

TEXAS TECH UNIVERSITY

Guy H. Loneragan, BVSc, PhD International Center for Food Industry Excellence

Control of Food-borne Pathogens in Cattle: Challenges and Opportunities

Southwest Beef Symposium Lubbock, Texas 16JAN2013

E. coli O157 and Beef

- Informed regulatory oversight and industry implementation of PR/HACCP plans have resulted in greatly improved microbial process control
- Observed across various metrics

E. coli O157 and Beef

- Many slaughter plants now excel at microbial process control
 - Diminishing opportunities for further improvement during slaughter/fabrication
 - Most cases now from non-beef sources
 - Cattle likely ultimate source of E. coli O157
- To move the needle further, need to start focusing on controls in live-animals
 - To what extent does pre-harvest control of pathogens further improve public health?

E. coli O157, Beef & Public Health

Pre-Harvest

Harvest/Processing

Consumers

- Qualitative and logical relationship
 - Supported by empirical evidence
 - But hard to quantify impact
- More quantitative becoming available
 - Withee et al. FPD 2009 streamlined model
 - Dodd et al. JFP 2011 –pre-harvest to harvest E. coli O157 (interventions efficacy)
 - Ebel et al. JFP 2004 FSIS risk assessment

Best Practices

- BIFSCo pre-harvest BP
 - E. coli Summit in 2003
 - 1. Clean feed
 - 2. Clean water
 - 3. Appropriate environment
 - 4. Relative freedom from pest
- Viewed as necessary foundation for specific interventions to be successful

BMG

Vaccine Technologies

- Several vaccines trialed or proposed
 - Translation of 2 products relatively advanced
- 1. Epitopix/Pfizer Animal Health vaccine
 - Subunit vaccine of siderophore receptors and porin proteins (SPR)
 - Mechanism by which bacteria acquire iron
- 2. Bioniche Food Safety vaccine
 - Subunit vaccine based on Type III Secretion System (T3SS)
 - Includes several proteins required for enterocyte attachment and effacement

Vaccine Technologies

SRP vaccine (Epitopix/Pfizer Animal Health)

- Thomson et al. FPD 2009;6:871-7
 - 85% reduction in prevalence
 - 98% reduction in concentration
- 2010 commercial studies
 - 40% reduction in feces (2 doses)
 - Reduced number of combos of beef trimmings assoc. with positive test
 - 65% reduction on hides (1 dose)
- 2011 studies
 - 50 to 60% reduction in feces in completed study (Renter et al. and Loneragan et al.)
 - 75% reduction in 'high shedders'

Vaccine Technologies

T3SS vaccine (Bioniche Food Safety)

- Canadian regulatory agency has reviewed data and granted a full license
 - Label indication: 'For vaccination of healthy cattle as an aid in the reduction of shedding of Escherichia coli O157'
- Not yet licensed in the US
 - Might never be licensed...
- Peer-reviewed publications published in respected journals support efficacy

Vaccine Technologies T3SS vaccine (Bioniche Food Safety)										
	Reference	Regimen		Study Design	Outcome	OR	<i>P</i> -value			
	Potter et al 2004	3 dose	Vaccination Day 0, 21 and 42	Sampling Daily for 14 days post challenge	Feces	0.35	0.04			
			•	6 samples: wks 0, 3, 6, 9, 12, 15	Feces	0.36	0.04			
ź	Peterson et al 2007	0 dose	n/a	7 samples: wks 0, 3, 6, 9, 12, 15 and 18	Feces	0.36	<0.01			
Smith, UNI		1 dose	Day 42			0.25	<0.01			
		2 dose	Day 0 and 42			0.27	<0.01			
		3 dose	Day 0, 21 and 42			0.21	< 0.01			
	Peterson et al 2007	3 dose	Day 0, 21 and 42	5 samples: wks 0, 8, 10, 13, 14	Feces	0.81	0.57			
<u> </u>					TRM	0.01	< 0.01			
David	Smith et al 2008	2 dose	14 - 104 days apart	4 samples: 3 wks apart	ROPES	0.59	<0.01			
<u>1</u>	Smith et al 2009	2 dose	Day 0 and 32	3 samples: wks 11, 13, 16	Feces	0.35	<0.01			
slide:				4 samples: wks 11, 13, pre and post shipping	Hides	0.43	0.01			
5				Regional vaccination	TRM	0.69	0.63			
Source		2 dose	Day 0 and 32	Comingling	Feces	0.48	0.01			
੍ਰੀ					Hides	0.67	0.33			
ดี	Smith et al 2009	3 dose	Day 0, 21 and 42	5 samples: wks 0, 9, 11, 13, 15	Feces	0.5	<0.01			
	Smith et al 2009	2 dose	Day 0 and 42	5 samples: wks 0, 9, 11, 13, 15	TRM	0.07	<0.01			
	Moxley et al 2009	2 dose	Day 0 and 42	5 samples: wks 0, 9, 11, 13, 15	Feces	0.66	0.20			
		3 dose	Day 0, 21 and 42	5 samples: wks 0, 9, 11, 13, 15	Feces	0.34	<0.01			
	Allen et al 2011	3 dose	Day 0, 21 and 42	Daily for 14 days post challenge	Feces	0.18	<0.05			

Vaccine Technologies

- Compelling body of evidence
 - Aid in the control of E. coli O157
- Efficacy is imperfect but nevertheless robust across a variety of study designs
 - Dose response observed
 - Snedeker et al ZPH 2011
- Can these imperfect vaccines have an impact?

Direct-Fed Microbials

- Frequently referred to as probiotics
- GRAS (approval) for use in cattle
 - No label claim against food-borne pathogens
- Thoroughly evaluated against *E. coli* O157
 - More data for Salmonella and non-O157 STEC
 - Strain specific
 - Dose response

- Broadly adopted product
 - Nutrition Physiology Company

Bacteriophage

- Biological control using targeted selection of lytic phages
 - Product available from Elanco Food Solutions (*Finalyse*)
- Preliminary field data on STEC
 O157 encouraging
 - Week-on/week-off study
 - Trim positives reduced 56% (P=0.06)
- Expanding cocktail of phages to cover non-O157 STEC

Source of Data: Patrick Mies

Efficacy of Pre-harvest Interventions

- A variety of interventions have shown consistent efficacy
- Imperfect (<100%) efficacy –
 none will be a silver bullet
 - Efficacy nevertheless robust across study settings/designs
- Can adoption of these imperfect intervention(s) have a favorable impact?

Quantitative Risk Assessment Scott Hurd Farm-to-Fork Model

- Quantitative risk assessment
 - Farm to fork with various measures of impact
 - Pre-publication

Production Slaughter/Fab Consumption

Scenario Reduction Reduction (log cfu/g)

Scenario	Reduction (prevalence)	Reduction (log ₁₀ cfu/g)
А	40	0.3
В	60	0.3
С	80	1.0

An Opportunity to Impact

- Model built on best available data
 - All models contain some degree of uncertainty
- The model allows us to estimate the likely
 <u>impact</u> of pre-harvest control of *E. coli* O157
 based on both <u>efficacy</u> & extent of <u>adoption</u>
 - Impact = Efficacy * Adoption
- A poorly efficacious intervention is expected to have an impact if broadly adopted
 - Adoption may be more important than efficacy
 - Yet we generally focus on efficacy

Summary

- We have robust (albeit imperfect) tools that can reduce prevalence of *E. coli* O157
 - Our best available models inform us they will likely improve public health
- Yet we tend to focus on efficacy
 - 'Wait for a better product'
 - Maybe if we believe control is important, we need to start focusing on those factors that will facilitate adoption
 - Broad adoption of even a poorly efficacious product appears to have a meaningful benefit

A Hypothesis was Presented

- 2010: A packer asked NCBA to work out if the issue is with *Salmonella* in lymph nodes?
- 2008 paper: Salmonella in 1.6% of lymph nodes
 - Cull-bulls 3.9 versus 0.35% in fed cattle
- PLN are beef when present at 'usual proportions'
 - Bypasses assumed route of contamination
 - Feces/Hides >>>> peripheral LN >>>> ground beef
- NCBA invested Beef Checkoff to explore this

Surveillance Studies

- Packing-plant surveillance populations
 - 1. Cattle from feedlots
 - 2. Cows culled from dairy and beef herds
 - Cattle that passed USDA inspections

- Samples collected 6 times throughout year
- ~75 nodes per abattoir per time
- Feb 2012 to Dec 2012
 - More plants, more sample periods

United States
Department of
Agriculture

National Institute of Food and Agriculture

2010-2011 Surveillance

- Plants from which samples were received:
 - 5 in Texas (categorized as southern)
 - 2 in Nebraska (categorized as northern)
 - 1 in California (included in northern category)
 - Most plants have 6 collection windows; 2 each in:
 - Sep-Nov, Feb-Mar, Jul-Sep
- 3,327 lymph nodes assayed
 - 8.0% positive
 - Accepted for publication

Multiple lymph nodes per carcass

Visit	Carcasses Sampled	Fecal prevalence	Node prevalence	Positive in 1 or more	Positive in all 6
03OCT	15	80%	58.9%	100%	20%
170CT	30	100% (n=6)	56.1%	96.7%	23.3%
240CT	20	95%	15.8%	50%	5%
310CT	35	47.8% (23)	9.1%	37.1%	0%

Summary

- Salmonella recovered from lymph nodes
 - Varies by region, season, and animal type
 - Feedlot cattle more than cull cows (summer/fall)
 - Routinely recovered from >30% of PLN
- While less common in cull cows, more likely to be Salmonella Newport or Typhimurium
- Feedlot cattle serotypes more closely match what FSIS finds in its regulatory samples

Salmonella and PLN

- Traditional paradigm is that Salmonella escapes the gut and disseminates systemically via lymphatic>vasculature system
 - Not all the data support this concept
- We hypothesize that a transdermal route of infection for Salmonella is the primary route by which the PLNs become infected
 - Biting flies, skin lesions, footrot, etc.

How Might We Approach Control?

• In-plant peripheral lymph node removal

Trans/Intradermal Route of Infection

Tom Edrington USDA/ARS/SPARC/ FFSRU

- Development of a trans/intradermal challenge model
- Mimic real-world observations

Source of photos Tom Edrington

Challenge Model Studies to Date Tom Edrington

- *Oral* challenge
 - S. Newport recovered from 4.2% of vaccinate peripheral nodes and 54.2% of control nodes
 - Oral challenge studies not very rewarding
- *Transdermal* challenge
 - S. Newport recovered from 33% of vaccinate peripheral nodes and 67% of control nodes

Summary

- For <u>E. coli O157</u>, assumed carcass was sterile when left feedlot and contaminated in the plant
 - Packers took 'ownership'
- <u>Salmonella</u> in PLNs means that carcass is not sterile
 Very different perspective
- Consensus that in plant controls are insufficient
 - Pre-harvest efforts needed
- Early in the research process
 - Evidence we can control it

Disclaimer

- I come with conflicts of interest!
- My opinions are influenced by my research
 - Observational studies
 - Experimental studies
 - Sponsored by USDA, beef industry (e.g., Checkoff), companies [e.g., biopharmaceutical or assay])
- Sponsorship to provide continuing education at state, national, and private meetings
 - Expenses and sometimes honoraria
- Consulting and service on advisory boards for companies and associations
 - Expenses and sometimes a fee for service

- Thanks for the invitation to present
- Colleagues and funding
 - Dayna Harhay, Tom Edrington
 - Sara Gragg, Hattie Webb, Mindy Brashears, Marie Bugarel, and Kendra Nightingale
 Beef Checkoff Program

 - USDA/NIFA/NIFSI
 - Contract # 2011-51110-31081
 - Texas Tech & USDA/ARS
 - Pfizer Animal Health
 - Intramural (Texas & USDA/ARS)
- Contact Information: Guy.Loneragan@TTU.edu **Texas Tech University** +1 (806) 742-2805 x 268

