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Abstract

Campylobacter species are the most common cause of bacterial gastroenteritis,

with C. jejuni responsible for the majority of these cases. Although it is clear

that livestock, and particularly poultry, are the most common source, it is

likely that the natural environment (soil and water) plays a key role in trans-

mission, either directly to humans or indirectly via farm animals. It has been

shown using multilocus sequence typing that some clonal complexes (such as

ST-45) are more frequently isolated from environmental sources such as water,

suggesting that strains vary in their ability to survive in the environment.

Although C. jejuni are fastidious microaerophiles generally unable to grow in

atmospheric levels of oxygen, C. jejuni can adapt to survival in the environ-

ment, exhibiting aerotolerance and starvation survival. Biofilm formation, the

viable but nonculturable state, and interactions with other microorganisms can

all contribute to survival outside the host. By exploiting high-throughput tech-

nologies such as genome sequencing and RNA Seq, we are well placed to deci-

pher the mechanisms underlying the variations in survival between strains in

environments such as soil and water and to better understand the role of envi-

ronmental persistence in the transmission of C. jejuni directly or indirectly to

humans.

Introduction

Campylobacter is the most common cause of acute bacte-

rial gastroenteritis worldwide. In the UK alone, it causes

an estimated 700 000 infections each year (Tam et al.,

2012) and presents an economic burden of over £1 bil-

lion per annum (Humphrey et al., 2007). Campylobacter-

iosis, typically lasting for about a week, is characterised

by often bloody diarrhoea, cramping, abdominal pain and

fever and may be accompanied by nausea and vomiting.

Occasionally, in immunocompromised patients, the path-

ogen can spread systemically, leading to more severe

sequelae, and it is also a major predisposing cause of the

peripheral nervous system disorder, Guillain-Barr�e Syn-

drome (Nachamkin et al., 1998).

Campylobacter are spiral members of the

Epsilonproteobacteria with small, AT-rich genomes (typi-

cally 1.5 – 2 Mb). They are often considered fragile

because of the difficulty in growing and maintaining the

bacteria in laboratory culture. Campylobacter grow

optimally at 37–42 °C but cannot tolerate drying and are

unable to grow in atmospheric levels of oxygen, requiring

instead conditions with reduced oxygen levels (5–10%
v/v) but raised carbon dioxide levels (5–10% v/v).

Although most human infections (c. 90%) are associ-

ated with Campylobacter jejuni, around 10% are caused

by C. coli, with other species also occasionally causing

disease. However, for the purposes of this review, we

focus on the most common pathogenic species, C. jejuni.

Here, we review the potential role of environments

such as soil or water in the transmission of C. jejuni, out-

lining current knowledge about the strategies adopted by

C. jejuni to persist in such environments, and discuss the

evidence that such environments contribute directly or

indirectly to the burden of human disease. We use the

term ‘environment’ throughout to refer to natural and

farmland environments such as soil or water. We further

highlight the key issue of interstrain variability, emphasis-

ing the need to use multiple strains before drawing spe-

cieswide conclusions about C. jejuni.
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Genotyping of Campylobacter

There have been a number of genetic approaches used to

subdivide species of Campylobacter, especially C. jejuni

and C. coli, including pulsed-field gel electrophoresis

(PFGE) (Wassenaar & Newell, 2000), flagellin genotyping

(Clark et al., 2005), random amplified polymorphic DNA

(RAPD) typing (Nielsen et al., 2000) and ribotyping

(Ahmed et al., 2012). However, the development of a

multilocus sequence typing (MLST) scheme for Campylo-

bacter was a significant step forward in the study of diver-

sity amongst Campylobacter populations and the

relationships between species within the genus (Dingle

et al., 2001). MLST enables unequivocal data to be com-

pared between laboratories worldwide through the use of

a readily accessible database (pubmlst.org/campylobacter)

containing data for > 28 000 isolates (last accessed May

2014) (Jolley & Maiden, 2010).

The initial MLST scheme was based on the analysis of

sequences from seven housekeeping genes (aspA, glnA,

gltA, glyA, pgm, tkt and uncA) and allows the assignment

of isolates to clonal complexes (clusters of closely related

sequence types). Using this approach, it was possible to

identify the most abundant common clonal complexes

(such as ST-21), though it is also evident that the C. jeju-

ni population overall is highly diverse (Dingle et al.,

2001, 2005). Others have extended the MLST scheme for

improved applicability to other Campylobacter species

(Miller et al., 2005; Dingle et al., 2008). However, the

advent of affordable whole genome sequencing (WGS)

technologies means that a scheme based on much wider

genomic comparisons is likely to supersede MLST. Since

the first genome sequence (of strain NCTC11168) was

published in 2000 (Parkhill et al., 2000), numerous other

Campylobacter genomes have been sequenced, revealing

extensive within-species diversity (Fouts et al., 2005;

Hofreuter et al., 2006; Hepworth et al., 2011). As MLST

profiles can be readily extracted from WGS data, the

widespread adoption of WGS would not preclude com-

parison with previous datasets.

Use of genotyping to attribute routes of
infection

Most cases of campylobacteriosis occur as isolated, spo-

radic cases, rather than as part of larger outbreaks, as typ-

ically seen with other bacterial pathogens associated with

diarrhoea. It is believed that zoonotic transmission of

Campylobacter spp. to humans occurs primarily through

the consumption and handling of livestock, with poultry

being the most common source. However, it is clear that

other infection routes, including the natural environment,

may also contribute.

Campylobacter jejuni has been isolated from diverse

animal, human and environmental sources and the iso-

lates obtained subjected to genotyping. Although tradi-

tional typing schemes have been of limited use with

respect to identification of infection sources, using

molecular typing coupled with epidemiological analysis,

we are now in a better position to identify and track spe-

cific strain types of C. jejuni and C. coli. Several studies

have sought to determine the prevalence of specific

clones amongst C. jejuni isolates from diverse sources by

applying MLST (Colles et al., 2003; Manning et al., 2003;

Sails et al., 2003; Dingle et al., 2005; French et al., 2005;

Karenlampi et al., 2007; McCarthy et al., 2007; Taboada

et al., 2008; Wilson et al., 2008; Sheppard et al., 2009).

These studies show that whilst some MLST clonal

complexes, such as the ST-21 complex, are widespread,

others, such as the ST-61 complex, have a more

restricted distribution. Although generally considered to

be poor survivors outside of their animal hosts, some

C. jejuni appear to be more able to survive and persist in

environmental niches (French et al., 2005; Sopwith et al.,

2008). For example, a study of C. jejuni in a specific area

of cattle farmland in the UK found that environmental

water isolates clustered within the ST-45 clonal complex

much more frequently than other common clonal com-

plexes (Biggs et al., 2011). The prevalence of specific

strain types amongst isolates from multiple sources,

including animals and the natural environment, can be

compared with similar data from isolates associated with

infections in humans. This enables us to model the rela-

tive contributions of particular sources to transmission

(Wilson et al., 2008; Sheppard et al., 2009; Strachan

et al., 2009).

The natural and farmland environment
as a reservoir or source of infection

There have been a number of reports implicating envi-

ronmental water as the source of an outbreak of campy-

lobacteriosis (Lind et al., 1996; Clark et al., 2003; Auld

et al., 2004; Kuusi et al., 2004; O’Reilly et al., 2007).

Studies in many countries have shown that drinking

water can be a direct source of human infection (Abe

et al., 2008; Uhlmann et al., 2009; Karagiannis et al.,

2010; Gubbels et al., 2012). Perhaps, more importantly,

the environment is also an important source for the pri-

mary and secondary colonisation of food animals, partic-

ularly chickens (Pearson et al., 1993; Ogden et al., 2007;

Perez-Boto et al., 2010). It is likely that routes of trans-

mission flowing through the environment, farm animals

and wild animals through to humans interact in complex

ways (Fig. 1). These interactions would be driven by fac-

tors such as the defecation of wild birds or farm animals,
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water flow due to climatic conditions, spread by flies and

other complex ecological parameters. An as-yet-unex-

plained phenomenon of seasonality has been reported,

with Campylobacter infection peaks in late spring

(McCarthy et al., 2012; Nichols et al., 2012; Spencer

et al., 2012; Taylor et al., 2013). It has been postulated

that the natural environment plays a role in this repro-

ducible seasonality, though there is much work to be

perfomed before this link is fully established and under-

stood.

Campylobacter subtypes associated
with nonlivestock sources

In addition to the reported link between the ST-45 clonal

complex and water sources (French et al., 2005; Sopwith

et al., 2008), a number of novel MLST types absent from

human isolates have been identified from both environ-

mental water and wildlife, such as wild birds and rabbits

(French et al., 2005; Levesque et al., 2008; Hepworth

et al., 2011). Members of the ST-45 complex have a wide-

spread distribution but are more frequently encountered

in environmental samples than some other ‘generalists’

(French et al., 2005). However, these unusual MLST types

are rarely identified amongst isolates from human or

farm animal sources. One example of this apparent niche

specialisation is ST-3704, which has a specific association

with the bank vole (Williams et al., 2010; Hepworth

et al., 2011). Comparative genome hybridisation and gen-

ome sequence analysis has shown that such strains often

lack many of the genes previously associated with the

ability to colonise chickens and form a novel clade

distinct from the C. jejuni strains that are commonly

associated with human infections (Hepworth et al., 2011).

Although C. jejuni has a relatively small genome, it car-

ries significant levels of variation, potentially indicative of

evolution leading to niche specialisation. Comparative

genome analyses using microarrays indicate high levels of

genome diversity but low levels of genome plasticity in

C. jejuni (Dorrell et al., 2001; Leonard et al., 2003; Pear-

son et al., 2003; Champion et al., 2005; On et al., 2006);

(Dorrell et al., 2005). These studies have identified dis-

crete regions of diversity within the C. jejuni pangenome,

called plasticity regions PR1-PR7 (Pearson et al., 2003) or

hypervariable regions 1–16 (Taboada et al., 2004; Hofre-

uter et al., 2006; Parker et al., 2006). This approach was

used to subdivide C. jejuni into ‘livestock’ and ‘nonlive-

stock’ clades (Champion et al., 2005; Stabler et al., 2013)

and has led to the development of multiplex PCR assays

as predictive tests for whether human infection cases were

attributable to water and wildlife or domesticated sources

(Stabler et al., 2013). The development of new sequencing

technologies has made it feasible to carry out much larger

and more detailed Campylobacter comparative genomics

to better identify genes or genomic regions associated

with isolates from particular sources (Sheppard et al.,

2013).

Oxygen tolerance and survival in low
nutrient environments

To survive in natural environments, C. jejuni must cope

with a number of stresses (Fig. 2). Despite the absence of

many classic stress response mechanisms, C. jejuni strains

Fig. 1. Routes of transmission for

Campylobacter jejuni.
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can survive in a wide range of environments (Kassem &

Rajashekara, 2011). In particular, the organism needs to

defend itself against atmospheric levels of oxygen and

reactive oxygen species (ROS). If the cell is unable to

neutralise these toxic compounds, they can lead to pro-

tein, nucleic acid and membrane damage. Exposure of

Campylobacter to oxygen induces catalase, not superoxide

dismutase (SOD), the major defence against oxidative

stress in most bacteria (Garenaux et al., 2008), though

basal activity of SOD may be important (Pesci et al.,

1994). The best described catalase in C. jejuni is encoded

for by katA (Cj1385 in C. jejuni NCTC11168) (Day et al.,

2000; Atack & Kelly, 2009). However, recently another

protein (Cj1386) implicated in defence against ROS has

been described, encoded by a gene located immediately

downstream of katA. Cj1386 is an ankyrin-containing

protein involved in the same detxoxification pathway as

catalase (Flint et al., 2012). Unlike most bacteria, which

contain two distinct types of SOD, SodA and SodB, only

SodB is present in C. jejuni. sodB mutants show increased

sensitivity to oxidative stress (Purdy et al., 1999). Alkyl

hydroperoxide reductase (Ahp), consisting of an AhpC

catalytic and an AhpF flavoprotein subunit, can also play

a role in aerotolerance (Baillon et al., 1999; Poole et al.,

2000; Atack & Kelly, 2009). Campylobacter jejuni appear

to lack the flavoprotein domain and only contain the

ahpC gene. The thioredoxin reductase TrxB is a possible

candidate for reducing oxidised AhpC (Parkhill et al.,

2000; Palyada et al., 2004). The methionine sulphoxide

reductases MsrA and MsrB counteract the formation of

Met-SO in C. jejuni, preventing oxidative damage caused

by conformational changes and inactivation of proteins

(Moskovitz, 2005; Atack & Kelly, 2008). It has been dem-

onstrated that the heat-shock-related proteins HtrA and

HspR can promote short-term survival in oxygen (Ander-

sen et al., 2005; Brondsted et al., 2005), which may be

important in terms of transmission. Campylobacter jejuni

also differs in its choice of regulatory genes from other

enteropathogenic bacteria; KatA and AhpC are regulated

by PerR and not OxyR, which is lacking (Cabiscol et al.,

2000). The OmpR-type response regulator CosR also

plays a role in regulation of the oxidative stress response

(Hwang et al., 2011). Fur (ferric uptake regulator) con-

trols expression of a range of oxidative stress genes, pre-

venting the build up of toxic levels of iron within the cell

(Stintzi et al., 2008). Other regulatory systems important

in C. jejuni oxidative stress response are the global tran-

scriptional regulator CsrA, and the two-component regu-

latory systems CprRS and RacRS (Fields & Thompson,

2008; Svensson et al., 2009; Gundogdu et al., 2014). Dif-

ferent strains of C. jejuni can vary with respect to the car-

riage of genes implicated in aerotolerance. For example,

Cj1556, encoding a MarR family transcriptional regulator

with a role in oxidative stress response (Gundogdu et al.,

2011), is found at much higher prevalence amongst live-

stock-associated strains than nonlivestock-associated

strains (Champion et al., 2005), suggesting subtle varia-

tions in aerotolerance that may contribute to the higher

prevalence of some strain genotypes in environmental

samples.

In nutrient poor environments, such as water, C. jejuni

must cope with starvation. C. jejuni, in contrast to other

bacteria, is generally unable to utilise sugars and relies on

amino acids (mainly aspartate, glutamate, serine and pro-

line) and organic acids for energy and growth (Velayud-

han et al., 2004; Guccione et al., 2008; Hofreuter et al.,

2008). It is likely that in vivo peptides provide amino acid

sources for C. jejuni. Cj0917, a homologue of carbon
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Fig. 2. Summary of Campylobacter jejuni

responses to stresses. The chromosome of

C. jejuni NCTC11168 is represented by a black

circle on which the location of genes, involved

in stress responses, are shown as coloured

lines. Genes are coloured according to their

role; gene names shaded in grey are involved

in multiple stress responses.
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starvation protein A (CstA) in Escherichia coli, is involved

in peptide utlisation and it is the most upregulated C. je-

juni gene during starvation (Rasmussen et al., 2013).

Campylobacter jejuni lacks the RpoS-mediated stress

resistance system associated with the stringent response in

many Gram-negative bacteria (Parkhill et al., 2000). Gen-

erally, Gram-negative bacteria rely on relA and spoT to

control the stringent response, but there are exceptions,

including C. jejuni, which relies on spoT only (Wells &

Long, 2002; Gaynor et al., 2005). It has also been

shown that Ppk1-dependent increases in poly-P inside the

C. jejuni cell are important in low-nutrient-stress survival,

osmotic stress survival and biofilm formation (Candon

et al., 2007).

Biofilm formation

Biofilm formation is another common strategy for bacte-

rial survival in harsh environmental conditions. Campylo-

bacter jejuni can form biofilms in water systems and on a

variety of abiotic surfaces commonly used in such systems

as well as in natural aquatic environments (Lehtola et al.,

2006; Maal-Bared et al., 2012). It has been demonstrated

that low nutrient conditions (Reeser et al., 2007) and aer-

obic environments (Reuter et al., 2010) can promote

C. jejuni biofilm formation and that this species can sur-

vive within polymicrobial biofilms (Ica et al., 2012).

Molecular understanding of the mechanisms underlying

Campylobacter biofilm formation is still in its infancy.

Mutational studies have revealed that surface proteins,

flagella and quorum sensing appear to be required for

maximal biofilm formation (Asakura et al., 2007; Reeser

et al., 2007). Transcriptomic and proteomic studies indi-

cate that there is a shift in expression levels of proteins

synthesised by biofilm-grown cells, towards iron uptake,

oxidative stress defence and membrane transport

(Kalmokoff et al., 2006; Sampathkumar et al., 2006).

However, it has been noted that different strains of

C. jejuni can vary in their ability to form biofilms

(Buswell et al., 1998; Joshua et al., 2006). Again, this could

be due to subtle differences in gene content between dif-

ferent strains of C. jejuni, with potential implications for

survival in the natural environment and transmission. For

example, the quorum sensing system of C. jejuni has been

implicated in biofilm formation (Plummer, 2012), yet

some strains lack luxS, including some strains more associ-

ated with water/wildlife sources (Hepworth et al., 2011).

The viable but nonculturable (VBNC)
state

It has been reported that C. jejuni can respond to

unfavourable conditions, including low nutrient

environments, by entering a VBNC state (Rollins & Col-

well, 1986; Pearson et al., 1993; Murphy et al., 2006) and

that oxygen can accelerate this transition to VBNC

(Klancnik et al., 2006). In the VBNC state, bacteria lose

the ability to form colonies on normal growth media and

reduce their metabolic activity but retain viability and the

potential to recover, and even cause infections (Barer &

Harwood, 1999). Some evidence suggests that VBNC state

formation may be impacted by proteins involved in inor-

ganic polyphosphate (poly-P) metabolism, such as Ppk1,

Ppk2 and SpoT (Gaynor et al., 2005; Gangaiah et al.,

2009, 2010; Kassem & Rajashekara, 2011).

During the VBNC state, gene expression can be

detected for extended periods of time; for instance, the

gene cadF, encoding a fibronectin-binding protein

involved in adhesion and invasion, was expressed at high

levels for 3 weeks in C. jejuni cells that had entered the

VBNC state (Patrone et al., 2013). Furthermore, it has

been demonstrated that C. jejuni in the VBNC state can

adhere to chicken carcasses (Jang et al., 2007) as well as

intestinal cells in vivo (Patrone et al., 2013).

In this dormant state, C. jejuni cells often undergo

morphological changes, such as a switch to coccoid form

and a reduction in size. Despite the presence of flagella,

coccoid forms are nonmotile; it has been suggested that

the cells simply do not have the energy to maintain

motility (Moran & Upton, 1986; Moore, 2001). However,

similar changes can be observed when the organism is

cultured in the laboratory, suggesting that this may

merely represent degeneration of the organism (Moran &

Upton, 1986, 1987). It has been suggested that different

types of coccoid cell forms exhibiting different character-

istics exist (Hazeleger et al., 1995). Hence, coccoid cells

could be either viable or nonviable.

It has been shown that Campylobacter can survive for

as long as 7 months in phosphate-buffered saline at 4 °C,
with cellular integrity and respiratory activity being main-

tained for much longer than culturability (Lazaro et al.,

1999). Interestingly, the ability to enter the VBNC state

varies between strains of C. jejuni (Medema et al., 1992;

Lazaro et al., 1999; Tholozan et al., 1999; Cools et al.,

2003), potentially explaining why certain subtypes of

C. jejuni are more often found associated with environ-

mental sources. The ability to recover from such a state

and retain the ability to cause infections can also vary.

Some studies suggest that C. jejuni cannot revert from a

VBNC state to a form capable of colonisation of chicks

(Beumer et al., 1992; Medema et al., 1992; Hazeleger

et al., 1995; Hald et al., 2001; Ziprin et al., 2003; Ziprin

& Harvey, 2004), whereas others report successful rever-

sion after passage through animals (Saha et al., 1991; Tal-

ibart et al., 2000; Baffone et al., 2006). Therefore, this

area of research remains controversial and inconclusive.
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Interactions with other microorganisms
in the environment

The relatively small genome of C. jejuni, encoding limited

biosynthesis pathways (Kelly, 2001) but multiple trans-

port systems (Dorrell & Wren, 2007), suggests the possi-

bility of reliance on uptake of resources produced by

surrounding microbiota. Diverse microorganisms within

polymicrobial biofilm communities present a wealth of

nutrients, secondary metabolites and iron-bound sidero-

phores that Campylobacter could exploit (Pickett et al.,

1992; Xavier & Foster, 2007). In addition, secretion of

viscous exopolymers by other species can contribute to

protection from stresses such as desiccation and killing by

disinfectants. It has been suggested that C. jejuni are sec-

ondary colonisers of pre-existing biofilms sampled from

poultry farm environments (Hanning et al., 2008).

Pseudomonas species are ubiquitous in the natural envi-

ronment and commonly isolated from poultry farms (Ar-

naut-Rollier et al., 1999). These robust bacteria can grow

in monospecies biofilms on a wide range of carbon

sources and produce viscous exopolymers that not only

capture secondary colonisers (Sasahara & Zottola, 1993)

but also protect other species in the biofilm from harsh

conditions, antimicrobials and predatory bacteriophages

(Rainey et al., 2007; Hanning et al., 2008). Pseudomonas

have been identified in mixed species communities sam-

pled from chickens and poultry farm environments and

have been suggested as primary colonisers that recruit

food-borne pathogens into stable mixed biofilm commu-

nities (Sasahara & Zottola, 1993; Trachoo et al., 2002;

Sanders et al., 2007; Ica et al., 2012).

Campylobacter jejuni in biofilms exhibited enhanced

attachment and survival when co-cultured with Pseudo-

monas isolated from a meat-processing plant (Trachoo

et al., 2002). In addition, mixed species communities that

include Pseudomonas promote C. jejuni biofilm growth

(Sanders et al., 2007; Teh et al., 2010). Live/dead staining

shows that C. jejuni is able to maintain a culturable phys-

iological state in biofilms formed with P. aeruginosa that

are significantly more robust than those formed in mono-

culture (Ica et al., 2012). In addition, co-culture with dif-

ferent Pseudomonas spp. isolated from poultry meat

prolonged the survival of over 100 C. jejuni field isolates

at atmospheric O2 levels for > 48 h. Scanning electron

microscopy of these co-cultures demonstrated a close

proximity between the different species surrounded by

fibre-like structures (Hilbert et al., 2010). These observa-

tions indicate interspecies interaction on several levels,

affecting metabolic, structural and morphological pheno-

types. In addition, strain-specific interactions have been

observed between a range of Pseudomonas and C. jejuni

isolates (Hilbert et al., 2010). These observations suggest

that Pseudomonas biofilms could provide an environmen-

tal refuge allowing the survival of C. jejuni outside the

host.

It has been proposed that survival within water-borne

protozoa, such as Acanthamoeba polyphaga, may

also enable C. jejuni to persist in the environment (Axels-

son-Olsson et al., 2005; Snelling et al., 2006). However,

compelling evidence that protozoa represent a potential

reservoir for C. jejuni in natural environments is lacking

(Bare et al., 2011). In contrast, it has been suggested

that predation, such as grazing by the freshwater crusta-

cean Daphnia carinata, might control the abundance of

C. jejuni in natural waters (Schallenberg et al., 2005).

Experiments to analyse survival of
Campylobacter in water

There have been a number of studies aimed at determin-

ing the survival of Campylobacter in laboratory model

systems representing environmental niches. For example,

it has been shown that different Campylobacter isolates

vary in their ability to survive in water microcosms (Bu-

swell et al., 1998). Survival in water was temperature-

dependent, with Campylobacter generally surviving much

better at low temperatures (10–16 °C) compared with

room temperature. Similarly, different C. jejuni strains

from various origins exhibited origin-dependent ability to

survive in sterilised drinking water (Cools et al., 2003).

Campylobacter jejuni strains can also survive for long

periods in well water (Gonzalez & Hanninen, 2012).

Although these studies did not include any isolate geno-

typing, they are consistent with the notion that C. jejuni

can be subdivided on the basis of survival in water, and

this may reflect the observation that some subtypes are

more commonly recovered from natural environments. It

is certainly clear that some strains of C. jejuni survive in

aquatic environments sufficiently well to pose a risk to

humans directly through the consumption of untreated

water, as well as to promote their chances of transmission

via alternative routes.

Conclusion

Campylobacter employs a number of strategies enabling it

to survive in the environment and genomics, and molecu-

lar studies are helping us to better understand the mecha-

nisms involved. There have been considerable efforts to

employ genotyping, and more recently genome sequenc-

ing, to characterise the genetic variation within the spe-

cies C. jejuni. In parallel, epidemiological surveys and

phenotypic analyses have revealed differences between
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C. jejuni strain types with respect to prevalence in envi-

ronmental samples or the ability to survive environmental

conditions. The challenge now is to make the link

between the genotypic and phenotypic data to understand

better the mechanisms influencing C. jejuni persistence in

natural environments such as soil and water, and the role

that this might play in transmission of this important

pathogen. The reported variations between different strain

types of C. jejuni also emphasise the limitations of draw-

ing specieswide conclusions based on single strain studies.

Only by combining these different strands will we be able

to fully understand the role played by environmental sur-

vival in the transmission of this important pathogen.
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