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Abstract Mycotoxins are secondary metabolites of molds that have adverse effects on humans,

animals, and crops that result in illnesses and economic losses. The worldwide contamination of

foods and feeds with mycotoxins is a significant problem. Aflatoxins, ochratoxins, trichothecenes,

zearalenone, fumonisins, tremorgenic toxins, and ergot alkaloids are the mycotoxins of greatest

agro-economic importance. Some molds are capable of producing more than one mycotoxin and

some mycotoxins are produced by more than one fungal species. Often more than one mycotoxin

is found on a contaminated substrate. Mycotoxins occur more frequently in areas with a hot and

humid climate, favourable for the growth of molds, they can also be found in temperate zones.

Exposure to mycotoxins is mostly by ingestion, but also occurs by the dermal and inhalation routes.

The diseases caused by exposure to mycotoxins are known as mycotoxicoses. However, mycotox-

icoses often remain unrecognized by medical professionals, except when large numbers of people

are involved. Factors influencing the presence of mycotoxins in foods or feeds include environmen-

tal conditions related to storage that can be controlled. Other extrinsic factors such as climate or

intrinsic factors such as fungal strain specificity, strain variation, and instability of toxigenic prop-

erties are more difficult to control. Mycotoxins have various acute and chronic effects on humans

and animals (especially monogastrics) depending on species and susceptibility of an animal within a

species. Ruminants have, however, generally been more resistant to the adverse effects of mycotox-

ins. This is because the rumen microbiota is capable of degrading mycotoxins. The economic impact

of mycotoxins include loss of human and animal life, increased health care and veterinary care

costs, reduced livestock production, disposal of contaminated foods and feeds, and investment in

research and applications to reduce severity of the mycotoxin problem. Although efforts have
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continued internationally to set guidelines to control mycotoxins, practical measures have not been

adequately implemented.

ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

It is difficult to definemycotoxin in a few words. All mycotoxins
are low-molecular-weight natural products (i.e., small mole-
cules) produced as secondary metabolites by filamentous fungi.

These metabolites constitute a toxigenically and chemically het-
erogeneous assemblage that are grouped together only because
the members can cause disease and death in human beings and

other vertebrates. Not surprisingly, many mycotoxins display
overlapping toxicities to invertebrates, plants, and microorgan-
isms (Bennett, 1987). The termmycotoxin was coined in 1962 in

the aftermath of an unusual veterinary crisis near London, Eng-
land, during which approximately 100,000 turkey poults died.
When this mysterious turkey X disease was linked to a peanut
(groundnut) meal contaminated with secondary metabolites

from Aspergillus flavus (aflatoxins), it sensitized scientists to
the possibility that other occult mold metabolites might be
deadly (Bennett and Klich, 2003). While all mycotoxins are of

fungal origin, not all toxic compounds produced by fungi are
called mycotoxins. The target and the concentration of the
metabolite are both important. Fungal products that are mainly

toxic to bacteria (such as penicillin) are usually called antibiot-
ics. Fungal products that are toxic to plants are called phytotox-
ins by plant pathologists.Mycotoxins aremade by fungi and are
toxic to vertebrates and other animal groups in low concentra-

tions. Other low-molecular-weight fungal metabolites such as
ethanol that are toxic only in high concentrations are not con-
sidered mycotoxins (Bennett, 1987).

Mycotoxins are a structurally diverse group of mostly small
molecular weight compounds, produced mainly by the second-
ary metabolism of some filamentous fungi, or molds, which

under suitable temperature and humidity conditions, and
may develop on various foods and feeds, causing serious risks
for human and animal health. Mycotoxins are secondary

metabolites that have no biochemical significance in fungal
growth and development; however, they vary from simple C4
compounds, e.g., moniliformin, to complex substances such
as the phomopsins (Dinis et al., 2007). Currently, more than

300 mycotoxins are known, scientific attention is focused
mainly on those that have proven to be carcinogenic and/or
toxic. Human exposure to mycotoxins may result from con-

sumption of plant-derived foods that are contaminated with
toxins, the carry-over of mycotoxins and their metabolites in
animal products such as meat and eggs (CAST, 2003) or expo-

sure to air and dust containing toxins (Jarvis, 2002).
Toxigenic molds are known to produce one or more of these

toxic secondary metabolites. It is well established that not all

molds are toxigenic and not all secondary metabolites from
molds are toxic. Examples of mycotoxins of greatest public
health and agro-economic significance include aflatoxins
(AF), ochratoxins (OT), trichothecenes, zearalenone (ZEN),

fumonisins (F), tremorgenic toxins, and ergot alkaloids. These
toxins account for millions of dollars annually in losses world-
wide in human health, animal health, and condemned agricul-

tural products. Factors contributing to the presence or
production of mycotoxins in foods or feeds include storage,
environmental, and ecological conditions. Often timesmost fac-
tors are beyond human control (Hussein and Brasel, 2001).

Ochratoxin A (OTA) is a secondary metabolite produced by
several species of Aspergillus and Penicillium. The toxin, which
is a nephrotoxic and nephrocarcinogenic compound, hasmainly

been found in cereals as well as in other products like coffee,
wine, dried fruits, beer and grape juice. It occurs in the kidney,
liver and blood of farm animals by transfer from animal feed.
Although its genotoxic power has so far not been definitively

established, zearalenone (ZEA), produced by various species
of Fusarium, in particular Fusarium graminearum and Fusarium
culmorum, has an osteogenous action and is significantly toxic

to the reproductive system of animals (Milicevic et al., 2010).
Human food can be contaminated with mycotoxins at vari-

ous stages in the food chain (Bennett and Klich, 2003) and the

most important genera of mycotoxigenic fungi are Aspergillus,
Alternaria, Claviceps, Fusarium, Penicillium and Stachybotrys.
The principal classes of mycotoxins include a metabolite of

A. flavus and Aspergillus parasiticus, aflatoxin B1 (AFB1), the
most potent hepatocarcinogenic substance known, which has
been recently proven to also be genotoxic. In dairy cattle,
another problem arises from the transformation of AFB1 and

AFB2 into hydroxylated metabolites, aflatoxin M1 and M2

(AFM1 and AFM2), which are found in milk and milk products
obtained from livestock that have ingested contaminated feed

(Boudra et al., 2007). In 1993, the WHO-International Agency
for Research on Cancer (WHO-IARC, 1993a,b) evaluated the
carcinogenic potential of AF, OT, trichothecenes, ZEN, and

F. Naturally occurring AFwere classified as carcinogenic to hu-
mans (Group 1) while OT and F were classified as possible car-
cinogens (Group 2B). Trichothecenes and ZEN, however, were

not classified as human carcinogens (Group 3). The health haz-
ards of mycotoxins to humans or animals have been reviewed
extensively in recent years (Yaling et al., 2008; Averkieva, 2009).

Mycotoxins are not only hard to define, they are also chal-

lenging to classify. Due to their diverse chemical structures
and biosynthetic origins, their myriad biological effects, and
their production by a wide number of different fungal species,

classification schemes tend to reflect the training of the person
doing the categorizing. Clinicians often arrange them by the or-
gan they affect. Thus,mycotoxins can be classified as hepatotox-

ins, nephrotoxins, neurotoxins, immunotoxins, and so forth.
Cell biologists put them into generic groups such as teratogens,
mutagens, carcinogens, and allergens. Organic chemists have at-
tempted to classify them by their chemical structures (e.g., lac-

tones, coumarins); biochemists according to their biosynthetic
origins (polyketides, amino acid-derived, etc.); physicians by
the illnesses they cause (e.g., St. Anthony’s fire, stachybotryo-

toxicosis), and mycologists by the fungi that produce them
(e.g., Aspergillus toxins, Penicillium toxins). None of these clas-
sifications is entirely satisfactory (Bennett and Klich, 2003).

2. Occurrence and significance of mycotoxins in foods and feeds

Mycotoxicoses in humans or animals are characterized as food
or feed related, non-contagious, non-transferable, non-infec-
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tious, and non-traceable to microorganisms other than fungi.
Clinical symptoms usually subside upon removal of contami-
nated food or feed. Awide range of commodities can be contam-

inated with mycotoxins both pre- and post-harvest ( CAST,
2003).Aflatoxins (AFTs) are found inmaize andpeanuts, aswell
as in tree nuts and dried fruits. OTA is found mainly in cereals,

but significant levels of contamination may also occur in wine,
coffee, spices and dried fruits. Other products of concern are
beans, roasted coffee and cocoa, malt and beer, bread and bak-

ery products, wines and grape juices, spices, poultry meat and
kidneys, pig kidneys and pork sausages (Milicevic et al., 2008).

2.1. Aflatoxins

The aflatoxins were isolated and characterized after the death
of more than 100,000 turkey poults (turkey X disease) was
traced to the consumption of a mold-contaminated peanut

meal. The major aflatoxins are called B1, B2, G1, and G2 (based
on their fluorescence under UV light (blue or green) and rela-
tive chromatographic mobility during thin-layer chromatogra-
phy) M1 and M2 (produced in milk and dairy products)

(Fig. 1) (D’Mello and MacDonald, 1997). Aflatoxin B1 is the
most potent natural carcinogen known and is usually the ma-
jor aflatoxin produced by toxigenic strains (Squire, 1981).

Aflatoxins are difuranocoumarin derivatives produced by a
polyketide pathway by many strains of A. flavus and A. para-
siticus; in particular, A. flavus is a common contaminant in

agriculture. Aspergillus bombycis, Aspergillus ochraceoroseus,
Aspergillus nomius, and Aspergillus pseudotamari are also afla-
toxin-producing species, but they are encountered less fre-
quently (Peterson et al., 2001).

Aflatoxin contamination has been linked to increased mor-
tality in farm animals and thus significantly lowers the value
of grains as an animal feed and as an export commodity. Milk

products can also serve as an indirect source of aflatoxin. When
cows consume aflatoxin-contaminated feeds, theymetabolically
biotransform aflatoxin B1 into a hydroxylated form called afla-

toxin M1 (Van Egmond, 1989). Aflatoxin is associated with
both toxicity and carcinogenicity in human and animal popula-
Figure 1 Chemical structure of aflatoxin B (AFB1 and AFB2), aflat
tions. The diseases caused by aflatoxin consumption are loosely
called aflatoxicoses. Acute aflatoxicosis results in death; chronic
aflatoxicosis results in cancer, immune suppression, and other

‘‘slow’’ pathological conditions. The liver is the primary target
organ, with liver damage occurring when poultry, fish, rodents,
and nonhuman primates are fed aflatoxin B1. There are substan-

tial differences in species susceptibility. Moreover, within a gi-
ven species, the magnitude of the response is influenced by
age, sex, weight, diet, exposure to infectious agents, and the

presence of other mycotoxins and pharmacologically active
substances. Thousands of studies on aflatoxin toxicity have
been conducted, mostly concerning laboratory models or agri-
culturally important species (Cullen and Newberne, 1994).

Finally, it should be mentioned that Aspergillus oryzae and
Aspergillus sojae, species that are widely used in Asian food
fermentations such as soy sauce, miso, and sake, are closely re-

lated to the aflatoxigenic species A. flavus and A. parasiticus.
Although these food fungi have never been shown to produce
aflatoxin, they contain homologues of several aflatoxin biosyn-

thesis pathway genes. Deletions and other genetic defects have
led to silencing of the aflatoxin pathway in both A. oryzae and
A. sojae (Takahashi et al., 2002).

2.2. Ochratoxins

Ochratoxin A (OTA) (Fig. 2) is produced by fungi of the genera
Aspergillus and Penicillium. The major species implicated in

OTAproduction includesAspergillus ochraceus,Aspergillus car-
bonarius,Aspergillus melleus,Aspergillus sclerotiorum,Aspergil-
lus sulphureus, Pichia verrucossum. However, Aspergillus niger

and Pichia purpurescens are less important OTA producers
(Benford et al., 2001). OTA is a frequent natural contaminant
of many foodstuffs such as cocoa beans, coffee beans, cassava

flour, cereals, fish, peanuts, dried fruits, wine, poultry eggs
and milk (Weidenborner, 2001). The mycotoxin was reported
in 35% in ‘‘under-five clinics’’ of breast milks in Southern prov-

ince of Sierra Leone with up to 22% cooccurrence with aflatox-
ins. However, the scientists observed that whenever OTA was
detected in high levels, AFB1 was absent or present at very
oxin G (AFG1 and AFG2), and aflatoxin M (AFM1 and AFM2).



Figure 2 Chemical structure of ochratoxin A (OTA).
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low levels and vice versa which suggests some sort of competi-
tion between these toxins either at the production level in food-
stuffs or in their rate of absorption in the gastrointestinal tract.

OTA has also been reported as a contaminant of tiger nuts and
fermented maize dough in West Africa (Kpodo, 1996).

2.3. Fumonisins

Fumonisins (B1 and B2) (Fig. 3) are cancer-promoting metab-
olites of Fusarium proliferatum and Fusarium verticillioides that
have a long-chain hydrocarbon unit (similar to that of sphin-

gosine and sphinganine) which plays a role in their toxicity.
Fumonisin B1 (FB1) is the most toxic and has been shown to
promote tumor in rats and cause equine leukoencephalomala-

cia and porcine pulmonary edema. The naturally co-occurring
aminopentol isomers (formed by base hydrolysis of the ester-
linked tricarballylic acid of FB1) have been suggested to exert
toxic effects due to their structural analogy to sphingoid bases

(Humpf et al., 1998). Consumption of fumonisin (Fig. 3) has
been associated with elevated human oesophageal cancer inci-
dence in various parts of Africa, Central America, and Asia

and among the black population in Charleston, South Caro-
lina, USA. Because fumonisin B1 reduces uptake of folate in
different cell lines, fumonisin consumption has been implicated

in neural tube defects in human babies. Some correlation stud-
ies have suggested a link between the consumption of maize
Figure 3 Chemical structure of fumonisins B1 and B2.
with high incidence of F. verticillioides and fumonisins and
the high incidence of human oesophageal carcinoma in certain
parts of South Africa (Marasas et al., 2004).

2.4. Trichothecenes

The trichothecene mycotoxins (TCT) (Fig. 4) comprise a vast
group of over 100 fungal metabolites with the same basic struc-

ture. Several fungal genera are capable of producing TCT;
however, most of them have been isolated from Fusarium
spp. All trichothecene contain an epoxide at the C12,13 posi-

tions, which is responsible for their toxicological activity. At
the cellular level, the main toxic effect of TCT mycotoxins ap-
pears to be a primary inhibition of protein synthesis. TCT af-

fect actively dividing cells such as those lining the
gastrointestinal tract, the skin, lymphoid and erythroid cells.
The toxic action of TCT results in extensive necrosis of the oral

mucosa and skin in contact with the toxin, acute effect on the
digestive tract and decreased bone marrow and immune func-
tion (Schwarzer, 2009). The trichothecene mycotoxins occur
worldwide in grains and other commodities. Toxin production

is greatest with high humidity and temperatures of 6–24 �C.
Natural occurrence of TCT has been reported in Asia, Africa,
South America, Europe, and North America (Scott, 1989). Tri-

chothecenes have been detected in corn, wheat, barley, oats,
rice, rye, vegetables, and other crops. They are common con-
taminants of poultry feeds and feedstuffs and their adverse ef-

fects on poultry health and productivity have been studied
extensively (Leeson et al., 1995). Examples of type A TCT in-
clude T-2 toxin (T-2) and HT-2 toxin (HT-2), and diacetoxys-
cirpenol (DAS). Fusarenone-X (FUX), deoxynivalenol

(DON), and nivalenol (NIV) are some of the common natu-
rally occurring type B TCT. Types A and B trichothecene
are distinguished by the presence or absence of a carbonyl

group at the C8 position, respectively (Schwarzer, 2009).
Nivalenol was usually found associated with DON and its

derivatives (mono-acetyldeoxynivalenols), along with FUX,

which were produced by F. graminearum, Fusarium cerealis,
Fusarium culmorum in the southern areas and in northern
areas, by Fusarium poae. Moreover, from central to northern
Figure 4 Chemical structure of T-2 toxin, diacetoxyscirpenol

(DAS) and deoxynivalenol (DON).
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European countries, moniliform has been consistently re-
ported, as a consequence of the widespread distribution of
Fusarium avenaceum, whereas the occurrence of T-2 deriva-

tives, such as T-2 and HT-2, and DAS have been recorded in
conjunction with sporadic epidemics of Fusarium sporotrichio-
ides and F. poae (Bottalico and Perrone, 2002).

Rainbow trout and channel catfish trial data indicates the
impact of T-2 toxin (up to 5 ppm) or Don (up to 15 ppm) diet
supplementation on growth rate, feed efficiency, hematocrit,

intestinal hemorrhaging (Manning et al., 2003).

2.5. Zearalenone

Zearalenone (Fig. 5) is a mycotoxin produced by F. graminea-

rum and other Fusarium molds using corn, wheat, barley, oats
and sorghum as substrates. It is a non-steroidal compound
that exhibits oestrogen-like activity in certain farm animals

such as cattle, sheep and pigs. Zearalenone is a phenolic resor-
cyclic acid lactone with potent oestrogenic properties, pro-
duced primarily by Fusarium (Schwarzer, 2009). Zearalenone
is a phytoestrogenic compound known as 6-(10-hydroxy-6-

oxo-trans-1-undecenyl)-b-resorcylic acid l-lactone. It is a
metabolite primarily associated with several Fusarium species
(i.e. F. culmorum, F. graminearum, and F. sporotrichioides) with

F. graminearum being the species most responsible for the oes-
trogenic effects commonly found in farm animals. Alcohol
metabolites of ZEN (i.e. a-zearalenol and b-zearalenol) are

also oestrogenic (Cheeke, 1998a).

2.6. Moniliformin

Moniliformin (i.e. a potassium or sodium salt of 1-hydroxycy-

clobut-1-ene-3,4-dione, Fig. 6) is produced by several Fusarium
species (mainly F. proliferatum) and is usually found on the
corn kernel. It can be transferred to next generation crops

and survive for years in the soil. Although both FB1 and mon-
iliformin are produced by the same fungal species (F. prolifer-
atum) no structural resemblance is found between the two
toxins (Price et al., 1993).

3. Negative effects of mycotoxins on humans

Mycotoxicoses, like all toxicological syndromes, can be cate-
gorized as acute or chronic. Acute toxicity generally has a
Figure 5 Chemical structure of zearalenone (ZEN).

Figure 6 Chemical structure of moniliformin.
rapid onset and an obvious toxic response, while chronic tox-
icity is characterized by low-dose exposure over a long time
period, resulting in cancers and other generally irreversible ef-

fects (James, 2005). Prior to the discovery and implementation
of modern milling practices, Fusarium species have been impli-
cated in several human outbreaks of mycotoxicoses. Cereal

grains contaminated with F. sporitrichoides and F. poae were
implicated in alimentary toxic aleukia in Russia from 1932
to 1947. Symptoms included mucous membrane hyperaemia,

oesophageal pain, laryngitis, asphyxiation, gastroenteritis,
and vertigo (Lewis et al., 2005).

Aflatoxicosis is a toxic hepatitis leading to jaundice and, in
severe cases, death. Repetitive incidents of this nature have

occurred in Kenya (during 1981, 2001, 2004 and 2005), India,
and Malaysia (Shephard, 2004; Lewis et al., 2005). AFB1 has
been extensively linked to human primary liver cancer in which

it acts synergistically with HBV infection and was classified by
the International Agency for Research on Cancer (IARC) as a
human carcinogen (Group 1 carcinogen) (IARC, 1993). This

combination represents a heavy cancer burden in developing
countries. A recent comparison of the estimated population
risk between Kenya and France highlighted the greater burden

that can be placed on developing countries (Shephard, 2006).
The largest risk of AF to humans is usually the result of

chronic dietary exposure. Such dietary AF exposures have been
associated with human hepatocellular carcinomas, which may

be compounded by hepatitis B virus. Approximately 250,000
deaths are caused by hepatocellular carcinomas in China and
Sub-Saharan Africa annually and are attributed to risk factors

such as high daily intake (1.4 lg) of AF and high incidence of
hepatitis B (Wild et al., 1992). Aflatoxins have been found in tis-
sues of children suffering from Kwashiorkor and Reye’s syn-

drome and were thought to be a contributing factor to these
diseases. Reye’s syndrome, which is characterized by encepha-
lopathy and visceral deterioration, results in liver and kidney

enlargement and cerebral edema (Blunden et al., 1991). Afla-
toxin has long been linked to Kwashiorkor, a disease usually
considered a form of protein energy malnutrition, although
some characteristics of the disease are known to be among the

pathological effects caused by aflatoxins in animals. Aflatoxin
exposure was associated with reduced levels of secretory immu-
noglobulin A (IgA) in Gambian children (Turner et al., 2003).

Changes in differential subset distributions and functional alter-
ations of specific lymphocyte subsets have been correlated with
aflatoxin exposure inGhanaian adults and indicate that aflatox-

ins could cause impairment of human cellular immunity that
could decrease resistance to infections (Jiang et al., 2005).

Of the other health risk factors, the morbidity and mortal-
ity associated with unsafe sex, unsafe water and indoor smoke,

arises from infectious diseases, such as HIV/AIDS, infectious
diarrhoea and lower respiratory tract infection, respectively.
The immunological suppression associated with aflatoxin and

possibly DON could adversely affect all these outcomes. The
modulating effect of aflatoxins in cases of zinc, iron and vita-
min A deficiency in human health is less clear, but evidence

from animal nutrition would suggest it could be significant
(Williams et al., 2004). Fumonisins have been implicated in
one incident of acute food-borne disease in India in which

the occurrence of borborygmy, abdominal pain, and diarrhoea
was associated with the consumption of maize and sorghum
contaminated with high levels of fumonisins. Fumonisin B1,
the most abundant of the numerous fumonisin analogues,
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was classified by the IARC as a Group 2B carcinogen (possibly
carcinogenic in humans) (IARC, 2002). Fumonisins, which in-
hibit the uptake of folic acid via the folate receptor, have also

been implicated in the high incidence of neural tube defects in
rural populations known to consume contaminated maize,
such as the former Transkei region of South Africa and areas

of Northern China (Marasas et al., 2004).
Both DON and ZEN from toxic Fusaria have been linked to

scabby grain toxicoses in theUSA,China, Japan, andAustralia.

Symptoms included nausea, vomiting, and diarrhea. Fumonisin
B1 was associated with an illness outbreak in India with symp-
toms of acute onset of abdominal pain and diarrhea. Fumoni-
sins also have been implicated in oesophageal cancer in China

(Yoshizawa et al., 1994). However, with limited causal relation-
ships and the presence of several confounding factors, data com-
piled by the International Agency for Research on Cancer were

not conclusive for F carcinogenicity in humans (Casegnaro and
Wild, 1995). Trichothecenes have been suggested as potential
biological warfare agents. For example, T-2 toxin was impli-

cated as the chemical agent of ‘yellow rain’ used against the
Lao Peoples Democratic Republic from 1975 through 1981
(Peraica et al., 1999). In an investigation of similar biological

warfare agents in Cambodia from 1978 to 1981, T-2 toxin,
DON, ZEN, nivalenol, and DAS were isolated from water
and leaf samples collected from the affected areas (Peraica
et al., 1999).

Clinical symptoms preceding death included vomiting, diar-
rhea, hemorrhage, breathing difficulty, chest pain, blisters,
headache, fatigue, and dizziness. In addition to nephritic con-

gestion, autopsy findings included necrosis of the lining of the
stomach and upper small intestine, lungs, and liver. It should
be noted, however, that the origin of the samples of yellow rain

is still a subject of debate. For example, one theory attributed
the source of illnesses to unidentified endemic factors because
the yellow rain was found to be a native bee fecal material de-

void of mycotoxins (Seeley et al., 1985).

4. Negative effects of mycotoxins on non-ruminants

Early studies on the effects of acute aflatoxicosis indicated var-

ious toxicities in different animal species. In monogastrics, var-
iable responses have been shown with all mycotoxins. For
example, pigs have been shown to be very sensitive to T-2 toxin,

DON, and ZEN. Poultry also are adversely affected by both T-
2 and DON but are very resistant to the oestrogenic effects of
ZEN (Cheeke, 1998a). Various degrees of mycotoxicoses from
natural sources occur in different animal species because of the

wide range of feed ingredients used and the differences among
and within species. Experiments and case studies on mycotoxi-
coses in non-ruminant species have been summarized in the fol-

lowing sections (Hussein and Brasel, 2001).

4.1. Poultry

The negative effects of mycotoxins on chicken performance

have been demonstrated in numerous studies. For example,
feeding a high level (3.5 mg/kg of feed) of an AF mixture (i.e.
79% AFB1, 16% AFG1, 4% AFB2, and 1% AFG2) to broilers

reduced their body weight and increased their liver and kidney
weights (Smith et al., 1992). Aflatoxins also increased blood
urea-N and decreased serum levels of total protein, albumin,

triglycerides, and phosphorus. Feeding OTA (0.3–1 mg/kg of
feed) to broilers reduced glycogenolysis and resulted in a
dose-dependent glycogen accumulation in the liver. These neg-
ative metabolic responses were attributed to inhibition of cyclic

adenosine 30,50-monophosphate-dependent protein kinase and
were reflected in decreased efficiency of feed utilization and ter-
atogenic malformations (Bitay et al., 1979). The activities of

other enzymes (e.g. alkaline phosphatase, acid phosphatase,
lactate dehydrogenase, and succinate dehydrogenase) in several
organs (e.g. heart, liver, spleen, and pancreas) of 1-week-old

chicks also were altered by ingesting feed contaminated with
Fusarium roseum. Such change in enzyme activity resulted in
metabolic and cellular respiratory disorders, reduced body
weight gain, and tissue necrosis (Beri et al., 1991).

Fusarium mycotoxins have been shown to adversely affect
poultry. In addition to reduced feed intake and body weight
gain, buccal-oral ulceration and plaque formation were

observed when 7-day-old chicks were given T-2 toxin (4 or
16 mg/kg of feed) or DAS (4 or 16 mg/kg of feed). Similar ef-
fects were also observed in 1-day–3-week-old chicks consum-

ing T-2 toxin at 6 mg/kg of feed and in 24–25-week-old hens
consuming DAS at 20 mg/kg of feed. Interestingly, fertility
was increased in hens (67–69-week-old) and decreased in roost-

ers (25–27-week-old) when DAS was fed at 65 and 10 mg/kg
of feed, respectively (Brake et al., 2000).

4.2. Pigs

Swine are among the most sensitive species to mycotoxins. The
swine immune response to AF has been inconsistent. The swine

humoral immune response was not altered by feeding mixed
AF at levels ranging from 0.4 to 0.8 mg/kg of feed to acutely
toxic levels as high as 500 mg/kg of feed. The immunosuppres-

sion caused by AF (140 or 280 lg/kg of feed) only occurs at the
cellular and not the humoral level and the inhibition of DNA
synthesis in porcine lymphocytes when AFB1 was added to

the medium at various levels (0.1–10 000 ng/ml of medium)
(Pang and Pan, 1994). Negative effects of the mycotoxin
ZEN on swine reproductive function have been demonstrated
(Diekman and Green, 1992). Pigs have been shown to draw

the toxic forms of ZEN back from the circulating glucuronide
conjugate. For this reason the oestrogenic effects of ZEN have
been pronounced and prolonged in pigs. An extensive study in

Hungarian farms showed swelling of the vulva and mammary
glands and occasional vaginal and rectal prolapses in sexually
mature gilts consuming feed contaminated with ZEN (Glavitis

and Vanyi, 1995). Other oestrogenic effects of ZEN on gilts or
sows included edematous uterus, ovarian cysts, increased follic-
ular maturation and number of stillborns, and decreased fertil-
ization rate. In the same study, ZEN induced germinal

epithelial degeneration and altered sperm formation in boars.
Reproductive disorders (e.g. atrophy of the ovaries and uterus,
ovarian degeneration, and glandular dysfunction of the endo-

metrium) also have been reported when sows were exposed to
feed contaminated with T-2 toxin. Signs of prenatal T-2 toxico-
sis (e.g. glandular dysfunction of the endometrium, gastrointes-

tinal edema, and hematopoesis leading to death) were also
observed in suckling piglets (Hussein and Brasel, 2001).

4.3. Horses

The history of myctoxicosis and poisoning in equine has been
reviewed by Asquith (1991). In a case study, mature horses
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consuming AFB1-contaminated feed (58.4 lg/kg) were jaun-
diced and anorexic before death. Post-mortem examinations
revealed enlarged livers, kidney damage, and lesions of bile-

duct hyperplasia. In other cases, equine aflatoxicosis has been
characterized by depression, lameness, and death. Post-mor-
tem examinations revealed subcutaneous and enteric hemor-

rhage, enlarged kidneys, enlarged necrotic livers, and hepatic,
nephritic, and myocardial lesions. Studies with ponies have
shown damage in the skeletal muscles and heart along with

liver dysfunction when acute lethal doses of AFB1 were admin-
istered. Post-mortem examination of horses consuming corn
contaminated with a mixture of AF (AFB1, AFB2, and
AFM1 at 114, 10, and 6 lg/kg, respectively) revealed severe he-

patic lesions (Vesonder et al., 1991).
The greatest mycotoxin risks to equine identified thus far

are the toxins produced by Fusarium moniliforme which has

been implicated in equine leukoencephalomalacia and acute
neurotoxicity. These diseases were attributed to consumption
of corn contaminated with FB1 and moniliformin toxins.

Symptoms of equine leukoencephalomalacia include ataxia,
paresis, apathy hypersensitivity, impaired locomotor function,
necrosis of cerebral white matter, and lesions in the cerebral

cortex. Bean-hulls poisoning is another mycotoxin-related dis-
ease that has been known in Hokkaido (Japan) for seven dec-
ades because of the availability of bean-hulls as a cheap source
of feed and bedding for horses (Asquith, 1991). Clinical symp-

toms include central nervous system dysfunction, rapid heart-
beat, diminished ocular reflexes, and death (Placinta et al.,
1999).
4.4. Dogs and cats

The effects of mycotoxins on companion animals are severe
and can lead to death. As early as 1952, a case of hepatitis

in dogs was directly linked to consumption of moldy food.
Following the discovery of AF, the agent responsible for the
1952 case was identified as AFB1 and the symptoms of aflatox-

icoses in dogs were elucidated. In the case study, three dogs on
a farm in Queensland became ill (severe depression, anorexia,
and weakness) and died at different times within a month fol-

lowing consumption of a commercial dog food mixed with
AF-contaminated bread. The vomitus specimens from one
dog contained high levels of AF (100 lg/g of AFB1 and
40 lg/g of AFG1) (Devegowda and Castaldo, 2000). Deoxyni-

valenol is a major health concern for companion animals and
it contaminates petfood via corn even after processing. Due to
the variable toxicity responses to DON in dogs and cats, it was

suggested that DON levels in petfood should not exceed
0.5 lg/kg. In a case study, T-2 toxin given to cats intravenously
at 2 mg/kg resulted in hypovolemia and death. Sub-lethal T-2

toxicity in cats has been shown to lower white blood cell
counts (Devegowda and Castaldo, 2000).

As with other species, the kidney is the primary target organ

of OTA in dogs and cats. In a study with dogs, pacing and vom-
iting were observed at an OTA dose of 0.2 mg/kg. At doses be-
tween 0.2 and 3.0 mg/kg symptoms of intoxication in dogs
included anorexia, polydipsea, polyuria, anxiety, prostration,

and death. The necropsy findings included epithelial degenera-
tion (proximal tubules), mucohemorrhagic enteritis (cecum,
colon, and rectum) and necrosis of the lymphoid tissues (spleen,

tonsil, thymus, and peripheral lymph nodes) (Bird, 2000).
4.5. Rats and mice

Rats have been used extensively for decades as a model for

human mycotoxicoses especially with regard to the carcino-
genic potential of AF. This model system, however, has been
a subject for debate due to the differences in the detoxifica-

tion mechanisms between rats and humans as shown by cyto-
solic conjugation of AFB1 in vitro (Raney et al., 1992). In
contrast to rats, mice are generally resistant to the hepatocar-

cinogenic effects of AFB1. This may explain the high level of
glutathione-S-transferase (GST) activity in mice challenged
with AFB1 (Quinn et al., 1990). Contrary to the hepatocellu-
lar carcinomas commonly found in rat studies with AFB1,

mice given AFB1 by intraperitoneal injection at 0.02 mg/kg
of body weight for 12 injections over 3 weeks (average
5.6 mg/kg body weight) have expressed pulmonary tumors.

Other mycotoxins such as FB1 also have been implicated in
hepatic tumor formation in rats (Gelderblom and Snyman,
1991).

The negative effects of trichothecenes on rats have been
known for decades and, as a result, the rat has been used
extensively as a model for trichothecene toxicity tests. Studies

with T-2 toxin have shown the LD50 of its oral administration
to range from 2.8 to 3.8 mg/kg (Kravchenko et al., 1983). Oral
administration of T-2 toxin at levels ranging from 5 to 25 lg/
kg of feed for extended periods (up to 16 week) reduced feed

intake in a dose-dependent manner and caused gastric ulcers,
thymic depression and reduced nutrient uptake and lipid
metabolism (i.e. elevated levels of triglycerides, free choles-

terol, total phospholipids, and phosphatidyl choline (Suneja
et al., 1984). Symptoms of acute T-2 toxicity in rats include
lethargy, reduced feed intake, decreased body temperatures,

increased number of white blood cells and lymphocytes by
threefold, hypertension, and finally tachycardia precedes hypo-
tension and death (Wannemacher et al., 1991).
5. Negative effects of mycotoxins on ruminants

Ruminants such as cattle, sheep, goats, and deer are less

known for their sensitivity to the negative effects of mycotox-
ins than are non-ruminants. However, production (milk, beef,
or wool), reproduction, and growth can be altered when rumi-

nants consume mycotoxin-contaminated feed for extended
periods of time (Hussein and Brasel, 2001).
5.1. Cattle

Aflatoxins have been shown to negatively effect production,

immune system function, and rumen metabolism in cattle.
Increasing AF in cattle feed to levels such as 10, 26, 56.4,
81.1, and 108.5 lg/kg has been shown to significantly reduce
feed intake at each level in a dose-dependent manner

(Choudhary et al., 1998). In a 155-day feeding trial, AFB1

(600 lg/kg) was shown to depress feed efficiency and rate of
gain in steers. Decreased feed efficiency in cattle has been

attributed to compromised ruminal function by reducing cel-
lulose digestion, volatile fatty acid (i.e. acetate, propionate,
and butyrate) production and rumen motility (Diekman and

Green, 1992).
Several mechanisms of bovine immunosuppression by AFB1

have been illustrated in vitro; Paul et al. (1977) demonstrated



136 M.E. Zain
that AFB1 suppressed mitogen-induced stimulation of periphe-
ral lymphocytes. In another study (Bodine et al., 1984), AFB1

was shown to inhibit bovine lymphocyte blastogenesis. In a

study by Cook et al. (1986), radiotelemetry was used to measure
rumen motility in cattle and the results showed that AF admin-
istration (200–800 lg/kg) slowed rumen motility in a dose-

dependent manner (Cook et al., 1986). Ochratoxins, on the
other hand, do not cause significant toxicity to cattle when
fed alone in naturally occurring doses. Barley naturally-con-

taminated with OTA (390–540 lg/kg) and low levels of AFB1

(12–13 lg/kg) did not induce any significant clinical symptoms
in 12-week-old calves. The absence of a toxic effect may have
been due to the ruminal microbial degradation and detoxifica-

tion (Patterson et al., 1981).
Aflatoxins also affect the quality of milk produced by

dairy cows and result in carry-over of AFM1 from AF-con-

taminated feed. Ten ruminally-canulated lactating Holstein
cows were given AFB1 (13 mg per cow daily) via the rumen
orifice for 7 days. Levels of AFM1 in the milk of the treated

cows ranged from 1.05 to 10.58 ng/l. The AFB1-treated cows
also had a significant reduction in milk yield. The carry-over
rate was shown to be higher (6.2 vs. 1.8) in early lactation (2–

4 weeks) when compared with late lactation (34–36 weeks)
(Veldman et al., 1992). The T-2 toxin is also believed to in-
duce immunosuppression in cattle by decreasing serum con-
centrations of IgM, IgG, and IgA, neutrophil functions and

lymphocyte blastogenesis, and the response of lymphocytes
to phytohemagglutinin (Mann et al., 1984). This toxin was
also shown to induce necrosis of lymphoid tissues. Bovine

infertility and abortion in the final trimester of gestation also
have resulted from consumption of feed contaminated with
T-2 toxin (Placinta et al., 1999). Calves consuming T-2 toxin

at 10–50 mg/kg of feed have demonstrated ulcers in the
abomesum and sloughing of the papilla in the rumen
(Cheeke, 1998a).

A case investigation of dairy cattle fed moldy corn contain-
ing 1 mg/kg T-2 toxin resulted in hemmorhagic syndrome.
With the exception of T-2 toxin, cattle have not been adversely
affected by trichothecenes. Neither DON nor DAS are known

to affect cattle health or performance in the feedlot
(Dicostanzo et al., 1996). It has shown that DON at levels as
high as 6 mg/kg of feed had no adverse effects on milk yield

and did not show evidence of carry-over into milk. Zearale-
none has been suggested as a causative agent of infertility, re-
duced milk production, and hyperestrogenism in cattle

(D’Mello and MacDonald, 1997).
Fescue foot, hyperthermia, and fat necrosis in cattle have

been linked to consumption of tall fescue parasitized with
Acremonium coenophialum (Cheeke, 1998b). Fescue foot in cat-

tle has been shown to derive from vasoconstriction and gan-
grene in the hooves and tail due to the relaxation of smooth
muscles caused by ergot alkaloids. Hyperthermia (summer fes-

cue toxicosis) in cattle has been characterized by symptoms of
weight loss, salivation, and heat stress. Fat necrosis in cattle is
a condition in which areas of the fat are hardened resulting in

constriction of internal organs, reduced serum cholesterol, and
elevated serum amylase (Cheeke, 1998b). Cattle consuming tall
fescue contaminated with endophytic fungi such as Acremo-

nium lolii also have shown symptoms of staggers, excitability,
increased rectal temperature, increased respiration rate, and
loss of body weight (Ross et al., 1989).
5.2. Sheep

Early studies suggested that the sheep are the most resistant

species to mycotoxicosis (Miller and Wilson, 1994). However,
feeding diets contaminated with AF (79% AFB1, 16% AFG1,
4% AFB2, and 1% AFG2) to ewe lambs (2.5 mg/kg or 5.0 mg/

kg of feed for 35 days) resulted in hepatotoxicity (Harvey
et al., 1995). In another study (Fernandez et al., 1997), lambs
fed AF at 2.5 mg/kg of feed daily for 21 days showed symp-

toms of clinical aflatoxicosis including hepatic and nephritic le-
sions, altered mineral metabolism, and increased size and
weight of the liver and kidney. Another study (Ramos et al.,
1996) with the same daily dose of AF (2.5 mg/kg of feed)

examined the plasma mineral concentrations on day 1, 2, 4
and 8 of the initial dose. On day 4 of intoxication, significant
reductions in plasma mineral concentrations were detected

for Ca (2.39 vs. 2.06 mM), P (2.95 vs. 2.50 mM), Mg (0.88
vs. 0.77 mM), K (4.40 vs. 3.81 mM), and Zn (13.2 vs.
11.6 lM). The resulting mineral deficiencies due to aflatoxico-

sis were attributed to lower feed intake and to the liver and
kidney malfunctions as a result of AF intoxication. Exposure
of lambs to AF (2.5 mg/kg of feed for 3 weeks) revealed

changes in extrinsic coagulation factors as determined by
increased fibrinogen concentration (Fernandez et al., 1997).

Mechanisms for cellular immune response to AF in sheep
have not been elucidated. Fusaria mycotoxins at high doses

also appear to have some negative effects on sheep. Exposing
sheep to DON (15.6 mg/kg of feed) for 28 days had no effects
on average daily gain, hemacytology parameters, or liver func-

tion. However, weight loss (�0.6 vs. 2.4 kg/day) was reported
after 34 days of feeding DAS (5 mg/kg of feed) to lambs. Fur-
ther weight loss (�2.7 vs. 2.4 kg/day) also was reported at

34 days of feeding lambs same level of DAS in combination
with AF (2.5 mg/kg of feed) suggesting a synergistic effect
(Harvey et al., 1995). It has been suggested that high dietary
levels (12 mg/kg of feed) of ZEN for extended periods of time

(10 days) may affect reproductive performance of sheep nega-
tively by reducing fertility and ovulation rates (Dicostanzo
et al., 1996). Fumonisins at high doses (11.1–45.5 mg/kg of

body weight) have been demonstrated as acutely and fatally
nephrotoxic and hepatotoxic in lambs (Edrington et al.,
1995). It should be noted, however, that such experimental lev-

els have not been found in F-contaminated feeds.
Sheep also have been affected by ryegrass toxicosis, which

has resulted in tremors, decreased productivity, and in some

cases death (D’Mello and MacDonald, 1997). Perennial rye-
grass staggers have been observed in sheep consuming ryegrass
contaminated with A. lollii. Symptoms have included shaking
with loss of coordination and inability to walk (Cheeke,

1998b). Staggers have been demonstrated when A. lolii-con-
taminated ryegrass had lolitrem B toxin at levels of 2.0–
2.5 mg/kg (DiMenna et al., 1992).

5.3. Other ruminants

Ruminants other than cattle and sheep have shown variable
resistance to mycotoxins. Levels of AF at 95 mg/kg of feed of-

fered to weanling goats had no effects on body weight gain and
did not show any noticeable signs of toxic effects (Gurung et al.,
1998). Signs of toxic effects were only detected through serum

profile and sphingolipid analysis. In a study with white-tailed
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deer fawn fed 800 mg/kg AF over an 8-week-period (Quist
et al., 1997), acute injuries in the liver were indicated by
increased serum bile acid concentrations and hepatic lesions.

6. Factors affecting production, contamination of foods and

feeds, and toxicity of mycotoxins

A main difficulty in assessing the risk of mycotoxins to human
and animal health is the multiplicity of factors affecting the

production or presence of mycotoxins in foods or feeds. Mere
isolation and confirmation of mycotoxigenic fungal species in
foods or feeds does not indicate the presence of mycotoxins.

Upon development of accurate and sensitive techniques for
qualitative and quantitative analysis of mycotoxins, research-
ers have found that various factors operate interdependently
to affect fungal colonization and/or production of the myco-

toxins. D’Mello and MacDonald (1997) categorized the factors
as physical, chemical, and biological.

Physical factors include the environmental conditions con-

ducive to fungal colonization and mycotoxin production such
as temperature, relative humidity, and insect infestation.
Chemical factors include the use of fungicides and/or fertiliz-

ers. Stresses such as drought, an increase in temperature, and
an increase in relative humidity may selectively alter coloniza-
tion and metabolism of mycotoxigenic fungi and thus alter

mycotoxin production (Russell et al., 1991). These researchers
also indicated that unseasonable conditions may render crops
and forages susceptible to mycotoxin production. Cool and
damp springtime weather favours the germination of the scle-

rotia and thus ergot alkaloid formation in fescue and ryegrass
(Cheeke, 1998a).

The biological factors are based on the interactions between

the colonizing toxigenic fungal species and substrate. While
some plant species are more susceptible to colonization, envi-
ronmental conditions may increase the vulnerability of other

more resistant plant species. The biological factors have been
further sub-categorized (Moss, 1991) into intrinsic factors
including fungal species, strain specificity, strain variation,

and instability of toxigenic properties. Such intrinsic factors
underscore the difficulty of risk assessment of mycotoxin expo-
sure based on mold contamination. Species and strain specific-
ity are well described by the numerous mycotoxins produced

by two or more fungi. A strain variation refers to a specific cul-
ture identity for the same species fungal isolate and how these
strains produce mycotoxins in a variable fashion. Finally, the

toxigenic properties may vary over time and as the mycoecol-
ogy changes toxins may be reduced. Several studies have
shown that optimal conditions for fungal growth are not nec-

essarily optimum for toxin production. For example, different
strains of A. flavus have been shown to produce AF at different
rates when cultured under similar conditions (Hesseltine et al.,
1970).

In a 3-year study (Wood, 1992) on occurrence of AF in se-
lected USA foods (milled corn products, peanuts, and peanut
products) and feeds (shelled corn, cottonseed, and cottonseed

meal), the unpredictable nature of AF contamination and
the difficulty in assessing the extent of such contamination
have been documented. Very high levels (greater than the

20 lg/kg) of contamination were found in corn harvested from
all parts of the USA in 1989, 1990, and 1991. In these years,
9.1%, 20.7%, and 37.1%, respectively, of the corn samples

examined before human consumption contained AF at levels
>20 lg/kg in the southern states (i.e. Arkansas, Texas, and
Oklahoma). The increase in AF contamination in 1990 was
attributed to the drought condition. However, the dramatic in-

crease in AF contamination in 1991 could not be explained by
environmental factors. In an earlier study by Wood (1989), it
was found that cottonseed and cottonseed meal were the pri-

mary targets of AF contamination in the southwestern states
of Arizona and California. In comparison to the rest of the na-
tion (0 and 28.0 lg/kg for cottonseed and cottonseed meal,

respectively), the average values for both states were 37.7
and 43.0 lg/kg of seed and meal, respectively. In a more prac-
tical sense, mycotoxin contamination of foods or feeds may re-
sult from inadequate storage and/or handling of harvested

products. Prevention and control methods have been pre-
scribed for mitigating mycotoxin contamination of feeds
(Harris, 1997). These methods require that feed handlers and

grain mill operators keep grain bins clean and store grain at
less than 14% moisture. Feed ingredients must be dry, oxygen
free, fermented or treated with mold growth inhibitors. With

regard to silage crops, harvesting at the appropriate moisture
content and both packing and sealing the silo (to exclude oxy-
gen and allow for desirable anaerobic fermentation) are essen-

tial for reducing mycotoxin contamination potential.
Chemical treatment and processing are anthropogenic fac-

tors that may decrease mycotoxin contamination of foods or
feeds. Wet and dry milling processes as well as heat in the

cooking process have been shown to reduce AF in foods. Heat-
ing and roasting have been shown to significantly decrease AF
content in corn. A review of several studies, however, sug-

gested that processing and pasteurization of milk do not com-
pletely destroy mycotoxins (Manorama and Singh, 1995).
Bentonite and aluminosilicate clays used as binding agents

have been shown to reduce AF intoxication in pigs, cattle, rats,
and poultry without causing digestive problems when mixed
with AF-contaminated feeds (Scheideler, 1993). However,

these clays are ineffective against ZEN and F, can alter the
nutritional value (by binding trace minerals and vitamins
and reducing their bioavailability), and produce dioxins (Dev-
egowda and Castaldo, 2000).

Recently, the potential role of dietary factors to counteract
the toxic effects of mycotoxins has been reviewed (Galvano
et al., 2001). The role of antioxidants (Se and vitamins A, C,

and E) and food additives was evaluated. Antioxidant defense
mechanisms observed have included free radical scavenging,
reduced lipid peroxidation, and general inhibition of the muta-

genic process. Galvano et al. (2001) also reviewed the role of
food components (fructose, phenolic compounds, coumarins,
and chlorophyll) and food additives (piperine, aspartame,
cyproheptadine, and allyl sulfides) in reducing the toxicity of

various mycotoxins by decreasing toxin formation and
enhancing metabolism. For example, phenolic compounds
have been shown to metabolically enhance AFB1 conjugation

and elimination (Rompelberg et al., 1996).
The antioxidant ethoxyquin has been recognized as a strong

anti-aflatoxigenic agent. Kensler et al. (1986) demonstrated the

role of ethoxyquin in rat hepatocytes as induction of conjugat-
ing GST. Mendel et al. (1987) confirmed the enhancing effect of
ethoxyquin on phase II metabolism in several subcellular com-

ponents (microsomes, cytosol, and cell membrane) of the rat li-
ver. In another study, gamma glutamyl transpeptidase was
induced along with GST. A more recent study with marmosets
has established ethoxyquin as a potential chemoprotective
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agent against the carcinogenic effects of AFB1 in humans
(Bammler et al., 2000).

7. Economic impact of mycotoxins

There are multiple criteria for assessing the economic impact of

mycotoxins on humans and on animals. Considerations include
loss of human and animal life, health care and veterinary care
costs, loss of livestock production, loss of forage crops and

feeds, regulatory costs, and research cost focusing on relieving
the impact and severity of the mycotoxin problem. Formulas
for worldwide economic impact have been difficult to develop

and, therefore, most reports on economic impact are on a single
aspect of mycotoxin exposure or contamination (Hussein and
Brasel, 2001). The worldwide contamination of foods and feeds
with mycotoxins is a significant problem. Studies have shown

extensive mycotoxin contamination in both developing and
developed countries. Surveillance studies (Placinta et al.,
1999) showed that worldwide contamination of cereal grains

and other feeds with Fusarium mycotoxins is a global concern.
In Yugoslavia, studies on mycotoxigenic fungi in raw milk have
indicated that 91% of the samples tested were contaminated

(Skrinjar et al., 1995). In the USA, a study was conducted in se-
ven Midwestern states in 1988–1989 and found mycotoxins in
19.5% of corn samples assayed prior to any induced environ-

mental stress and 24.7% of the samples following stress induc-
tion (Russell et al., 1991). Shane (1994) estimated the 1980
losses due to AF in corn of eight Southeastern states at 97 mil-
lion dollars with additional 100 million dollars in production

losses at hog farms feeding the contaminated corn.
India is a prime example of a country in which the economy

is affected heavily by mycotoxins. In a study in the Bihar region

from 1985 to 1987 (Ranjan and Sinha, 1991), nearly 51% of the
387 samples tested were contaminated with molds. Of the 139
samples containing AF, 133 had levels above 20 lg/kg. In an-

other study (Phillips et al., 1996), levels as high as 3700 lg/kg
of AF was reported in groundnut meal used for dairy cattle.
Researchers also found 21 of 28 dairy feed samples from farms

in and around Ludhiana and Punjab to be contaminated with
AFB1 at levels ranging from 50 to 400 lg/kg (Dhand et al.,
1998). It was estimated that 10 million dollars were lost in In-
dia’s export within a decade due to groundnut contamination

with mycotoxins (Vasanthi and Bhat, 1998).

8. Regulation of mycotoxins in foods and feeds

Other than the direct health risk, economic losses and implica-
tions arising from mycotoxicoses are enormous. Many devel-

oping countries have realised that reducing mycotoxins levels
in foods will not only reduce financial burden on health care
but also confer international trade advantages such as exports

to the attractive European markets. Factors fundamental to
country’s ability to protect its population from mycotoxins in-
clude the political will to address mycotoxins exposure and
capability to test food for contamination, which determines

whether requirements can be enforced (Wagacha and
Muthomi, 2008).

8.1. Good agricultural practices

Agronomic practices have been shown to have profound effect
on mycotoxins contamination of crops in the field.
(i) Early harvesting: early harvesting reduces fungal infec-

tion of crops in the field before harvest and consequent
contamination of harvested produce. Even though
majority of farmers in Africa are well aware of the need

for early harvesting, unpredictable weather, labour con-
straint, need for cash, threat of thieves, rodents and
other animals compel farmers to harvest at inappropri-
ate time (Amyot, 1983). Rachaputi et al. (2002) reported

that early harvesting and threshing of groundnuts
resulted in lower aflatoxin levels and higher gross
returns of 27% than in delayed harvesting.

(ii) Proper drying: rapid drying of agricultural products to
low moisture level is critical as it creates less favourable
conditions for fungal growth and proliferation, insect

infestation and helps keep longer (Lanyasunya et al.,
2005). Hamiton (2000) reported that drying harvested
maize to 15.5% moisture content or lower within
24–48 h would reduce the risk of fungal growth and con-

sequent aflatoxin production. Awuah and Ellis (2002)
demonstrated that when groundnuts were dried to
6.6% moisture level, they were free of fungi regardless

of the local storage protectant used for 6 months,
whereas at 12% moisture, only jute bags with the plant
Syzigum aromaticum effectively suppressed the cross

infection of healthy kernels. However, when the mois-
ture content was increased to 18.5%, the latter treatment
was not as effective. A community-based intervention

trial in Guinea, West Africa focused on thorough drying
and proper storage of groundnuts in subsistence farm
villages and achieved a 60% reduction in mean aflatoxin
levels in intervention villages (Turner et al., 2005). Dur-

ing storage, transportation and marketing, maintenance
of low moisture levels should be maintained by avoiding
leaking roofs and condensation arising from inadequate

ventilation.
(iii) Physical treatment: a study conducted in Benin by Fan-

dohan et al. (2005) to determine the fate of aflatoxins

and fumonisins through traditional processing of natu-
rally-contaminated maize and maize based foods, dem-
onstrated that sorting, winnowing, washing, crushing
combined with de-hulling of maize grains were effective

in achieving significant mycotoxins removal. Similar
results have been reported by Park (2002) and
Lopez-Garcia and Park (1998). This approach is based

on separation of contaminated grain from the bulk
and depends on the heavy contamination of only a small
fraction of the seeds, so that removing those leaves a

much lower overall contamination. Study of the distri-
bution of aflatoxin in peanuts shows that a major por-
tion (80%) of the toxin is often associated with the

small and shrivelled seed and moldy and stained peanut
(Fandohan et al., 2005; Turner et al., 2005).

(iv) Sanitation: basic sanitation measures such as removal
and destruction of debris from previous harvest would

help in minimizing infection and infestation of produce
in the field. Cleaning stores before loading new produce
has been shown to be correlated with reduced aflatoxin

levels (Hell et al., 2000).
(v) Proper storage: to preserve quality in storage, it is neces-

sary to prevent biological activity through adequate dry-

ing to less than 10% moisture, elimination of insect
activity that can increase moisture content through
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condensation of moisture resulting from respiration, low

temperatures, and inert atmospheres (Lanyasunya et al.,
2005; Turner et al., 2005).

(vi) Insect management: the level of insect damage influences

the extent of mycotoxins contamination. Avantaggio
et al. (2002) found that insect damage of maize is good
predictor of Fusarium mycotoxins contamination.
Insects carry spores of mycotoxins producing fungi from

plant surfaces to the interior of the stalk or kernels or
create infection wounds through their feeding habits
(Munkvold, 2003). Therefore, proper management of

insect pests through any appropriate control strategy
would reduce mycotoxins contamination problem.

(vii) Othermethods: cultural practices including crop rotation,

tillage, planting date, and management of irrigation and
fertilization, have limited effects on infection and subse-
quent mycotoxins accumulation (Munkvold, 2003;
Champeil et al., 2004).
8.2. Biological control

Significant inroads have been made in establishing various bio-
control strategies such as development of atoxigenic bio-con-

trol fungi that can out-compete their closely related, toxigenic
strains in field environments, thus reducing the levels of myco-
toxins in the crops (Cleveland et al., 2003). Dorner and Cole
(2002) reported a field application of non-toxigenic strains of

A. flavus and A. parasiticus that reduced post-harvest aflatoxin
contamination by 95.9%. Use of biological agents to suppress
growth of fumonisin-producing fungi has been reported. It was

observed that the inhibition of fumonisin formation by atoxi-
genic F. verticillioides strains although these caused higher dis-
ease incidence when applied through the silk channel. The

observation implied that the ability to produce fumonisins is
not required to produce ear rot and that effective colonization
of plant with atoxigenic strains could competitively exclude

fumonisin-producing strains or prevent them from producing
fumonisins. Luongo et al. (2005) also reported suppression
of saprophytic colonization and sporulation of toxigenic
F. verticillioides and F. proliferatum in maize residues by

non-pathogenic Fusarium species. Control of fumonisin-
producing fungi by endophytic bacteria has also been reported.

Competitive exclusion, whereby the bacteria grow intercel-

lularly precluding or reducing growth of intercellular hyphae
was thought to be the mechanism involved. Masoud and Kalt-
oft (2006) reported in vitro inhibition of OTA production byA.

ochraceus by three yeasts (Pichia anomala, Pichia kluyveri and
Hanseniaspora uvarum). Fungal strains of Trichoderma have
also been demonstrated to control pathogenic fungi through

mechanisms such as competition for nutrients and space, fungi-
stasis, antibiosis, rhizosphere modification, mycoparasitism,
biofertilization and the stimulation of plant-defense mecha-
nisms (Benitez et al., 2004). The ability of fungal antagonists

to control toxigenic types is, however, dependent on the differ-
ential effect of macro and micro-climatic conditions on the
antagonist–pathogen interaction (Luongo et al., 2005).

Important criteria for evaluating the effectiveness of myco-
toxin bio-control agent include ability to colonize the target
substrate or plant part, ability to be active under various envi-

ronmental conditions in the field or during storage so that its
growth and that of the pathogen coincide and compatibility
with other control procedures without inducing effects that
compromise end use quality of the commodity (Bacon et al.,
2001). In this regard, atoxigenic strains of F. verticillioides
and F. proliferatum would be superior bio-control agents for

toxigenic strains since they occupy the same ecological niche
as the toxigenic strains in the host plant and share similar
growth conditions.

8.3. Chemical control

Appropriate use of pesticides during the production process
could help in minimizing the fungal infection or insect infesta-

tion of crops and consequently mycotoxin contamination.
Fumonisins contamination could be reduced by application
of fungicides that have been used in control of Fusarium head

blight such as prochloraz, propiconazole, epoxyconazole,
tebuconazole cyproconazole and azoxystrobin (Matthies and
Buchenauer, 2000; Haidukowski et al., 2004). On the other

hand, fungicides such as itraconazole and amphotericin B have
been shown to effectively control the aflatoxin-producing
Aspergillus species (Ni and Streett, 2005). However, use of fun-
gicides is being discouraged due to economic reasons and

growing concern for environment and food safety issues.

8.4. Decontamination

Decontamination of food/feed contaminated with mycotoxins
could be achieved through either chemoprotection or entero-

sorption. Chemoprotection of aflatoxins has been demon-
strated with the use of a number of chemical compounds like
oltipraz and chlorophylin or dietary intervention like broccoli
sprouts and green tea that either increase an animal’s detoxifi-

cation processes (Kensler et al., 2004) or prevent the produc-
tion of the epoxide that leads to chromosomal damage. This
intervention might not however be sustainable in the long-term

in most African countries since it involves drug therapies,
which are expensive besides the possible side effects. Enter-
sorption is based on the discovery of certain clay minerals,

such as Novasil, which can selectively adsorb mycotoxins
tightly enough to prevent their absorption from the gastroin-
testinal tract (Wang et al., 2005).

There are different adsorption agents but their efficacy in
preventing mycotoxicosis varies. Selected calcium montorillo-
nites have proven to be the most highly selective and effective
of enterosorbents. However, with enterosorption, there is a

risk that non-specific adsorption agents may prevent uptake
of micronutrients from the food. Essential oils and aqueous
extracts of Aframomum danielli were recently reported to re-

duce OTA in spiked cocoa powder by between 64% and
95%. Although ochratoxin molecule is stable, it is acknowl-
edged that around 40–90% of OTA is destroyed during roast-

ing of coffee beans (Aroyeun and Adegoke, 2007).

8.5. Breeding for resistance

This is one of the most promising long-term strategies in myco-

toxins contamination menace in Africa. Sources of resistance
to A. flavus and Fusarium spp., particularly F. verticillioides
have been identified and have been incorporated into public

and private breeding programs (Munkvold, 2003). Potential
biochemical and genetic resistance markers have been identi-
fied in crops, particularly maize in different parts of the world
which are being utilized as selectable markers in breeding for
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resistance to aflatoxin contamination. Prototypes of geneti-
cally engineered crops have been developed which (a) contain
genes for resistance to the phytotoxic effects of certain trichot-

hecenes, thereby helping reduce fungal virulence or (b) contain
genes encoding fungal growth inhibitors for reducing fungal
infection in the USA. Gene clusters housing the genes that

govern formation of trichothecenes, fumonisins and aflatoxins
have been elucidated and are being targeted in strategies to
interrupt the biosynthesis of these mycotoxins (Cleveland

et al., 2003) Scientists at United States Department of Agricul-
ture have identified two maize lines that are resistant to A. fla-
vus and F. moniliforme (Hamiton, 2000).

However, few if any, commercial cultivars have adequate

levels of resistance to mycotoxins producing fungi (Munkvold,
2003). Many organizations such as IITA are continuously
working on resistance breeding programs in Africa (Hell

et al., 2005). To devise effective strategies to control fungal
infection and minimize mycotoxin production in host plants,
a better knowledge of genetic variability and population struc-

ture at the intra-specific level and ability to detect cryptic pop-
ulations or lineages which might arise that possess significant
features in terms of toxin profile or host preferences is neces-

sary (Mule et al., 2005).

8.6. Legislation

Mycotoxin regulations have been established in about 100

countries, out of which 15 are African, to protect the consumer
from the harmful effects of these mycotoxins (Van Egmond,
2002; Barug et al., 2003; Fellinger, 2006). Human foods are al-
lowed 4–30 ppb aflatoxin, depending on the country involved

(FDA, 2004). In the USA, 20 lg/kg is the maximum aflatoxin
residue limit allowed in food for human consumption, except
for milk (Wu, 2006) while 4 lg/kg total aflatoxin in food for

human consumption are the maximum acceptable limits in
the EU, the strictest in standard worldwide (EC, 2006; Wu,
2006). OTA has been evaluated at the 37th, 44th and 56th

meetings of the Joint FAO/WHO Expert Committee on Food
Additives (JECFA), and a provisional tolerable weekly intake
(PTWI) of 100 ng/kg body weight has been established (Ben-

ford et al., 2001). The European Union (EU) has recently is-
sued a proposal to lower maximum tolerated limits for
several mycotoxins in food and feed which became effective
from 1st October 2006 (EC, 2006).

8.7. Surveillance and awareness creation

This could be a long-term intervention strategy as has been
advocated by WHO (2006) and James (2005). It is imperative
for African countries to strengthen nationwide surveillance,

increase food and feed inspections to ensure food safety, and
local education and assistance to ensure that food grains and
animal feeds are harvested correctly, dried completely, and

stored properly. Awareness of what mycotoxins are and the
dangers that they pose to human and animal health could be
done through government bodies, private organizations, non-
governmental organizations, national media networks such

as radios and television programs as well as features in news-
papers and magazines. Seminars and workshops could be used
as avenues and bridges of information exchange and dissemi-

nation between researchers and the populace respectively.
Such events also serve as forums to assess past and present
work and define and streamline areas of future studies.
WHO (2006), has put plans in place to focus on field projects,
strengthening surveillance and awareness raising and educat-

ing consumers on matters related to mycotoxins in Africa
among others. It is imperative that critical evaluation of the
intervention strategies is done to put into consideration the

sustainability, cultural acceptability, economic feasibility, eth-
ical implication, and overall effectiveness of potential
interventions.

Considering the challenges and the current needs, a regional
experts meeting in 2005 on aflatoxins problem with particular
reference to Africa made certain recommendations that could
be instrumental in addressing or reducing mycotoxins contam-

ination in the continent. The consultation noted that the
achievement of mycotoxins reduction and control is dependent
on the concerted efforts of all actors along the food production

chain. Multidisciplinary approaches are therefore critical. The
meeting recommended continued mycotoxins awareness as a
public health issue, strengthened laboratory and surveillance

capacities as well as establishing early warning systems. The
participants also identified several research needs including
cost-benefit analysis of interventions and research on the

occurrence of mycotoxins in foods. In addition, there remains
a need for efficient, cost-effective sampling and analytical
methods that can be used for the detection of mycotoxins in
developing countries (WHO, 2006).

9. Conclusion

Fungi cause human illness in different ways. Mycoses are the
best-known diseases of fungal etiology, but toxic secondary
metabolites produced by saprophytic species are also an

important health hazard. The term mycotoxin is an artificial
rubric used to describe pharmacologically active mold metab-
olites characterized by vertebrate toxicity. They fall into

several chemically unrelated classes, are produced in a strain-
specific way, and elicit some complicated and overlapping toxi-
genic activities in sensitive species that include carcinogenicity,

inhibition of protein synthesis, immunosuppression, dermal
irritation, and other metabolic perturbations. Mycotoxins usu-
ally enter the body via ingestion of contaminated foods, but
inhalation of toxigenic spores and direct dermal contact are

also important routes.
It is difficult to prove that a disease is a mycotoxicosis.

Molds may be present without producing any toxin. Thus,

the demonstration of mold contamination is not the same thing
as the demonstration of mycotoxin contamination. Moreover,
even when mycotoxins are detected, it is not easy to show that

they are the etiological agents in a given veterinary or human
health problem. Nevertheless, there is sufficient evidence from
animal models and human epidemiological data to conclude
that mycotoxins pose an important danger to human and ani-

mal health, albeit one that is hard to pin down. The incidence
of mycotoxicoses may be more common than suspected. It is
easy to attribute the symptoms of acute mycotoxin poisoning

to other causes; the opposite is true of etiology. It is not easy
to prove that cancer and other chronic conditions are caused
by mycotoxin exposure. In summary, in the absence of appro-

priate investigative criteria and reliable laboratory tests, the
mycotoxicoses will remain diagnostically daunting diseases.

Adaptation in higher trophic levels, such as mammalian

species, has been crucial to survival as well. In view of the wide
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range and varying degrees of mycotoxicoses in animals, there
have been signs of co-evolutionary aspects of mammalian sus-
ceptibilities. Monogastric animals from fowl to domestic com-

panion animals to humans have been susceptible to a number
of mycotoxins. Besides the loss in productivity and toxicity
tests with very high doses, studies demonstrated a relative

resistance of ruminants to the adverse effects of a number of
mycotoxins, opening the door for research into adaptive mech-
anisms in these species.

The key to determining how the ruminant species adapted
to mycotoxins has been through studies on the metabolic path-
ways in the rumen environment. Besides the demonstrated
effects of mycotoxins on humans or animals some important

aspects of toxicology and control have still resided in the realm
of the unknown and unexplored. For example, there has been
a general paucity of data on mycotoxins classified as carcino-

gens in humans by IARC, and currently there is a genuine con-
cern over the carcinogenic potential of OTA and F, for which
few regulations exist worldwide. Only with continued research

on understanding the effects and modes of mycotoxin action in
various species, have regulations and control strategies been
forthcoming.
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