pronounced
effect on both absolute risk estimates and attribu-
tion of illness to different exposure pathways. The
observation that the risk estimate of the immunity
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model is very sensitive to heterogeneity in the popu-
lation distribution is of particular interest. When ap-
plying the dose-immunity model, raw chicken liver,
although eaten rarely and by a small fraction of
the population only, is predicted to cause a large
fraction of all cases in our hypothetical popula-
tion. Also, in infectious disease surveillance out-
breaks associated with undercooked chicken liver
are increasingly recognized.?'* Furthermore, in
Scotland 56% of Campylobacter strains in re-
tail liver belonged to the top 10 genotypes in
humans.>)

The quantitative results presented in this article
are illustrative, but must be interpreted with caution
because there were very few data on which to base
parameter estimates. Parameter estimates for the
conditional probability of illness are based on a sin-
gle study in the United States, with few subjects per
dose category and exposure of volunteers to doses of
10° cfu or higher. Such experimental doses may not
be representative of real exposures through food or
environmental sources. Furthermore, variability be-
tween Campylobacter strains and hosts, or the phys-
iological status of bacteria in response to changing
conditions in the food chain, all may have an impact
on the parameter values. The Beta-distribution for
the single-hit parameter 7, as used in the hypergeo-
metric and Beta-Poisson model, can be interpreted as
expressing variability between hosts, or between mi-
croorganisms, or both. Variability between hosts can
be related to innate immunity and barriers such as
stomach acid, bile salts, etc. Acquired immunity may
also affect the single-hit probability, but very few
data are available to quantify this effect. In our in-
terpretation, acquired immunity primarily affects the
probability of illness given infection, not the proba-
bility of infection given exposure. This is described
in more detail in Ref. 8. To better understand the
process of illness given infection, and provide better
parameter estimates, more sophisticated models of
pathogen-host interaction are needed. As more sero-
surveillance data, and models to reconstruct the in-
cidence of (asymptomatic) infection from such data,
become available,*® this may offer additional prob-
abilities to arrive at population-based parameter
estimates.

In conclusion, we have shown that incorporat-
ing the effect of acquired immunity and/or dose
dependence of the probability of illness give infec-
tion has a pronounced effect on absolute and rel-
ative risk estimates. We provide a theoretical basis
for the incorporation of such effects in microbial risk
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assessment studies. Further work is necessary to
establish more realistic parameter estimates and
take into account variability between Campylobacter
strains and human hosts.
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