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ABSTRACT: The compositional equivalency between genetically modified (GM) crops and nontransgenic comparators has
been a fundamental component of human health safety assessment for 20 years. During this time, a large amount of information
has been amassed on the compositional changes that accompany both the transgenesis process and traditional breeding methods;
additionally, the genetic mechanisms behind these changes have been elucidated. After two decades, scientists are encouraged to
objectively assess this body of literature and determine if sufficient scientific uncertainty still exists to continue the general
requirement for these studies to support the safety assessment of transgenic crops. It is concluded that suspect unintended
compositional effects that could be caused by genetic modification have not materialized on the basis of this substantial literature.
Hence, compositional equivalence studies uniquely required for GM crops may no longer be justified on the basis of scientific
uncertainty.
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■ INTRODUCTION

Investigating the compositional equivalence between genet-
ically modified (GM) crops (crop varieties developed using
recombinant DNA techniques) and nontransgenic comparators
has been a cornerstone of the safety evaluation of GM crops
since this approach was first suggested in 1993.1 Compositional
equivalence testing for GM crops is designed to investigate the
potential unintended effects of engineering a genetic construct
into a crop plant using the modern biotechnological method of
transgenesis. This complements safety testing that focuses on
intended effects such as the presence of the inserted DNA and
the resulting RNA and proteins transcribed and expressed by a
GM crop. DNA and RNA are not considered food safety risks
and, thus, the safety assessment for intended effects is centered
on the evaluation of the intended gene products (typically
proteins).2 Research into unintended food safety risks for GM
crops has primarily involved investigating potential effects
relating to crop composition.1

The approach to evaluating the compositional equivalence of
a GM crop and nontransgenic comparators has most
commonly taken the form of placing replicated field trials
throughout the growing regions for that crop and collecting
samples of plant tissues that are used as food and feed (e.g.,
grain and forage). Entries in these field trials include the GM
crop, a near-isogenic nontransgenic line, and sometimes one or
more nontransgenic commercial reference lines. For herbicide
tolerance traits, the GM line is often included as multiple
entries where certain plots are treated with the herbicide to
which the crop has tolerance and also in plots where this
herbicide is not sprayed. Plant tissue samples are analyzed for
an array of nutrients and antinutrients (typically 60−80), and
statistical comparisons are performed between the GM crop

and the non-GM comparator. When significant statistical
differences are observed, the mean levels of the analytes in
question are compared with the range of levels that are
considered to be normal for the crop as a whole. If analyte
levels fall outside these ranges, then the biological relevance of
the compositional changes is evaluated by determining if the
observed levels would be unsafe within the context of how the
crop is produced and consumed.3,4

The most intensive design for compositional field trials has
recently been prescribed by the European Food Safety
Authority (EFSA).5 According to these requirements, at least
eight field sites must be used with at least four replicates per
site. If the GM line contains a trait for herbicide tolerance, both
sprayed and unsprayed entries must be included, in addition to
a near-isogenic nontransgenic entry. Additionally, at least six
nontransgenic reference lines must be included with at least
three lines being represented at each field site. These reference
lines are designed to assess the normal range of analytes present
in the crop, and unlike other regulatory agencies’ guidelines,
equivalence to the crop must focus exclusively on results from
these study-specific reference lines and not refer to crop
composition databases or literature values.6 These studies are
required both for new transgenic events and for combined-trait
products in which two approved transgenic events are bred
together by traditional means.
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The precautionary compositional testing initiated 20 years
ago was based on uncertainty as to the frequency and
magnitude of compositional alterations that might occur due
to the transgenesis process or via metabolic alteration from
expressed transgenic products. The novelty of the technology
made it unclear, in 1993, if the DNA insertion process itself
would be more or less likely to cause unintended changes to
crop composition compared with traditional breeding and if
such changes might introduce novel safety risks.
Twenty years later, not only does compositional equivalence

testing continue to be a cornerstone for the safety evaluation of
GM crops, but expanding regulatory requirements have
increased composition study costs over 10-fold during this
period (from approximately U.S. $100,000 per study to over
U.S. $1 million per study), and further expansions, such as
measurement of endogenous allergen levels, have been
suggested.7 Here we examine research that has occurred over
the past two decades relative to the mechanisms that affect crop
composition in GM and traditionally bred crops. This
information along with empirical data on crop composition
should shed light on whether it is reasonable, in 2013, to expect
a greater risk of adverse compositional changes in GM crops
compared with traditionally bred crops and, thus, whether it is
reasonable to continue to uniquely require compositional
equivalence studies for GM crops to evaluate safety.

■ WHAT HAVE WE LEARNED ABOUT UNINTENDED
GENETIC EFFECTS IN TRADITIONALLY BRED
CROPS?

Traditional (nontransgenic) breeding encompasses intraspecific
crosses, wide crosses (sometimes between related species),
crosses with wild relatives, tissue culture regeneration, and
mutagenesis. Research over the past 20 years has revealed that
these techniques commonly are associated with genetic
mutations, deletions, insertions, and rearrangements.8 In fact,
for those crop species investigated, most of the genome is
derived from mobile genetic elements.9−11 Transposons, or
“jumping genes”, can move within the genome, causing
insertional mutagenesis. In addition, over 2500 crop varieties
have been generated by intentional mutagenesis (non
recombinant DNA techniques), and many more have resulted
from selection of spontaneous mutants.12,13

Although breeders have selected for and purposefully
induced random changes in the DNA of plants for an extended
period of time, recent molecular techniques have allowed us to
understand the specific types of changes that have been
incorporated into new crop cultivars. These genetic changes
appear to be varied and extensive, and yet few safety issues have
arisen.

■ WHAT HAVE WE LEARNED ABOUT UNINTENDED
COMPOSITIONAL EFFECTS IN TRADITIONALLY
BRED CROPS?

As crop breeders attempt to develop improved cultivars, they
routinely look for individual plants that display improved
agronomic characteristics. Also, plants are culled that display
commercially unacceptable agronomic characteristics. If indi-
vidual plants or lines display some characteristics that are
improved (e.g., disease tolerance) and others that are not
commercially acceptable (e.g., decreased yield), then breeders
attempt to incorporate the desirable genetic basis for the
improved traits into lines while eliminating the detrimental

traits. Crop breeding programs have generally not focused on
or monitored any resulting compositional changes that might
accompany these breeding efforts, and only on rare occasions
and in a few crops (e.g., white potatoes, celery, and squash)
have such changes caused adverse effects.14 These rare
examples have highlighted where risks are present due to a
low margin of safety with some plant constituents in specific
crops. For example, white potatoes contain high levels of toxic
glycoalkaloids, and up-regulation of these compounds due to
traditional breeding can cause sickness. In the aforementioned
case of up-regulation of glycoalkaloids, this actually occurred
when endogenous insect resistance was selected for by breeders
without knowledge of the mechanism for this resistance.15 Any
new variety of white potato, including any GM variety, is now
routinely screened for glycoalkaloid levels, and acceptable limits
have been defined. In contrast, no corn variety has been found
to be compositionally unsafe, so new traditionally bred corn
varieties are not routinely monitored for composition. For
example, the USDA released a new non-GM insect resistance
corn trait to crop breeders that was found in a rare Andean corn
line without any knowledge of the mechanism for insect
resistance and without any formal safety assessment.16 This
course of action is supported by a vast experience with the
compositional safety of corn.
Much has been learned over the past 20 years about the

compositional variation that occurs in some large-acre crops
such as corn, soybean, and cotton. This has occurred, in part, as
a consequence of the efforts made to evaluate the composi-
tional safety of GM crops, which required knowledge of the
normal state for traditionally bred crops. For example, the
International Life Sciences Institute (ILSI) has developed a
database to aid in assessing the normal variability in crop
composition.17,18 Research over the last twenty years has shown
that many constituents in crop plants vary widely due to
genotype but also due to growing environment and storage of
the crop after harvest.19−25

■ HOW DO UNINTENDED GENETIC EFFECTS IN GM
CROPS COMPARE WITH THOSE IN
TRADITIONALLY BRED CROPS?

Transgenesis involves the insertion of a designed genetic
cassette with a known DNA sequence intended to produce a
prescribed gene product (typically a protein) to achieve a
desirable trait through a known mechanism. The transgenic
insert in the plant is sequenced to determine if it has been
inserted as intended and to confirm that it codes for the desired
gene product. The flanking endogenous plant DNA is also
sequenced to understand if any native genes or regulatory
elements are disrupted. Finally, the plant genome is probed to
ensure that only one insertion site exists.2,26 This contrasts with
traditional breeding by which many genes are randomly
recombined and/or many mutations are generated with little
or no knowledge of the genetic changes that are induced or the
mechanism behind the traits that are selected. It has been
acceptable with traditional breeding for many undescribed
genes from wild relatives with no history of safety to be
incorporated into new crop varieties to obtain novel or
improved agronomic traits such as pest resistance.27
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■ HOW DO UNINTENDED COMPOSITIONAL
EFFECTS IN GM CROPS COMPARE WITH THOSE IN
TRADITIONALLY BRED CROPS?

Unintended Effects Are Expected. It is a common
misconception that one should expect the composition of a
GM crop to be equal to that of its near-isogenic nontransgenic
comparator with the exception of intended changes. Scientific
knowledge does not support this expectation. It has been
demonstrated that even for elite nontransgenic commercial
varieties, single-plant selections can result in marked variation
in phenotype. This occurs because such lines are often not
completely fixed for even the most basic traits. For example,
single-plant selections from elite soybean lines can vary in seed
weight, maturity, plant height, and lodging.28 GM crops are
most often generated from plants derived from single cells
grown in tissue culture, as are many non-GM crops. In addition,
the effects of plant protection such as that provided by insect-
or disease-tolerant traits are expected to reduce the up-
regulation of pathogenesis related proteins and metabolites
compared with less well protected near-isoline plants.29

Furthermore, applications of many herbicides to herbicide-
tolerant GM or non-GM crops would be expected to have
effects on plant composition because some plant stress from
such applications is common.30−32 Thus, a GM line, or a
nontransgenic line derived from a single plant, protected from
insect or diseases, or sprayed with an herbicide, would be
expected to differ compositionally from the composite line
from which it was derived, especially if it experiences different
biotic or abiotic stress related to intended transgenic traits.
Compositional Safety Should Be Considered in the

Context of the Normal Composition of the Crop.
Understanding that unintended effects are expected in both
GM crops and traditionally bred crops allows one to ask if such
changes in GM crops are more frequent, of higher magnitude,
or inherently more dangerous compared with traditionally bred
crops. It also sheds some light on the common practice of
looking for statistical differences as a way of detecting
meaningful changes in composition between a GM line and
its near-isogenic nontransgenic comparator. Regulators chose
the difference-testing experimental design as a starting point,33

but 20 years of safety testing have revealed no safety hazards
using this approach (see the next section). However, it should
be noted that for the purposes of a safety assessment, the
question is not whether the GM line is different from its near-
isogenic nontransgenic comparator but rather if it is as safe as
its conventional counterpart with a history of safe con-
sumption.33 If the composition is generally expected to differ
between any two crop lines, including a GM line and its near-
isogenic nontransgenic comparator, then statistical tests for
these differences simply measure the power of the experiment
to detect the numerical differences that are expected to
frequently occur. In the context of a safety assessment, a more
relevant analysis would be to evaluate if the observed level of
the compositional analyte differs meaningfully from the normal
array of levels observed for the aggregate crop that has a history
of safe consumption; it is this analysis that informs safety.3

Collecting more and more data from increasingly larger studies
serves only to detect more fleetingly small differences that are
expected and irrelevant to safety.
Two Decades of Research Confirms That Transgenesis

Is Less Disruptive of Composition Compared with
Traditional Breeding. Scores of publications and regulatory

submissions have confirmed the compositional equivalence
between GM crops and their conventional counterparts and
their equivalent safety. Over the past 20 years, the U.S. FDA
found all of the 148 transgenic events that they evaluated to be
substantially equivalent to their conventional counterparts, as
have the Japanese regulators for 189 submissions, with the
latter including combined-trait products.34,35 Over 80 peer-
reviewed publications also conclude this same compositional
safety for GM crops.4,36−118 These studies have spanned the
crops of corn, soybean, cotton, canola, wheat, potato, alfalfa,
rice, papaya, tomato, cabbage, pepper, raspberry, and a
mushroom, and traits of herbicide tolerance, insect resistance,
virus resistance, drought tolerance, cold tolerance, nutrient
enhancement, and expression of protease inhibitors. In
addition, numerous studies have found that variation resulting
from traditional breeding and environmental factors dwarf any
changes observed in the composition due to introducing a trait
through transgenesis (see previous citations).

■ HOW MUCH UNCERTAINTY REMAINS AFTER 20
YEARS OF RESEARCH?

After two decades of compositional equivalence studies, it
seems reasonable to evaluate the scientific knowledge that has
been gained relative to the frequency and magnitude of
compositional changes for GM and traditionally bred crops. We
have cited many of these studies here to facilitate examination
of these empirical results by others. It is also reasonable to
assess our current knowledge of the genetic mechanisms that
underlie these changes in both traditionally bred and GM crops.
Our assessment is that there appears to be overwhelming
evidence that transgenesis is less disruptive of crop composition
compared with traditional breeding, which itself has a
tremendous history of safety. Whether this is the interpretation
of other scientists, it certainly seems reasonable to evaluate the
evidence that has been amassed over the past 20 years to
determine if sufficient uncertainty still exists such that the many
millions of dollars spent each year on compositional studies
with GM crops can still be generally justified in 2013 or,
alternatively, whether such studies should be hypothesis-driven
on the basis of reasonable and unique risks posed by the
novelty of certain traits (e.g., intentionally modified biochemical
pathways). This is especially important as we try to feed a
rapidly growing global population and the use of GM
technology to improve crop production and nutrition becomes
increasingly restricted from public sector researchers due to
insurmountable regulatory costs. Improvements in crops for
developing countries will almost certainly fall to public sector
researchers, who are now putting existing transgenic events on
the shelf and discontinuing the development of new projects
due to escalating regulatory costs. We encourage the greater
scientific community to evaluate the current state of knowledge
regarding compositional safety risks of transgenic crops. The
merits of continuing to generally require compositional analysis
of GM crops to inform safety seems dubious given the results
of 20 years of research, and if agreement can be reached that
these studies are no longer warranted, use of this technology
will become accessible to a wider array of scientists.
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