Research Developments in Pathogen Reduction During Slaughter and Meat Processing

Colin Gill Agriculture and Agri-Food Canada Lacombe Research Centre

Numbers of enteric pathogens on meat can be reduced by

Preventing contamination

and/or

Decontamination

Research on decontamination is predominant

Matters to be Discussed

Studies reported during the past 5 years on

• Control of *Escherichia coli* 0157:H7 on beef

 Control of <u>Listeria monocytogenes</u> on readyto-eat meats

FSIS Raw Ground Beef Testing

Percent Positive *Escherichia coli* 0157:H7 Initial Federal Verification Samples (Figure 1)

4

Improving Control over <u>*E.coli*</u> O157:H7 in Beef

Regulators' Response:

INCREASE TESTING

ENHANCE TEST SENSITIVITY

"Regulatory testing is not designed to directly ensure food safety."

"Rather, regulatory testing strategies stimulate implementation of effective interventions and prevention---"

"Regulation allocates, not assumes, responsibility."

Dodd, C. I., Powell, D., 2009. Foodborne Pathogens and Disease 6, 743-747. 5

HACCP System Validation

•Necessary part of any HACCP System

•Validation is stipulated in USDA HACCP System Final Rule 1996 But no details provided

•USDA HACCP Systems Validation: Draft Guidance Document 19th March 2010

> Requirements for each HACCP system 1. Scientific support 2. In-plant validation

Enumeration of indicator organisms and testing for pathogens is suggested

Improving Control Over <u>E.coli</u> 0157:H7 in Beef

Where to Improve Control?

1. Carcass Dressing

"The function of preharvest intervention is to reduce the load of <u>E.coli</u> O157:H7 on the incoming cattle to bring the load in line with the capacity of the postharvest intervention used."

Arthur, A.T. et al., 2009. Appl. Environ. Microbiol. 75, 6515-6523.

Experimental Decontamination of Hides

Treatment	Reductions (log cfu)				
	Aerobes	Coliforms	<u>E.coli</u>	Ref.	
Water	0.2	_	_		
Peroxyacetic acid	0.6	_	_	1	
Quat sanitizer	1.8	_	_		
Clipping and singing	2.1	_	_		
Water	_	1.6 (3.6) ^a	_	2 ^b	
4% Chlorine release compound	-	3.9 (4.4)	-		
4% Phosphoric acid	_	4.1 (5.4)	_		
1.6% NaOH	_	3.7 (3.9)	_		
water	1.0	0.6	0.9		
10% Acetic Acid	2.5	2.6	2.6	3	
10% Lactic acid	2.2	2.7	2.7		
3% NaOH	1.5	2.9	2.8		

^aReduction after vacuuming to remove water

^bTreatment followed by rinse with water containing 500 ppm chlorine

- 1. Small et al., 2005 Meat Sc.i 69 (1), 263-268
- 2. Bosilevac et al. 2005. J. Food Prot. 68 (2) , 265-272
- 3. Carlson et al, 2008. J. Food Prot. 71(7), 1343-1348

Decontamination of Inoculated Hides

Treatment	Reduction (log cfu)		
	<u><i>E.coli</i></u> O157:H7	Salmonella	
Water	2.3	1.7	
10% Acetic acid	2.6	2.0	
10% Lactic acid	3.4	2.8	
3% NaOH	3.4	4.4	
2.4% KOCN	5.1	0.7	
6.2% NaS	4.8	4.2	
10%NaOH	5.0	4.4	
+2000 ppm Cl			

Carlson et al., 2008. J. Food Prot. 71 (11), 2223-2227

Decontaminating effects of a Commercial Hide Wash Cabinet

Manufacturer: CHAD

Treatment: 1.0-1.5 % NaOH at 65 °C, 700 psi, 1500 l/min, 10 s

	Reductions		
	Hides minus washed hides	Hides minus skinned carcasses,hide washed	Hides minus skinned carcasses, hide not washed
Aerobes	2.1	5.4	4.5
Enterobacteriaceae (log cfu)	2.4	5.4	4.7
<u><i>E. Coli</i></u> O157:H7 (%)	-28 ª	-42 ^a	-71 ^b

^aPrevalence on hides, 44%^bPrevalence on hides, 88%

Bosilevac et al., 2005. J. Food Prot. 68 (2), 265-272.

Spraying Hides with Shellac

Treatment; spray with 23% shellac in ethanol at 20 °C

Count	Reduction (log cfu)
Aerobes	6.6
Enterobacteriaceae	4.8
<u>E.coli</u>	2.9

Antic et al., 2110. Meat Sci. 85 (1), 77-81

Decontamination of Skinned Carcasses in a Commercial Cabinet

Manufacturer: CHAD

Treatment : Wash with water at 74 °C, 700 psi for 5.5 s, then spray with 2 % lactic acid

		Reductions	
	Water only	Acid only	Water & Acid
Aerobes (log cfu) ^a	2.7	1.6	2.2
Enterobacteriaceae (log cfu) ^b	2.7	1.0	2.5
<u>E. coli</u> O157:H7 (%)	-5.5	-29	-39

^aNumbers before treatment were > 4 log cfu/cm²

^bNumbers before treatment were >2 log cfu/cm²

^cPrevalences before treatment with water, acid and both were >9, 69 and 48%

Bosilevac et al., 2006. J. Food Prot. 679 (8) 1808-1813.

Commercial Decontamination of Skinned Carcasses

Effects on prevalence of *E.coli* O157:H7

Data from three plants, each of which "used a pre-evisceration carcass wash with organic acid".

	Before treatment	After treatment	Reduction	
<u>E. coli</u> 0157:H7 Prevalence %	10.1	1.4	-8.7	

Woerner et al., 2006. J. Food Prot. 69(12), 2824-2827

Commercial Decontamination of Skinned Carcasses

Plant	Redu			
Flain	Aerobes	Ent.	Coliforms ^b	E.coli ^b
Α	0.5	-	1.3	0
В	0.4	-	<0.1	0.1
С	0	-	1.2	1.2
D	0.1	0.3	-	-
E	+0.6	+0.4	-	-

Previous Findings

^aPlants A B &C, before and after treatment; plants D & E before treatment and after treatment and evisceration

^bReductions in log total numbers recovered from 2500 cm²

Plants A, B &C; Gill & Landers 2003. Meat Sci 65 (3), 1005-1011. Plants D & E; Arthur et al. 2004. J. Food Prot. 67 (4), 658-665.

Origin of <u>E.coli</u> in Ground Beef

Beef side surface area= 60 000 cm^2 (3x 2 m^2)

Beef side weight =150 000 g (150 kg)

Which gives 70 000--- 120 000 g of ground beef

Therefore, if all *<u>E. coli</u>* in ground beef are present on carcasses,

<u>*E. coli*</u> /g ground beef ≈ <u>*E.coli*</u> / cm² carcass surface

Mean numbers of *E.coli* in ground beef at plants is 5/g

But, USDA criteria require that no more than 3 of 13 carcass samples have $\geq 5 \text{ E. coli} / \text{cm}^2$

Therefore, either most plants do not meet USDA criteria or beef is contaminated after carcass dressing

Routine Recovery of <u>E. coli</u> from Carcasses

Detection limit 1 cfu / 12 cm²

Prevention of Product Recontamination

No reported work on prevention of recontamination

But

<u>E.coli</u> O157:H7 attached to stainless steel have been shown to survive drying for 12 h

Attachment Conditions		<u>E. coli</u> 0157:H7	(log cfu/cm²)
Temp ° C	Time (h)	Before drying	After drying
35	7	2.3	<0.3
	24	4.5	2.5
15	24	2.0	0.5
	48	3.1	0.6

Skandamis et al., 2009. Food Microbiol. 26 (1), 112-119.

Decontamination of Beef by Heat

All reported work was done with inoculated product; products were variously trim, primals, heads and hearts

Treatment		Reduction (log cfu)			
Temp (°C)	Time (s)	Application	<u>E.coli</u> 0157:H7	<u>S. Typhimurium</u>	Ref.
82	15	Water, dipping		0.5	1
82	20	Water, spray	0.9	-	2
74	26	Water, spray	1.7	-	3
85	12	Water, spray	2.3	2.5	4
	28	Water, spray	2.4	2.8	
>80	60	Steam	2.5	3.7	5
90	60	Hot air	4.2	4.7	6
100	60	Hot air	3.9	6.0	

1. Özdemir et al. 2006. food control 17(2), 299-303.

2. Heller et al. 2007. J. Food Prot 70 (50, 1174-1180.

3. Halchayanand et al. 2008. J. food Prot. 71 (3), 621-624.

4. Halchayanand et al. 2009. J. food Prot. 72 (1), 151-156.

5. McCann et al., 2006. J. Food Engineer. 76 (1), 32-40.

6. McCann et al., 2006. J. Appl. Microbiol. 101 (5), 1177-1187

Decontamination of Beef with Antimicrobial Solutions

All reported work was done with inoculated products; products were variously trim, primals, heads and meats

Treatment	Reducti		
	<u><i>E.coli</i></u> 0157:H7	<u>S. Typhimurium</u>	Ref.
0.1% peroxyacetic acid, 2% lactic acid	0.7, 1.3	1.0, 2.1	1
2% lactic acid, 85 °C water+ 2% lactic acid	-	0.7, 1.2	2
5% lactic acid, 2% lactoferrin +5% lactic acid	d 1.1, 0.9	-	3
Fresh FX ^a , Electrolysed water, Ozone	1.1, 0.3, 0.4	-	4
270 ppm bromine release agent ^b	2.1	-	5

^a Mixture of Hydrochloric, phosphoric and citric acids ^bDibromo-dimethyl-hydantoin

1. Ellebracht et al., 2005. Meat Sci 70 (2), 197-203.

2. Ozdemir et al., 2006. Food Control 17- (2), 299-303.

3. Heller et al., 2007. J. Food Prot. 70 (5), 1174-1180.

4. Kalchayanand et al., 2008. J. Food Prot 71 (3), 621-624.

5. Kalchayanand et al., 2009. J. Food Prot. 72 (1), 151-156.

Sanitizers and *L. monocytogenes* Biofilms

- 1. Sanitizers based on peroxyacetic, acetic and/ or phosphoric acids, H₂O₂, ethanol, isopropanol and/or quats are all effective at 5 °C.
- 2. A H₂O₂ / peroxyacetic acid sanitizer was more effective than chlorine or quat based sanitizers.
- 3. Lactic acid was more effective than NaOCI or quat based sanitizers.
- 4. Reuterin in combination with NaOCI, nisin or phosporic acid was effective as a sanitizer.
- 5. Sanitizers based on essential oils of lemongrass or citronella were effective.
 - 1. Aarnisalo et al., 2007. LWT Food Sci. Technic..40 (6) 1041-1048.
 - 2. Berrange et al. 2008. J. Food Prot. 71 91), 66-69.
 - 3. Yang et al. 2009 J. Food Prot. 72 (5), 990-998.
 - 4. El- Ziney & Jacobsen 2009. J. Food Agri. Environment. 7 (3-4), 145-149.
 - 5. De Oliveira et al. 2010. Food Control 21 (4), 549-553.

Inactivation of *L. monocytogenes* in Brines

- D-values for <u>L.monocytogenes</u> in 20% NaCl or 20% CaCl₂ were 12.3 and 0.5 days, respectively; with 3 ppm ClO₂, D-values were 24 and 22s; with ≥ 1% organic matter, ClO₂ had no effect.
- 2. UV light inactivated <u>L. monocytogenes</u> in fresh brines; but was ineffective against L. monocytogenes in brine containing 0.1% suspended solids.
- 3. Bacteria in turbid solutions may be inactivated by continuous or pulsed UV light if liquid flow is turbulent.
 - 1. Valderram et al., 2009. J. Food Prot. 72 (11), 2272-2277.
 - Gailunas et al., 2008. J. Food Prot. 71(3), 629-633.
 McKinney et al., 2009. J. Food Prot 72 (8) 1634-1640.
 McKinney et al., 2009. J. Food Prot. 72 (10), 2144-2150.
 - 3. Krisnamurithey et al., 2007. J. Food Sci. 72(7), M233-M239. Keyser et al., 2008. Innovat. Food Sci. Emerg. Technol. 9, 348-354.

Inactivation of <u>L.monocytogenes</u> on Packaged Products with Pulsed UV Light

- 1. Packaging films do not affect inactivation by pulsed UV
- 2. <u>L. monocytogenes</u> on illuminated surfaces of packed frankfurters were reduced by 2 log units

- 1. Fernandez et al., 2009. Foodborne Pathogens and Disease 6 (10), 1265-1263.
- 2. Keklik et al., 2009. J. Food Sci 74 (8), M431-M439.

Pasteurization of Frankfurters

- 1. Murphy et al., 2005. J. Food Prot. 68 (3), 507-511. Murphy et al., 2005. J. Food Sci. 70 (2), M138-M110.
- 2. Murphy et al., 2008. J. Food Sci. 73 (2), M72-M74.
- 3. Huang & Sites, 2007. J. Food Engineer. 80 (2), 226-233.

- Steam pasteurization (114 °C, 1.5 s) of franks in two layer packs reduced <u>L. monocytogenes</u> numbers by 3 log units. Reductions were greater (<1 log unit) if franks, were treated with liquid smoke or an organic acid solution before pasteurizing.
- 2. Steam pasteurizing (121 °C, 1.5s) of franks in single-layer packs reduced *L. innocua* numbers by 2 log units. No growth occurred during storage of pasteurized franks containing lactate and diacetate.
- 3. When single-layer vacuum packs of franks were pasteurized at 85 °C by microwave or hot water heating, rates of reduction of <u>L. monocytogenes</u> were 0.9 and 0.6 log cfu /min, respectively.

High Pressure and Irradiation Treatments of Dry Cured Ham and Frankfurters

- High Pressure Treatment of sliced dry cured ham (450 MPa, 10 min 12 °C) reduced <u>L. monocytogens</u> numbers by 1 log unit. Numbers fell by a further 1 to 2 log units during storage for 1 week.
- 2. Explosive high pressure treatment of vacuum packaged franks reduced *L. monocytogenes* numbers by 1 log units. Dipping in nisin solution before packaging and high pressure treatment reduced numbers by a further 0.5 log unit.
- 3. D-values for irradiation of *<u>L. monocytogenes</u>* and *<u>L. innocua</u>* on dry cured ham were 0.42 and 0.47 kGy, respectively.
 - 1. Morales et al., 2006. J. Food Prot. 69 (10), 2539-2543.
 - 2. Patel et al., 2007. J. Muscle Foods 18 (1), 1-18.
 - 3. Hoz et al., 2008. J. Food Prot. 71 (10), 2001, 2006.

Spraying Processed Meats with Antimicrobial Solutions

- 1. Acidic or basic electrolysed waters reduced <u>*L. monocytogenes*</u> numbers on franks or ham by < 1 log unit.
- 2. 5% lactic acid or 0.5% Na lauryl sulphate reduced numbers of *L. monocytogenes* on franks by 1 log unit; together they reduced numbers 1.5 log unit
 - 1. Fabrizio & Cutter, 2005. Meat Sci 71 (2), 327-333.
 - 2. Byelashov et al., 2008. J. Food Prot (4), 728-734.

Conclusions

- Prevention is better than decontamination.
- Antimicrobial solutions will give reductions of <2 log units.
- Effects of treatments with two or more antimicrobial solutions will not be additive.
- Heating or irradiation treatments can give any required reduction, provided the treatment time is practicable and the effects on product quality are acceptable
- Combinations of physical and antimicrobial treatments can be additive.