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Abstract: The significance of fresh vegetable consumption on human nutrition and health is well recognized. Human
infections with Escherichia coli O157:H7 and Salmonella enterica linked to fresh vegetable consumption have become a serious
public health problem inflicting a heavy economic burden. The use of contaminated livestock wastes such as manure and
manure slurry in crop production is believed to be one of the principal routes of fresh vegetable contamination with E.
coli O157:H7 and S. enterica at preharvest stage because both ruminant and nonruminant livestock are known carriers of
E. coli O157:H7 and S. enterica in the environment. A number of challenge-testing studies have examined the fate of E.
coli O157:H7 and S. enterica in the agricultural environment with the view of designing strategies for controlling vegetable
contamination preharvest. In this review, we examined the mathematical modeling approaches that have been used to
study the behavior of E. coli O157:H7 and S. enterica in the manure, manure-amended soil, and in manure-amended
soil–plant ecosystem during cultivation of fresh vegetable crops. We focused on how the models have been applied to
fit survivor curves, predict survival, and assess the risk of vegetable contamination preharvest. The inadequacies of the
current modeling approaches are discussed and suggestions for improvements to enhance the applicability of the models
as decision tools to control E. coli O157:H7 and S. enterica contamination of fresh vegetables during primary production
are presented.
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Introduction
Upon recognition that the use of live stock wastes such as

manure and manure slurry in crop cultivation can lead to con-
tamination of fresh produce with human pathogens preharvest, a
number of experiments have been carried out to determine the
fate of the pathogens in manure, manure-amended soil, and in the
manure-amended soil–plant ecosystem (Ongeng and others 2013).
Execution of survival experiments whether under controlled en-
vironmental conditions or in the field is a fundamental step toward
understanding the behavior of manure-borne pathogenic organ-
isms such as Escherichia coli O157:H7 and Salmonella enterica in
the agricultural environment. However, survival studies are often
time consuming and provide information limited only to the time
period when the experiments were performed. Moreover, when
key environmental factors that affect survival change (for example,
temperature, moisture, oxygen concentration), then information
obtained from previous survival experiments may not be valid
and therefore new experiments have to be performed, thus mak-
ing the approach more expensive over time. Predictive modeling
is a potential alternative approach that can overcome the limita-
tions of challenge testing (Baranyi and Roberts 1995; Wilson and
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others 2002). This is possible when key environmental factors that
affect survival and their respective continuum can be identified
and used to develop models that relate these factors to the be-
havior of the organism under agricultural conditions of interest.
In addition, models can enable researchers to make genuine com-
parisons between treatments so long as parameter values obtained
from various treatments according to the model are consistent
with practical realities. Furthermore, mathematical models are of
value in undertaking quantitative microbiological assessment of
vegetables preharvest (Franz and others 2010).

Mathematical models can be categorized into 3 groups:
primary, secondary, and tertiary (Whiting and Buchanan 1993).
Primary models describe the change of the microbial population
as a function of time under particular environmental conditions
(McDonald and Sun 1999). The goal is normally to generate
information about the microorganism such as generation time,
lag phase duration, exponential growth or death rate, and the
maximum population density (Whiting and Buchanan 1993,
1994; Whiting 1995). Such information can then be used to
compare the effects of experimental variables on the behavior
of the microorganism under study. Secondary models describe
the response of one or more parameters of a primary model
to changes in cultural or environmental conditions of interest
(Whiting and Buchanan 1993). Examples of secondary models
available in literature include the cardinal parameter models
(Augustin and Carlier 2000), square root type models (Ratkowsky
and others 1982), and the γ concept models (Zwietering and
others 1996). Tertiary models integrate primary and or secondary
models into user-friendly software packages. Examples of tertiary
models include Growth Predictor & Perfringens Predictor
(http://www.ifr.ac.uk/safety/growthpredictor/) and Seafood
Spoilage and Safety Predictor (SSSP 2009, http://sssp.dtuaqua.dk).
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Mathematical models can also be categorized as mechanistic
or empirical. Mechanistic models are built considering that vari-
ables describing the process have biological, chemical, and phys-
ical relationships. Empirical models describe the process through
a convenient mathematical relationship without considering any
intrinsic mechanism occurring during the process (Ross and
Dalgaard 2004). Mechanistic models are also known as white-
box models, whereas empirical models as black-box models. So
far in predictive microbiology, most models are empirical in na-
ture but some of them have been constructed in such a way that
biological significance can be adduced from their parameters, such
as in the cardinal parameter models (Rosso and other 1995) or in
the primary Baranyi model (Baranyi and Roberts 1995), resulting
in a hybrid model between the 2 approaches known as gray-box
model (Banga and others 2003). Biological significance of param-
eters is an interesting feature as it guides and eases the parameter
estimation process. This was one of the criteria for model inclu-
sion in the GInaFiT software tool that allows users to fit a range
of primary models on user-defined data (Geeraerd and others
2005).

Previous reviews that looked at the fate of E. coli O157:H7
and S. enterica in the agricultural environment focused mainly
on survival phenomena without emphasis on the mathematical
modeling aspects (Jacobsen and Bech 2011; Akhtar and oth-
ers 2014; Ongeng and others 2013). In this review, we fo-
cused on how primary models have been used to fit survivor
curves, and how primary and secondary models were combined to
predict survival of E. coli O157:H7 and S. enterica in the agricul-
tural environment, and to assess the risk of vegetable contami-
nation preharvest. Suggestions on future strategic research direc-
tion to enhance the utility of mathematical models as decision
tools to control E. coli O157:H7 and/or S. enterica contamina-
tion of fresh vegetables cultivated on manure-amended soils are
presented.

Fitting survivor curves
There are several primary models that can be used to fit data

for survival of manure-borne pathogenic bacteria such as E. coli
O157:H7 and S. enterica in manure and/or manure-amended soils.
The choice of the model mainly depends on the nature of data. In
most cases, several models have to be tried before a final decision
can be made based on some criteria, for example, the root mean of
squared error (RMSE) and/or coefficient of determination (R2)
criteria (Ongeng and others 2011a, b, c, d; Franz and others 2007).
The adequacy of the model fit can also be evaluated by looking
at the confidence interval and predicted interval of the fitted data
points (Ongeng and others 2011a, b, d). This can be achieved by
making use of the lsqnonlin procedure of the MatLab Optimiza-
tion Toolbox (www.mathworks.com) or any other appropriate
numerical tool. In Isqnonlin procedure, the least squares method
is used to estimate the parameters of nonlinear equations. The aim
is to minimize the sum of squares of the differences between the
predicted (model line) and observed values (data points).

The classical log-linear model (Eq. (1) is the simplest and most
straightforward primary model that has been used to fit linear
survivor curves of E. coli O157:H7 and/or S. enterica in manure
and/or manure-amended soil (Bolton and others 1999; You and
others 2006; Ongeng and others 2011a, b).

log N(t ) = log N0 − kmax × t
ln (10)

(1)

In Eq. (1), N(t) is cell density (CFU/g) at time t (days), N0 is
the initial cell density (CFU/g), and kmax is the first-order inacti-
vation rate constant (day−1). The log-linear model was originally
developed to fit data obtained from isothermal experiments in
thermo-bacteriology (Bigelow and Esty 1920). The underlying
assumptions governing the log-linear model are that thermal re-
sistances of cells within a population is homogeneous (Anderson
and others 1996) and that the probability of inactivation of an
organism at a particular time following thermal stress is indepen-
dent of the exposure time (Peleg 1998). In principle therefore,
this model would only be suitable for fitting data obtained from
survival experiments performed under isothermal conditions (You
and others 2006; Ongeng and others 2011b). However, the model
has also been successfully used to fit data obtained from survival
studies performed under fluctuating temperature conditions in
agricultural fields (Bolton and others 1999; Ongeng and others
2011b). This suggests that the inactivation of the target pathogens
as observed in those studies was not primarily due to thermal stress
but rather due to other nonthermal factors (for example, biological
interaction), which were not influenced by temperature under ex-
perimental conditions in which the respective studies were carried
out.

In most situations, survivor curves of E. coli O157:H7 and
S. enterica in manure/manure-amended soils exhibited curvilin-
ear shapes. In such situations, a linear model proved inappropriate
and therefore nonlinear models had to be used to fit such data
sets (Franz and others 2005; Semenov and others 2007, 2009;
Ongeng and others 2011a, c, d). On a theoretical basis, the non-
linear behavior of survivor curves can be viewed as the cumulative
distribution of an underlying distribution of the decline kinetics
(Franz and others 2007). This theory parallels the vitalistic concept
that presupposes the emergence of phenotypic variability within
a genetically homogeneous population when subjected to stress
(Skandamis and others 2002). In general, nonlinearity of survivor
curves can therefore be taken to reflect the inactivation phenom-
ena of a population of cells that is heterogeneous with respect to
the decline kinetics (Van Boekel 2002; Peleg 2003). This is al-
beit the unresolved contention regarding the sole use of survivor
curves to denote whether or not phenotypic variability exists in a
given population (Peleg and others 2005; Stone and others 2009).
In depth discussions on fundamentals of the log-linear deviations
are beyond the scope of this work. We only focus on how survival
data exhibiting curvilinear behavior have been fitted.

The Weibull function (Eq. (2) is a simple model that can be fit-
ted to the data exhibiting simple nonlinear deviations such as the
concave and convex shapes (Stone and others 2009). The utility of
the Weibull function in survival studies is based on the premise that
the resistance of the test organism to stress as encountered in the
survival matrices follows a Weibull distribution. In addition, the
survival curve as defined by the Weibull model is taken as a cumu-
lative form of the Weibull distribution of individual inactivation
kinetics (Mafart and others 2002; van Boekel 2002).

log N(t ) = log N0 −
(

t
δ

)p

(2)

In Eq. (2), all parameters are as defined in Eq. (1) except p,
which denotes shape parameter and δ, which indicates time for
the first decimal reduction of the original cell count. In practical
application, when p > 1 then the shape is convex, when p < 1
the shape is concave, and when p = 1 then the Weibull model
assumes the status of a log-linear function. This model was used
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to compare survival capabilities of E. coli O157 in manure be-
tween human and animal isolates (Franz and others 2011) and to
study the effect of redox potential on survival of E. coli O157:H7
and S. Typhimurium in cattle manure and manure slurry (Semenov
and others 2011). From the work of Semenov and others (2011),
it is quite interesting to note that although curves for data ob-
tained from aerobic experiment were concave in nature, curves
for data obtained from anaerobic experiments exhibited convex
curvature instead thus indicating greater resistance to inactivation
under anaerobic than under aerobic condition.

When survival data suggest a more complicated deviation from
linearity, then the capability of the simple Weibull model becomes
limited. A typical such nonlinear behavior of survivor curves was
observed in experiments where, upon introduction of the test
organisms into the survival matrix, the microbial cell number
first remained unchanged for a few days, after which the cell
population declined linearly (Ongeng and others 2011c). The
log-linear shoulder function described by Eq. (3) (Geeraerd and
others 2000) seems appropriate for fitting such datasets because
the “shoulder length” parameter of the model can account for the
apparent initial delay in inactivation.

logN(t ) = logN0 × e−kmax×t × kmax × s l

1 + (
e kmax×s l − 1

) × e−kmax1×t
(3)

In Eq. (3), N(t), N0, and kmax are as defined in Eq. (1). Sl is
the shoulder length (days). This model was successfully used to
study the effect of cabbage plant rhizosphere on survival of E.
coli O157:H7 and S. Typhimurium in manure-amended soil under
tropical field conditions in the Central Agro-Ecological Zone of
Uganda (Ongeng and others 2011d).

Survivor curves may, however, exhibit a tailing phenomenon
when cell counts are still above the detection limit of the enu-
meration technique. The Biphasic model with shoulder depicted
by Eq. (4) (Geeraerd and others 2005) can adequately describe
such a survivor curve on the basis of the assumption that the mi-
crobial population in question is heterogeneous and composed of
2 distinct subpopulations that decay independently following the
log-linear kinetics (as in Cerf 1977).

log N(t ) = log N0+log
[

f × e−kma x1×t

× kma x1 × s l

1 + [e kmax1−1 ] × e−kmax×t1
+ [1 − f ] × e−kmaxz×t

×
[

e kmax1 ×s l

1 + (e kmax1×sl −1 ) × e−kmax1×t

]
kmax2

kmax1

]
(4)

In Eq. (4), N(t), N0, and t are as defined in Eq. (1), f is the
fraction of the initial population in a major less-resistant subpop-
ulation, (1 − f) is the fraction of the initial population in a minor
more-resistant subpopulation (being minor at t0), kmax1 and kmax2

(day−1) are the specific inactivation rates of the 2 subpopulations,
and Sl is the initial shoulder length (days). This model was suc-
cessfully applied to study the survival of E. coli O157:H7 and S.
Typhimurium in manure held at 4 °C (Franz and others 2007).
As is the case with the log-linear shoulder model, the biphasic
model also takes into account the initial delay in decline of cell
population by the shoulder length parameter (Sl). Although the
biphasic model assumes the existence of 2 distinct subpopulations,
each with its own inactivation characteristics, Franz and others
(2007) suggested an alternative interpretation when they applied

the model to describe survival of E. coli O157:H7 in cattle ma-
nure. The authors proposed that the observed biphasic pattern of
the survivor curves was due to the changing competition pressure
resulting from the changing nutrient status of the manure substrate
over time, but not due to the existence of 2 distinct subpopulations
per se. It would therefore be interesting to validate the proposed
interpretation using a well-designed experiment that provides data
on nutrient dynamics and population dynamics of the background
microbial community during survival of the target pathogen.

Pathogen decline curves can sometimes follow a sigmoid-like
pattern. This has been observed in some experiments performed
under fluctuating environmental conditions as well as in other
studies conducted under controlled environmental set ups in the
laboratory. In the case of experiments performed in the field, the
Double Weibull model provided the best-fit for the data (On-
geng and others 2011a, b, d). This function is defined by Eq. (5)
(Coroller and others 2006).

log N(t ) = log
(

logN0

1 + 10α

[
10

−
(

t
σ1

)p +α + 10
−

(
t

σ2

)p ])
(5)

In Eq. (5): N(t), N0, and t are as defined in Eq. (1), p is the
shape parameter (dimensionless), δ1 is the time for the first decimal
reduction of subpopulation 1 (days), δ2 is the time for first decimal
reduction of the second subpopulation (days), and α is the log10

of the ratio of the fraction of more sensitive subpopulation to the
fraction of less sensitive subpopulation at time zero. The central
tenet of the Double Weibull model is that, the function partitions
the overall population of the test organism into 2 subpopulations
1 and 2 based on the assumption that subpopulation 1 is more
sensitive to the environmental stress than subpopulation 2. Indeed,
plots of the Double Weibull model published in Ongeng and
others (2011a) seem to indicate the 2 fractions with the first and
second fraction exhibiting a concave shape upward and downward,
respectively.

The sigmoid-like survivor curves have also been fitted using a
modified logistic regression model (Franz and others 2005; Se-
menov and others 2007, 2009). This modified logistic function,
as inspired by the seminal work of Zwietering and others (1990)
in microbial growth modeling in foods, is denoted by Eq. (6)
according to the formulation of Semenov and others (2007).

logN(t ) = a
1 + c × exp−m×t

(6)

In Eq. (6), N(t) is cell density (CFU/g) at time t (days), a is the
upper asymptote (CFU/g), c is a parameter for the shoulder (days),
and m is a slope parameter for the decline rate (days−1). The appro-
priateness of the modified logistic model for fitting sigmoid-like
survivor curves seems to emanate from the fact that a real sigmoid
function is just a special case of the general logistic equation. Using
this model, Franz and others (2005) compared data for survival of
E. coli O157:H7 in manure-amended soil between convention-
ally managed and organically managed soils and showed that E.
coli O157:H7 survived longer in manure-amended soil with soil
samples from the former than from the latter management sys-
tem. In addition, Semenov and others (2009) fitted survival data
for E. coli O157:H7 and S. Typhimurium using the same model
and showed based on model parameters that surface application
of manure to soil poses less risk of plant contamination compared
to injection of manure slurry into the soil. In all these situations,
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the results according to model parameters were consistent with
practical realities.

Predicting survival and risk assessment of vegetable
contamination preharvest

In depth scrutiny of literature reveals that very little work has
been done on the development and/or application of mathemati-
cal models to predict survival of human enteric pathogenic bacteria
such as E. coli O157:H7 and S. enterica in the agricultural environ-
ment. The only known publications available to date are those of
Semenov and others (2010) and Ongeng and others (2011d). Se-
menov and others (2010) modified and extended the BACWAVE
model of Zelenev and others (2000) into a COLIWAVE simula-
tion model to predict the survival of E. coli O157:H7 in manure
and manure-amended soil under dynamic environmental condi-
tions. The COLIWAVE model consists of 3 ordinary differential
equations depicting dynamics in the biomass of E. coli O157:H7,
the biomass of copiotrophic bacteria, and substrate concentra-
tion. The model predicts the oscillatory behavior and survival
of Escherichia coli O157:H7 in manure and manure-amended soil
matrices by integrating the relative effects of temperature, oxy-
gen concentration, substrate content, and intra- and inter-specific
competition by autochthonous microbial community according
to a Lotka–Volterra term. Because of the large number of terms in
the model, we have preferred not to present the model here, but
refer readers to the original publication by the authors (Semenov
and others 2010). The model can be considered semimechanistic
(as also denoted by McMeekin and others 2010) as it combines the
3 ordinary differential equations (primary model) containing terms
corresponding to existing, mechanistic knowledge about micro-
bial survival, whereas the relations between the primary model
parameters (such as the maximum relative growth rate and the
intra- and inter-specific competition parameters) and temperature
and oxygen concentrations have an empirical (black-box) nature.
Simulation trials with the model indicated that the overall decline
of E. coli O157:H7 counts in cattle manure was primarily deter-
mined by competition with autochthonous copiotrophic microbial
community, whereas the relative effects of changes in temperature
on simulated survival time were more pronounced than changes
in oxygen condition. A user-friendly version of the COLIWAVE
model based on the Runge–Kutta integration method is available
for use in MATLAB (www.mathworks.com) and can be obtained
from the authors on request (Semenov and others 2010).

In the work of Ongeng and others (2011d), a kinetic-based
modeling approach to predict the survival of manure-borne en-
teric pathogenic bacteria in manure and manure-amended soil
in agricultural field conditions was proposed. The modeling ap-
proach involves the recording of the temperature profile that the
organism experiences in the field matrix followed by establishing
the survival kinetics under isothermal conditions at a range of tem-
peratures registered in the matrix in the field and then using the
isothermal-based kinetic models to develop models for predict-
ing survival under dynamic conditions. The working hypothesis
of the proposed modeling approach is that the inactivation phe-
nomena associated with the survival kinetics of an organism in an
agricultural matrix under dynamic temperature conditions to be
largely attributed to the cumulative effect of inactivation at various
temperatures within the continuum registered in the matrix in the
field. Following this modeling approach, the authors developed a
model which predicted survival time of S. Typhimurium in manure
and manure-amended soil under tropical field conditions in the

Central Agro-Ecological Zone of Uganda by up to 84% and 71%,
respectively (Eq. (7).

dM∗

dt
= v1 + v2 − v3 − v4 (7)

In Eq. (7), Ni is the population at any time instant (CFU/g),
Np is the population at a previous time instant (CFU/g), kmax is
the decline rate (day−1) at temperature T corresponding with the
time instant Np is present, and td is the elapsed time between 2
temperature measurements.

An essential step in predictive model development and appli-
cation is the validation process. The objective is to ensure that
predictions made by the model are useful in real situations. Vali-
dation process encompasses comparing predictions of the model
with independent data, that is, data different from those used
to build the original model (Brocklehurst 2004). Models cannot
be used with confidence to make predictions until the valida-
tion step is successfully accomplished (Whiting 1995). However,
model validation process is often limited by costs of gathering new
data from real situations, thus a common approach is the use of
previously published data. In the case of the COLIWAVE model
(Semenov and others 2010), validation with previously published
data (Kudva and others 1998; Fremaux and others 2007; Franz
and others 2005, 2008) showed that anaerobic condition was con-
ducive for survival of E. coli O157:H7 in manure, a fact which was
later confirmed in a well-controlled experiment undertaken by
Semenov and others (2011). The kinetic-based model of Ongeng
and others (2011d) was also validated using the same approach.
The authors used data from other field survival experiments con-
ducted with S. Typhimurium at inoculum level of 4 log CFU/g
(Ongeng and others 2011b, 2011c) and showed that cultivation
of cabbage on contaminated manure-amended soil 61 to 68 days
post manure amendment to soil would present less risk of vegetable
contamination with the pathogen at harvest.

Limitations of the currently applied mathematical models
and suggestions for future strategic direction

There are 3 important limitations associated with the appli-
cation of primary models described by Eq. (1) to (6) in fitting
survival data. First, most of these models are empirical or, at best,
semimechanistic and as such they cannot adequately account for
the phenomena that determine survival thus providing very little
information on the behavior of the pathogens in the agricultural
environment. Despite this drawback, it is important to appreciate
that a fully mechanistic model that incorporates all factors that
affect survival (for example, physical and chemical characteristics
of manure and soil; weather or atmospheric conditions, biologi-
cal interactions, agricultural and livestock management practices,
strain type) may be difficult to develop considering the fact that
several factors interact to determine survival (Ongeng and others
2011a, 2013). This dilemma is not peculiar to this situation only, it
has also been observed in predictive food microbiology (Mejlholm
and others 2010).

Second, the primary models depicted by Eq. (1) to (6) do
not take into account oscillations (due to growth/regrowth phe-
nomenon) in the population of test organisms as is often ob-
served in survival data sets (Vidovic and others 2007; Semenov and
others 2008; Ongeng and others 2011a), thus failing to accurately
describe actual behavior of the pathogens in the agricultural en-
vironment. The “quasi-chemical” kinetics model developed by
Taub and others (2003) to describe the growth and death of
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Staphylococcus aureus in intermediate moisture bread might provide
a solution to this dilemma because the model takes into account
both the death and growth kinetics of the organism under study.
The model consists of a set of 4 ordinary differential equations
(Eq. (8) to (11) that integrates the concepts of chemical kinetics
and predictive microbiology. The 4 equations describe a scheme
representing the microbial life cycle (lag, exponential/growth, sta-
tionary, and death phase) in an analogous form to chemical reaction
mechanisms.

dM
dt

= −v1 (8)

dM∗

dt
= v1 + v2 − v3 − v4 (9)

dA
dt

= v2 − v3 (10)

dD
dt

= v3 + v4 (11)

where M represents the concentration of cells in the lag phase,
M∗ represents the concentration of cells in the growth phase, A
is the antagonistic metabolite that interacts with multiplying cells,
D denotes the dead cells, and v being the velocity of the reaction
during activation (v1), multiplication (v2), sensitization (v3), and
death (v4) of cells. This equation set (Eq. (8) to (11) describes
processes that correspond to the formation and/or elimination of
the entities M, M∗, A, and D. The theoretical basis governing the
model is well described by Taub and others (2003) and expounded
in a mathematical manner by Ross and others (2005). An addi-
tional advantage offered by this model is that it can fit both the
linear and curvilinear inactivation plots as illustrated with generic
E. coli in model food systems (Doona and others 2005).

Third, the primary models represented by Eq. (1) to (6) are
characteristically static in nature. This means that those models
were only appropriately used in experiments conducted under
static environmental conditions (Franz and others 2005, 2011;
Semenov and others 2011; Ongeng and others 2011a) but were
inappropriately applied in studies conducted under dynamic en-
vironmental conditions (Bolton and others 1999; You and others
2006; Ongeng and others 2011b, c, d). This is particularly impor-
tant considering the fact that survival time of E. coli O157:H7 in
cattle manure was found to be significantly shorter under dynamic
temperature conditions than under static temperature conditions
(Semenov and others 2007). The modified Weibullian-log logistic
(WeLL) inactivation model (Eq. (12); Corradini and Peleg 2008)
could be a feasible option for fitting nonisothermal data because
of the presence of a logistic adaptation factor that makes the in-
activation rate parameter of the WeLL model a function of both
temperature and exposure time.

dlog10S(t )
dt

= −ln
{
1exp {K [T (k) − Tc ]}} × n

×
[
− log10S (t )

ln
{
1 + exp {k [T (t ) − Tc ]}

}
] n−1

n

(12)

where S(t) is the instantaneous survivor ratio, that is N(t)/N0, n
is a temperature-dependent constant (equivalent to the p shape
parameter of the Weibull model), Tc is the temperature level of
inactivation onset, T is the instantaneous temperature, t is the time,

K is the temperature dependence of the slope of the inactivation
rate parameter. Theoretical background on the manipulation of the
original WeLL model to the modified version depicted in Eq. (12)
is presented by the authors. Future studies could therefore envisage
using this model taking into account the possibility of adjusting
the model to include other factors that affect survival in addition
to temperature.

The prediction models of Semenov and others (2010) and
Ongeng and others (2011d) presented above provide opportu-
nity for the application of mathematical models in risk assessment
of fresh vegetables preharvest. However, there are a number of
limitations that need to be addressed. The kinetic-based model
(Ongeng and others 2011d) was derived based on a single bacte-
rial strain, one soil type, and using inocula at the exponential phase.
The model needs to be validated with various soil types and di-
verse pathogen strains. This is because survival of E. coli O157:H7
and/or S. enterica in agricultural matrices has been shown to be
affected by strain origin (Franz and others 2011) and soil man-
agement system (Franz and others 2005). Second, the model was
developed using only field temperature data obtained from tropical
conditions in sub-Saharan Africa and as such cannot be applied
in other geographical regions with different temperature regimes,
thus the need for improvement. In addition, performance of the
model was 61% to 68% indicating that, notwithstanding experi-
mental errors, the model requires improvement through incorpo-
ration of other factors that affect survival.

The COLIWAVE model (Semenov and others 2010) was de-
rived based on assumptions which may not be valid in reality. For
instance, the authors considered that E. coli O157:H7 population
in sterilized and fresh manure would have the same physiologi-
cal characteristics, that is, the basic relative growth and death rate
would be the same. However, as also indicated by the authors, in
fresh manure, E. coli O157:H7 population would have a different
death rate due to competition with the autochthonous micro-
bial community. Another limitation of the COLIWAVE model is
the empirical nature of the Lotka–Volterra terms used to describe
the inter- and intra-specific microbial competition. The model
could be improved by replacing the empirical Lotka-Volterra terms
for competition by more mechanistic components (for example,
specific metabolites). In addition, the model lacks stochastic ef-
fects. It can be expected that both the initial level of pathogens
and autochthonous bacteria are in reality, not deterministic val-
ues. Furthermore, environmental conditions are also not constant
throughout space in manure and manure-amended soil, which
would necessitate the development of differential equations which
are not only time dependent but also place dependent. Alter-
natively, following a defined scheme as in microbiological risk
assessment, one may envisage a Monte Carlo simulation of the
processes taking place in the manure or manure-amended soil,
giving answers to questions related to the chance of a pathogen
population being able or not to survive a certain environmen-
tal condition during a certain amount of time. For example, if
it were possible to characterize the statistical distribution (related
to biological variability) of some of the 31 input parameters of
the COLIWAVE model, a Monte Carlo simulation would lead
to confidence bands surrounding the microbial evolution (as in
Ongeng and others 2011d) and it would also lead to an assessment
of the final risk incorporating biological variability. More details
on the assumptions underlying the COLIWAVE model and their
limitations thereof in the utility of the model to predict survival
were ably discussed by the authors and shall not be presented here
any further.
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Conclusions
This review has revealed that application of mathematical mod-

els to study the behavior of E. coli O157:H7 and S. enterica in
manure, manure-amended soil and manure-amended soil–plant
ecosystems has mostly been directed toward fitting survivor curves
of the pathogens, whereas work on the application of the models
to predict pathogen survival and to assess the risk of vegetable con-
tamination preharvest has been rather limited. The curve fitting
models applied so far are static in nature, mostly nonmechanis-
tic or at best semimechanistic and do not consider fluctuations
in cell counts as affected by pathogen regrowth phenomenon. To
enhance the utility of models as part of the decision tools in the
management of preharvest safety of vegetables, more work needs to
be done to develop models that are dynamic, mechanistic, and di-
rected toward prediction and assessment of vegetable safety during
cultivation rather than just curve fitting, and we recommend the
COLIWAVE model as an elegant model example in this respect
that should be improved. Translation of concepts of microbiolog-
ical risk assessment normally applied in food products to assess
risks of fresh vegetable contamination in the field may also be an
interesting way of applying the principle of biological variability
to find out the most influential risk management options.
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