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Abstract 

Shiga toxin-producing E. coli O157:H7 and non-O157 have been implicated in many foodborne 

illnesses caused by the consumption of contaminated fresh produce. However, data on their 

persistence in soils are limited due to the complexity in datasets generated from different 

environmental variables and bacterial taxa. There is a continuing need to distinguish the various 

environmental variables and different bacterial groups to understand the relationships among 

these factors and the pathogen survival. Using an approach called Topological Data Analysis 

(TDA); we reconstructed the relationship structure of E. coli O157 and non-O157 survival in 32 

soils (16 organic and 16 conventionally managed soils) from California (CA) and Arizona (AZ) 

with a multi-resolution output. In our study, we took a community approach based on total soil 

microbiome to study community level survival and examining the network of the community as 

a whole and the relationship between its topology and biological processes. TDA produces a 

geometric representation of complex data sets. Network analysis showed that Shiga toxin 

negative strain E. coli O157:H7 4554 survived significantly longer in comparison to E. coli 

O157:H7 EDL 933, while the survival time of E. coli O157:NM was comparable to that of E. 

coli O157:H7 EDL 933 in all of the tested soils. Two non-O157 strains, E. coli O26:H11 and E. 

coli O103:H2 survived much longer than E. coli O91:H21 and the three strains of E. coli O157. 

We show that there are complex interactions between E. coli strain survival, microbial 

community structures, and soil parameters.  
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Introduction 

Food-borne outbreaks associated with contaminated produce have heightened concerns 

about the adequacy of control measures for the safe production of fresh fruits and vegetables.  In 

the past decade, there have been over 70 fresh produce-related outbreaks in the United States, 

and the risk and burden is continuous (Lynch et al., 2009; Brandl 2006).  These vegetables have 

been implicated in approximately 20 outbreaks resulting in approximately 700 illnesses and 20 

deaths between 1996 and 2006 (Allerberger and Sessitsch, 2009; Doyle and Erickson, 2008). 

Although there are leafy green vegetable associated outbreaks caused by Salmonella and 

Cyclospora, a majority of them have been due to food contamination with Escherichia coli 

O157:H7 (Sivapalasingam et al 2004). The most likely mechanisms of E. coli O157: H7 

contaminations include contamination from soil amendments (i.e., manure, compost and compost 

teas), water (irrigation or flooding/runoff from adjacent land), wildlife, and airborne deposition 

from off-farm activities such as cattle/dairy and manure/composting operations (Franz et al., 

2011, 2008, Fremaux et al., 2008). One of the worst incidents to date was a multistate 

Escherichia coli O157:H7 outbreak in August and September 2006, which was associated with 

consumption of fresh, bagged spinach that was traced to a field in California (CALFERT, 

2007a&b; Jay et al., 2007; Cooley et al., 2007. During this outbreak, the CDC reported over 200 

illnesses, 104 hospitalizations and 3 deaths.  

Although E. coli O157:H7 is reported to be the predominant  STEC serotype in the 

United States, more than 200 non-O157 STEC serotypes have been identified in animals or foods 

(Karch et al., 2005). Approximately, 60 of these serotypes have been incriminated in human 

diseases. Recent epidemiological studies have recognized additional non-O157 serotypes, 

including O26, O45, O91, O103, O104, O111, O113, O121, and O145, among STEC strains that 

were linked to severe human disease in the United States, Europe and parts of Latin America 
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(Brooks et al., 2005; Bettelheim 2007; Caprioli et al., 2005; Mathusa et al., 2010; Beutin and 

Martin 2012). 

The
 
mechanisms by which the pathogen is introduced into the produce are not fully 

understood; however, it is hypothesized
 
that plants become contaminated when grown in fields 

fertilized
 
with improperly treated manure (Beuchat, 1999) or flood irrigation with water 

contaminated with cattle feces
 
or contact with contaminated surface runoff (Hillborn et al., 1999; 

Ibekwe et al., 2004). Depending on the soil properties and environmental factors, the survival 

time of E. coli O157:H7 in soils varies from one week to six months, and even longer in some 

extreme cases (Ibekwe et al., 2007, 2010; Ibekwe and Ma, 2011; Ma et al., 2011; Maule 2000; 

Mubiru et al., 2000; Franz et al., 2008; Jiang et al., 2002; Semenov et al., 2008).  

In this study, we integrated environmental data with microbial community to assess relationships 

among these factors and the pathogen survival. To this end, we propose a systematic evaluation 

of the relative effectiveness of current and potential new intervention strategies to reduce or 

prevent contamination of produce by employing a new analysis method called topological data 

analysis (TDA) (Carlsson et al., 2009; Lum et al., 2013), to uncover environmental variables that 

are correlated with survival of E. coli O157.   TDA is based on an area of mathematics called 

topology and its implementation allows topological techniques to be used to discover subtle 

signals or “shape” in complex data such as this dataset. This approach has been used in the past 

to discover hard-to-identify signal in other complex datasets around viral evolution, breast 

cancer, diabetes and effects on the metagenome due to environmental stress (Chan et al., 2013; 

Sarikonda et al., 2013; Probst et al., 2014; Nicolau et al., 2011). We used TDA to reconstruct the 

relationship structure of E. coli O157:H7 and non-O157 survival in 32 soils (16 organic, 16 

conventional) from California (CA) and Arizona (AZ) with a multi-resolution output. We show 
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that differential survivability of various E. coli strains are dependent on microbial community 

structures and soil parameters.  

 

  

 

 

MATERIALS AND METHODS 

Datasets and bacterial strains for the dataset.  

Environmental and metagenomic data were obtained from three studies of the survival pattern of 

E. coli O157:H7 and non O157 from produce growing region of California and Arizona. The 

first study (Ma et al., 2012) examined the effects of environmental variables on the survival of E. 

coli O157:H7 EDL 933. The second study (Ma et al., 2013) examined the effects of 454 FLX-

derived sequences from the same soils on survival of E. coli O157:H7 EDL933. The third study 

(Ma et al., 2014) examined the effects of environmental variables on the survival of E. coli 

O157:H7 and non O157.  All of the E. coli strains used in this study are described in Table 1. All 

soil properties are as reported by Ma et al. (2012). 

 

Collection, characterization, inoculation of soils samples, and survival  

Soil samples were collected from three major fresh produce growing areas: Salinas 

Valley California, Imperial Valley, southern California, and Yuma, Arizona (Ma et al., 2012). E. 

coli O157:H7 culture, a 1.0 ml aliquot was transferred into a 250 ml flask containing 100 ml LB 

(Luria-Bertani) broth, and incubated at 37 
o
C for 18 h to achieve early stationary phase. The cells 

were harvested by centrifugation at 3500 g (Beckman, Brea, CA), washed three times using 10 

mM phosphate buffer (10 mM, pH 7.2), and finally resuspended in deionized water, and cells 
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were added in soils to a final density of about 0.5 × 10
7
 CFU per gram soil dry weight (gdw

-1
) 

according to a method slightly adapted from Franz et al., (2008). About 500 g of the inoculated 

soil was transferred to a plastic bag which was closed but which had some holes at the top to 

allow air exchange for survival studies. The inoculated soils were sampled (1 g) at days 0, 3, 6, 

10, 14, 20, 27, 34, 40, and 48 to determine the survival of E. coli O157 and non O157 over time. 

Details of the experimental procedure had previously been described (Ma et al., 2012).  

 

 

Soil DNA Extraction, Pyrosequencing and sequence data analysis 

Community DNA was extracted from 32 leafy green-producing soils using a Power Soil 

Extraction Kit (MO BIO Laboratories, CA) with the bead-beating protocol supplied by the 

manufacturer. The quality and concentration of the soil DNA were assessed using a NanoDrop 

ND-1000 spectrophotometer (NanoDrop Technologies, DE). The overall size of the soil DNA 

was checked by running an aliquot of soil DNA on a 1.0% agarose gel.  The soil DNA samples 

(15.0 μl) were then submitted to Research and Testing Laboratories (Lubbock, TX) for PCR 

optimization and pyrosequencing analysis.  Bacterial tag-encoded FLX amplicon pyrosequencing 

were carried out as previously described (Acosta-Martinez et al., 2008; 2010).  The 16S 

universal Eubacterial primers 530F (5’-GTG CCA GCM GCN GCG G) and 1100R (5’-GGG 

TTN CGN TCG TTG) were used for amplifying the ~600 bp region of 16S rRNA genes. Primer 

and PCR optimizations were done  at the Research and Testing Laboratories (Lubbock, TX) 

according to the protocol described previously (Acosta-Martinez et al., 2010; Nonnenmann et al., 

2010; Gontcharova et al., 2010).  All FLX related procedures were performed following Genome 

Sequencer FLX System manufacturers instructions (Roche, NJ, USA). Bacterial pyrosequencing 
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population data were further analyzed by performing multiple sequence alignment techniques 

using the dist.seqs function in MOTHUR, version 1.9.1 (Schloss et al., 2009).  

 

 

 

Data Analysis 

 All data were analyzed using the Ayasdi software (http://www.ayasdi.com). The Ayasdi 

software uses TDA as a framework for a large repertoire of statistical and machine learning 

methods. The description of the implementation of TDA as a software is described in detail in 

the following publication (Lum et al., 2013). Briefly, the output consists of a topological network 

with nodes and edges, where nodes are collections of data points and an edge connects any two 

nodes that have one or more common data points.  In this analysis, the mathematical functions 

(called “lenses” in the software) used are principal metric SVD 1 and 2. Principal metric SVD 

lenses are used when the distance metric used is non-Euclidean. Statistical test used to look at 

significance between sub-networks or groups is the non-parametric Kolmogorov-Smirnov test 

(KS score). Variables used in the analysis are the following: chemical (Sodium (Na), iron (Fe), 

potassium (K), electrical conductivity or salinity (EC), copper (Cu), assimilable  organic carbon 

(AOC), total nitrogen (TN), calcium (Ca), Nickel (N), organic carbon (OC), microbial biomass 

carbon (MBC), sulfate (SO4), water holding capacity (WHC), magnesium (Mg), zinc (Zn), 

phosphate (PO4), molybdenum (Mo), physical (sand, clay, silt, and bulk density) and biological 

(time till detection for E. coli O157:H7 EDL933 [ttd(d)], time till detection for E. coli O157:H7 

strain 4555 [ttd (d) O157-4554], time till detection for E. coli O157:H7 non-motile strain 4555 

[ttd (d) O157NM], time till detection for E. coli O91 [ttd (d) O91], time till detection for E. coli 

O26 [ttd (d) O26], operation taxonomic units (OTUs), Nitrospira, diversity index (H'), 
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Proteobacteria, Alphaproteobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, Actinobacteria, 

Gemmatimonadetes, Firmicutes, Verrucomicrobia, Deltaproteobacteria, Gammaproteobacteria, 

Planctomycetes, Betaproteobacteria).  

 

 

RESULTS 

Soil sample site similarities and management network 

Using the properties of physical, chemical, and biological characteristic of these soil samples as 

variables, we clustered the soil samples using TDA. The resulting network represents the soil 

samples clustering into sub-networks. Figure1A shows 4 sub-networks A, B, C and D with B and 

C connecting to form a larger sub- network.  There is also a singleton (1 node comprising of 2 

soil samples from Salinas that stood apart from everything else). The network can also be 

colored by various factors and characteristics such as location and soil management type for 

visualization (Fig 1). In addition, we can also apply statistics to probe what factors distinguished 

our soils into sub-networks. We found that “location” was one of the key differences between the 

sub-networks (Kolmogorov-Smirnov test PV < 0.0003). In order to visualize the effect of 

“location” on the soil samples, Fig 1 is colored by “location”. We show that soil samples from 

the Salinas areas (A) completely formed a separate sub-network from soil samples from the 

Imperial and Yuma areas (B, C, and D) as indicated by the color. This indicates that physical, 

chemical, and biological characteristic of these soil samples collectively are quite different from 

location to location, especially the soil samples from Salinas, which formed a distinct sub-

network (A). Soil samples from Yuma and Imperial are closer to each, forming a sub-network 

that looks like a dumb bell, with some samples from Imperial clustering at left side of dumb bell 
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(B) and the rest of the network comprised of a mixture between samples from Yuma and 

Imperial. Interestingly, physical, chemical, and biological properties measured of these soil 

samples did not differentiate between conventional and organic soil management as seen from 

the non-enrichment of any one type of soil management in the network (also see Table 2, where 

the P-value for soil management as a differentiating factor between those sub-networks was 

0.4126). To further investigate sub-network D and the singleton, another network analysis was 

performed using the same distance metric and mathematical lenses but at a lower resolution (20 

instead of 30). Sub-network D, which comprised of samples from Yuma and Imperial, became 

part of sub-network C (Fig 1C). The singleton however remained a singleton, indicating that 

these samples are fundamentally different from the rest of the samples due to unknown reasons 

including quality of the samples. 

Statistical analysis to identify key distinguishers of these sub-networks were performed 

on all numerical columns on all data points (Table 2) including detection times, biodiversity 

measures, management, location, sand, silk, clay, soil pH, bulk density, assimilable  organic 

carbon (AOC), organic carbon (OC), microbial biomass carbon (MBC), electrical conductivity 

EC), chemical compound (Na
+
, K

+
, Ca

2+
, Mg

2+
 etc.) and bacterial phyla.  Soil sand content was 

significantly higher (P= 0.0027) for soils from the Salinas Valley area (Fig. 2A), whereas silt and 

clay contents were significantly higher (P= 0.0403 for silk and 0.0012 for clay) in soils from the 

Imperial and Yuma Valley areas (Fig. 2 B&C). Soil pH was between 6.7 and 8.0, with 

significantly higher pH (P = 0.025) occurring in the Yuma/Imperial Valley areas (Fig. 2D). Soil 

bulk density values ranged between 1.22 and 1.63 mg, with soils from the Salinas Valley having 

significantly higher bulk densities (P = 0.0162); Fig. 2E). Statistical tests indicated that total iron, 

PO4 and calcium were significantly higher (P = 0.0299; 0.0399; 5.08E-4, respectively) in Salinas 
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Valley samples than samples from Yuma and Imperial Valleys. On the other hand, sodium and 

sulfate were significantly higher (1.05E-07; -05, respectively) in Yuma and Imperial Valley 

samples. No differences were observed among the locations in soil contents of total nitrogen 

(TN).  

 

 

Survival behavior of E. coli O157:H7 in soils 

Next, we investigated survival of different E. coli strains in these different soil sub-networks. 

The network remains the same but we can now probe the network to see if any survival variables 

show any significant trends between these sub-networks. To do this we colored the same 

network by the length of survival of E. coli O157:H7 EDL933, E. coli O157:NM, and E. coli 

O157 strain 4554 (stx-) across the topological network to observe if differences exist in the soil 

networks.  The shortest survival time (ttd) was observed for E. coli O157:H7 EDL933 (13.8 to 

32.6 days) while the longest was observed for E. coli O157NM (20.6 to 56.0 days) and E. coli 

O157:H7 strain 4554 as intermediate at 21.1 to 45.0 days (Fig. 3 a, b, c). Figure 3 is colored by 

survival time of the indicated strain for all the soils. We also performed statistical test on the 

survival times and show that the survival time of E. coli O157:H7 EDL933 was significantly 

longer in soils from the Salinas Valley area (8.18E-05), whereas the survival time of E. coli 

O157:NM and the stx- E. coli O157:H7 strain 4554 were not significantly different in soils from 

the Salinas Valley area (0.0995 and 0.4823, respectively) and in soils from the Yuma and 

Imperial Valley region (Table 2). Furthermore, the coloring pattern indicates no differences in 

survival (ttd) between organic and conventional soils from Imperial Valley and Salinas. Survival 

time was much shorter in the organic soil than the conventional soils with E. coli O157:NM. This 

can be observed by the deep blue color (Fig. 3. B).  
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Survival of non-O157 in soils was longer that E. coli O157:H7 except E. coli O91.H21 

It was found that two non-O157 strains, E. coli O26:H21 and E. coli O103:H2 survived much 

longer that E. coli O91:H21. The three non-O157 strains survived significantly longer (E. coli 

O91.H21: 4.12E-06, O26:H21:0.079, and 0103: 2.84E-06) in soils from the Salinas Valley 

region than in soils from the Yuma and Imperial Valleys (Table 2). There were no differences of 

survival between organic and conventionally managed soils with the non O157 strains. In the 

current study no isogenic strains (with and without stx) were used. When the six E. coli O157 

and non-O157 strains were grouped together on the same scale it was shown that E. coli 

O103:H2 survived the longest in all the soils, followed by E. coli O26:H21 (Fig. 4). 

 

Bacterial abundance and distribution as revealed by 454 pyrosequencing 

We then analyzed how the abundance and distribution of different bacterial phyla based on 

pyrosequencing from the 32 soils collected from the three regions associated with the different 

regions clustered in the networks. By coloring the same networks with now the abundance of the 

different bacterial phyla, we show that there are marked differences between the distributions of 

the different bacterial phyla (Fig. 5). As shown in Figure 5A the nodes that are colored red 

indicate significantly higher (P = 0.097) percentage of Acidobacteria (see Table 2 for details of 

the phyla) in soils from the Salinas Valley area than soils from Yuma and Imperial Valleys. 

These soils also contained a higher percentage of Deltaproteobacteria (P= 8.55E-06), 

Alphaproteobacteria (P = 0.0047) (Fig. 5 d, f) as seen by the color scheme. Significant 

differences in beta (P = 1.95E-05) and Gammaproteobacteria (P = 6.92E-05) were also observed 

in soils from Yuma/Imperial Valleys and soils collected from Salinas Valley area (Fig. E&G). 

Significant differences were also found in Proteobacteria (P = 1.63E-04) (Fig. 5 C), 



12 

 

Actinobacteria (P = 0.024) (Fig. 5B), and no significant differences in Firmicutes (P = 0.1989) 

(Fig. 5H) from the three regions.  Further analysis showed that Actinobacteria, Proteobacteria, 

Acidobacteria, and Bacteroidetes were the dominant phyla among the bacterial communities in 

soils, and these four phyla accounted for about 75% of the total bacterial composition based on 

pyrosequencing (Fig. S1). The current analysis has produced the same trends as the results 

obtained with our previous analysis that was based on correlation between survival time and 

dominant bacterial communities (Ma et al., 2013). In this earlier related study, stepwise multiple 

regression analysis was conducted and the results showed that EC, TN, and AOC were the most 

important factors impacting the survival of E. coli O157:H7 in all soils tested (Fig. S2), with EC 

showing the most negative effect (P < 0.001) on survival and TN and AOC showing positive 

effects (P<0.01) (Ma et al., 2012).  

 

Discussion 

Analysis, interpretation, and visualization of complex data are major tasks confronting 

researchers today. Most data are presented in tabular formats after traditional statistical analysis. 

To better understanding the influence of selected soil properties and their impact on bacteria 

growth, we used TDA as implemented by the Ayasdi software. TDA can analyze disparate 

datasets in one setting, as well as presents topological networks as an informative visualization 

for understanding and interpretation.  The TDA approach is sensitive to both large and small 

scale patterns that often fail to be detected by other analysis methods, such as principal 

component analysis, (PCA), multidimensional scaling, (MDS), and cluster analysis (Carlsson et 

al, 2009; Lum et al 2013). In addition, we note that PCA and MDS produce 2-D scatterplots that 

are often hard to separate more subtle signal from noise. In addition, clustering methods produce 
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distinct, unrelated groups that may obscure signal that is better captured using TDA, which is 

inherently suited to look for continuity in signal.  

The three key concepts of topological analysis methods include coordinate freeness, 

which means that topology has the capability to measure properties of intrinsic shapes of data 

which is independent of the coordinate system. Coordinate free representations are vital when 

one is studying data collected with different technologies such as pyrosequencing or from 

survival data as we have used in this study or from different laboratories when the methodologies 

cannot be standardized (Lum et al ., 2013).  This is very critical to a study such as ours where the 

data collected are not from one uniform platform. As mentioned earlier, TDA has also been 

applied to various different studies to uncover complex signals (Romano et al., 2014; Chan et al., 

2013; Sarikonda et al., 2013; Lum et al., 2013; Nicolau et al., 2011).  

We have demonstrated that location is an important factor that we found to be associated 

with high survival of certain bacteria strains. Recent studies of metabolic network topologies 

across the bacterial tree of life revealed marked variation in network cluster and identified 

several genetic and environmental determinants affecting metabolic clustering (Parter et al ., 

2007). These authors showed that reduced metabolic cluster in single-species networks is 

associated with organisms inhabiting less variable environments. Our analysis, however, presents 

a unique characterization of microbial community-level cluster and demonstrates consistent 

differences that are associated with survival of E. coli O157:H7 from different locations. It 

should be noted that the correlation of certain bacterial phyla (Actinobacteria and Acidobacteria) 

with higher survival of E. coli O157:H7 does not necessarily mean causation of higher survival, 

and therefore, should be extrapolated very carefully. As discussed by Greenblum et al. 2012, in 

silico models of microbial communities are currently still scarce (Oberhardt et al., 2009) and 
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mostly focus on simulated communities comprising a handful of species and on pair-wise 

interactions among community members (Klitgord and Segre, 2009; Stolyar et al., 2007; 

Wintermute and Silver, 2010; Freilich et al., 2010). Experimental validation at the species or 

gene level of model components and parameters may be necessary for a successful and accurate 

understanding of individual species effects on survival. In essence, this study represents an 

important step in the development of a metagenomic systems biology approach. Such an 

approach can potentially advance metagenomic research in the same way systems biology 

advanced genomics, appreciating not only the parts list of a system but the complex interactions 

among parts and the impact of these interactions on function and dynamics.  

In summary, the TDA networks identified various environmental factors that correlate 

with increased or decreased in survival of E. coli O157 in the three regions. In particular, we 

have identified a group of environmental factors such as EC, TN, AOC, etc. that consistently 

may enhance or inhibit survival of this pathogen from the three regions, and these factors were in 

agreement with some of our earlier studies from the same locations (Ma et al., 2012; 2013).  We 

note that the effects of different environmental factors and bacterial community were easily 

detected by TDA because of the inherent ability of the analysis environment that allows analysis 

of all these factors simultaneously. Often times classical clustering approaches by themselves 

will miss these subtle signals because of the need to place data points into one cluster or another. 

This could end up highlighting only the most obvious signals while breaking up the more subtle 

ones. 

 As we move towards better understanding of how E. coli O157:H7 contamination could 

occur in the food chain, we believe a more holistic approach such as looking at all possible 

available factors together  is important . However, because this creates complexity, there is a 
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need to apply different approaches.  We used here an approach to allow not only the 

mathematical analysis needed to uncover small signal but also the ability to visualize these 

complex relationships.   
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Table 1: E. coli O157 and non-O157 strains used for the study 

Strain* Source stx1 stx2 eae hylA Reference 

E. coli O26:H11 cow, Ontario, Canada ‒ + + + (Louie et al., 1998) 

E. coli O103:H2 cow, Ontario, Canada + + + + (Louie et al., 1998) 

E. coli O91:H21 Human, OH, USA + ‒ ‒ + (Ito et al., 1990) 

E. coli O157 NM –, AL, USA + + + + (Fields et al., 1997) 

E. coli O157:H7 4554 cow, Japan ‒ ‒ + + (Feng et al., 2001) 

E. coli O157:H7 EDL933 human, USA + + + + (Perna et al., 2001) 

stx1, a gene coding for Shiga toxin1, stx2, a gene coding for Shiga toxin2, eae, a gene coding for 

intimin, and hylA, a gene coding for hemolysin. "+" and "‒" indicate a gene was identified and 

not identified in a given E. coli strain, respectively. E. coli O157:H7 4554 is therefore stx 

negative. 

‒, indicates the source was not identified. 

*Adapted from Ma et al., 2014.  
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Table 2: Kolmogorov-Smirnov test and t-test to identify soil and biological properties that best differentiate between 

Salinas Valley and Imperial/Yuma Valley locations.  

Column Name* Signed KS-

score KS-score t-test p-value  

clay -0.8571 0.8571 0.0012 

Na+ -1 1 1.05E-07 

Fe 0.7321 0.7321 0.0299 

ttd(d) 0.8125 0.8125 8.18E-05 

K+ -0.5446 0.5446 0.0848 

EC -1 1 9.07E-06 

Nitrospira 0.75 0.75 0.0014 

Cu -0.3660 0.3660 0.0607 

tdd(d)_O1574554 -0.6666 0.6666 0.4823 

Diversity index (H') 0.7321 0.7321 0.0026 

Molybdenum -0.8125 0.8125 3.62E-04 

Proteobacteria -0.8125 0.8125 1.63E-04 

WSOC 0.6696 0.6696 0.0259 

T-N 0.375 0.375 0.1693 

Ca++ -0.875 0.875 5.08E-04 

Ni 0.4375 0.4375 0.1660 

Alphaproteobacteria 0.6875 0.6875 0.0047 

OC -0.6517 0.6517 0.2614 

MBC -0.3839 0.3839 0.3520 

SO4-- -0.9375 0.9375 4.55E-05 

pH -0.5714 0.5714 0.0259 

Chloroflexi 0.5446 0.5446 0.03441 

tdd(d)_O157NM 0.6666 0.6666 0.0995 

sand 0.7321 0.7321 0.0027 

Bulk density -0.5446 0.5446 0.0162 

Bacteroidetes 0.7321 0.7321 0.0042 

WHC -0.5267 0.5267 0.2032 

tdd(d)_O91 0.875 0.875 4.12E-06 

Acidobacteria 1 1 0.0197 

Actinobacteria 0.6071 0.6071 0.0240 

Mg++ -0.7142 0.7142 0.0012 

tdd(d)_O26 1 1 0.0796 

Gemmatimonadetes 0.75 0.75 0.0012 

silt -0.4821 0.4821 0.0403 

Firmicutes 0.4821 0.4821 0.1989 

Verrucomicrobia 0.4375 0.4375 0.3981 

Deltaproteobacteria 0.9375 0.9375 8.55E-06 

Gammaproteobacteria -0.8125 0.8125 6.92E-05 

Zn -0.5892 0.5892 0.0056 
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Planctomycetes 0.8571 0.8571 0.0044 

PO4--- 1 1 0.0399 

tdd(d)_O103 0.875 0.875 2.84E-06 

Betaproteobacteria 0.75 0.75 1.95E-05 

OTUs -0.75 0.75 0.0015 

location 0.875 0.875 3.04E-06 

Management -0.258 0.258 0.4128 
 

*Meaning of abbreviations under column names: Sodium (Na), iron (Fe), time till detection for 

E. coli O157:H7 strain 933 [ttd(d)], potassium (K), electrical conductivity (EC), copper (Cu), 

time till detection for E. coli O157:H7 strain 4555 [ttd (d) O157-4554], assimilable  organic 

carbon (AOC), total nitrogen (TN), calcium (Ca), Nickel (N), organic carbon (OC), microbial 

biomass carbon (MBC), sulfate (SO4), time till detection for E. coli O157:H7 non-motile strain 

4555 [ttd (d) O157NM], water holding capacity (WHC), time till detection for E. coli O91 [ttd 

(d) O91], magnesium (Mg), time till detection for E. coli O26 [ttd (d) O26], zinc (Zn), phosphate 

(PO4), and operation taxonomic units (OTUs). Signed KS score: the minus sign indicates that the 

attribute indicated in the column name is on average smaller in value in Salinas Valley compared 

to Imperial/Yuma Valley locations.  
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Legend 

Figure 1A. Sample-sample relationships in a topological network. Using physical, chemical, and 

biological characteristics of the samples, we obtained a network that comprised of 4 sub-

networks (A, B, C and D) and a singleton (single node comprising of 2 samples). The coloring 

here is by location, where each location is given a color (Salinas is red, Imperial Valley is green 

and Yuma is blue). Nodes that have a mixture of soils have colors in between as depicted in the 

color bar. Sub-networks structure indicates that physical, chemical, and biological characteristics 

primarily segregate the samples according to location, with Salinas being most different from 

soils from Yuma and Imperial Valley, Figure 1B. The same network is colored by soil 

management type (organic (represented by 0) versus conventional (represented by 1). The red 

nodes represent samples with conventional soil management while the blue nodes represented 

the organic soil management. The green and orange colored nodes represented mixed organic 

and conventional soil management with varying percent of mixture of the two types of 

management. Figure 1C: Another network is built using the same parameters except for 

resolution. The soil samples are analyzed at a lower resolution to ask if structure D and the 

singleton will merge with any part of the sub-networks. Sub-network D, which comprised of 

samples from Yuma and Imperial, became part of sub-network B (colored nodes). Samples from 

sub-network D are not part of the grey nodes. The singleton however remained a singleton. The 

size of each node reflects the number of data points contained in the node. For 1A and 1B, the 

distance metric and filters were Person correlation and Principal Metric SVD and secondary 

metric SVD. Metric: Norm Correlation; Lens: Principal Metric SVD value (Resolution 30, Gain 

4.0x, Equalized) Secondary Metric SVD Value (Resolution 30, Gain 4.0x, Equalized). For 1C, 

all analysis parameters remained the same except for resolution ( 20 instead of 30).  

 

Figure 2: Network colored by soil physical property concentrations- (A) sand, (B) clay, (C) silt, 

(D) pH, (E) bulk density. The legend below the figures shows ranges in concentrations of some 

of the soil physical properties. The distance metric and filters are as shown in the legend of 

Figure 1. 

 

Figure 3.  Topological network data analysis of survival of E. coli O157:H7 and non O157:H7 

across the sub-networks identified in Fig 1A. Survival of E. coli O157:H7 EDL933, E. coli 

O157:NM, and E. coli O157 strain 4554 (stx-) and shown in Figures 3 A, B, &C. Survival of 

non-O157 strains, E. coli O26:H21, E. coli O103:H2, and E. coli O91:H21are shown in figure 3 

D, E, G. Grey nodes represent missing ttd (d) measurements for E. coli O157:NM, E. coli O157 
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strain 4554, E. coli O26:H21, E. coli O103:H2, and E. coli O91:H21. The distance metric and 

filters are as shown in Figure 1. 

 

 

Figure 4:  Survival of six E. coli O157 and non-O157 strains grouped together on a normalized 

scale showed that E. coli O103:H2 survived the longest in all the soils, followed by E. coli 

O26:H21. Grey nodes are as explained in Figure 3. The distance metric and filters are as shown 

in Figure 1. 

 

 

Figure 5. The abundance and distribution of different bacterial phyla based on pyrosequencing 

and their correlation with survival. A: soils from Salinas Valley region, sub-networks B and C: 

Yuma and the Imperial region. Figure 5A-G represent the coloring of the abundance of 

Actinobacteria, Acidobacteria, Firmicutes, Proteobacteria, Bacteroidetes, Alpha-, Beta-, Delta-, 

and Gammaproteobacteria, respectively. The distance metric and filters are as shown in Figure 

1. 
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Fig. S1. Abundance of dominated phyla revealed by 454-pyrosequencing targeting 16s rRNA 

genes. Different letters denotes significant differences (P = 0.05) among the three soils. 

 

Fig. S2: Factorial biplot by the principal component 1 and 2 (PC1, 41.6%; PC2 26.0%) resulting 

from the principle component analysis (PCA) performed on soil properties and survival (ttd) of 

E. coli O157:EDL933 in soils. Salinity (EC, dS m
-1

), water holding capacity (WHC, %), silt 

content (%), clay content (%), total nitrogen (TN, %); OC, organic carbon (%); AOC, 

assimilable organic carbon in soil water extract (mg kg
-1

); MBC, microbial biomass carbon (mg 

kg
-1

). 
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Figure 3: Survival patterns 
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Fig. 5A: Acidobacteria 

Colored by Acidobacteria  composition 



FIG. 5B: Actinobacteria 

Colored by Actinobacteria composition 



FIG. 5C: Proteobacteria 

Colored by Proteobacteria composition 



FIG. 5D: Alphaproteobacteria 
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FIG.5E: Betaproteobacteria 

Colored by Betaproteobacteria 
composition 



FIG.5F: Deltaproteobacteria 
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FIG.5G: Gammaproteobacteria 
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