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The purpose of this study was to evaluate the ability of a Saccharomyces cerevisiae strain and a pool of
three lactic acid bacteria (LAB) strains (Lactobacillus rhamnosus, Lactobacillus delbrueckii spp. bulgaricus
and Bifidobacterium lactis), alone or in combination, to bind aflatoxin M1 (AFM1) in UHT (ultra-high-
temperature) skim milk spiked with 0.5 ng AFM1 mL�1. All the LAB pool (1010 cells mL�1) and S. cerevisiae
(109 cells mL�1) cells were heat-killed (100 �C, 1 h) and then used for checking the effect of contact time
(30 min or 60 min) on toxin binding in skim milk at 37 �C. The mean percentages of AFM1 bound by the
LAB pool in milk were 11.5 � 2.3% and 11.7 � 4.4% for 30 min and 60 min, respectively. Compared to the
LAB pool, S. cerevisiae cells had higher (P < 0.05) capability to bind AFM1 in milk (90.3 � 0.3% and
92.7 � 0.7% for 30 min and 60 min, respectively), although there were not significant differences
between the contact times evaluated. When using S. cerevisiae þ LAB pool, a significant increase
(P < 0.05) was observed in the percentage of AFM1 bound (100.0%) during 60 min. Results of this trial
indicate that heat-killed S. cerevisiae cells, alone or in combination with the LAB pool used, has
a potential application to reduce the concentration of AFM1 in milk.

� 2012 Elsevier Ltd.Open access under the Elsevier OA license. 
1. Introduction

Aflatoxins are secondary metabolites of low molecular weight
produced by filamentous fungi, particularly Aspergillus flavus,
Aspergillus parasiticus and Aspergillus nomius, distinguished by their
wide distribution in food and pronounced toxic properties (Moss,
1998). There are currently 18 similar compounds described by the
term aflatoxin, but the most prevalent and toxic is aflatoxin B1
(AFB1) (Murphy, Hendrich, Landgren, & Bryant, 2006).WhenAFB1 in
contaminated feed is ingested by livestock, including dairy cattle, it
is biotransformed in the liver to aflatoxinM1 (AFM1), a hydroxylated
metabolite which is excreted in milk, tissues and biological fluids of
animals (Prandini et al., 2009). Although AFM1 is about 10 times less
toxigenic than AFB1, its cytotoxic, genotoxic and carcinogenic effects
have been demonstrated in several species (Murphy et al., 2006).
The International Agency for Research on Cancer (2002) has clas-
sified AFM1 as belonging to Group 1, a human carcinogen.

Milk is themain nutrient for the development of children, whose
sensitivity to aflatoxins is remarkable and potentially greater than
adults (Galvano, Galofaro, & Galvano,1996). Taking into account the
health risks associated to the human exposure to dietary aflatoxin
x: þ55 19 3565 4284.
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levels, several countries have adopted tolerance limits for AFM1 in
milk (Prandini et al., 2009), but the regulatory limits differ widely
(Van Egmond & Jonker, 2004). While in Brazil and United States the
maximum allowable level of AFM1 in fluid milk is 0.5 mg L�1

(Agência Nacional de Vigilância Sanitária, 2011, pp. 72e73), the
European Union has established a ten-fold lower limit (0.05 mg L�1)
for AFM1 in raw milk, heat-treated milk and milk for the manu-
facture of dairy products (European Commission, 2006).

Ideally, the best way to prevent aflatoxin contamination in the
food chain is the adoption of improved agricultural practices and
control of storage conditions of products. However, practical diffi-
culties to effectively prevent contamination, alongwith the stability
of aflatoxins under normal food processing conditions, have led to
investigation on decontamination methods for food products that
could be safe, effective, environmentally friendly and presenting
a cost-benefit (Wu et al., 2009). The use ofmicroorganisms offers an
attractive alternative for the control or elimination of aflatoxins in
foodstuffs (Alberts, Gelderblomb, Botha, & Van Zyl, 2009). Saccha-
romyces cerevisiae is the most effective for binding AFB1 (Shetty &
Jespersen, 2006), although several lactic acid bacteria (LAB)
strains have shown different capabilities for binding AFM1 in
phosphate buffer solutions and in milk (Bovo, Corassin, Rosim, &
Oliveira, 2012; El-Nezami, Kankaanpää, Salminen, & Ahokas, 1998;
Haskard, El-Nezami, Kankaanpää, Salminen, & Ahokas, 2001; Kabak
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& Var, 2008; Pierides, El-Nezami, Peltonem, Salminen, & Ahokas,
2000). There is no previous report on the use of S. cerevisiae for
decontamination of milk containing AFM1. Therefore, the aim of the
present study was to evaluate the ability of a S. cerevisiae strain,
alone or in combinationwith a pool of three commercially available
LAB strains, to bind AFM1 in UHT (ultra-high-temperature) skim
milk spiked with 0.5 mg AFM1 L�1, during contact times of 30 min
and 60 min.

2. Material and methods

2.1. S. cerevisiae and LAB strains

Commercially available dry lager yeast strain (S. cerevisiae,
SAFLAGER W37/70, Fermentis Ltd., France) and three LAB strains
(Lactobacillus delbrueckii spp. bulgaricus LB340, Lactobacillus rham-
nosusHOWARU� and Bifidobacterium lactis FLORA-FIT BI07 donated
by Danisco Ltd., Brazil) were used in the experiment. LAB strains
have been previously evaluated and showed individual percentages
of AFM1 removal in UHT milk at 37 �C ranging from 24.5 to 33.5%
(Bovo et al., 2012).

The lyophilized yeasts were reactivated in sterile water and
cultivated at 23 �C, according to recommendations of Fermentis Ltd.
The number of yeast cells in the suspensionwas determined by light
microscopy using a modified Neubauer chamber. The suspension
was diluted with sterile water until reaching a cell concentration of
1.0 � 109 cells mL�1.

Individual LAB lyophilized strains were reactivated in MRS (de
Man, Rogosa and Sharpe) broth (Acumedia�, Lansing, MI, USA) and
incubated at 37 �C until reaching at least 1.0 � 109 colony forming
units (CFU) mL�1, as determined by serial dilution and pour plate
counting (Wehr & Frank, 2004) after incubation at 37 �C for 24 h
under anaerobic condition. Convenient volumes of each cultured
broth were mixed to achieve a pool of the three LAB strains con-
taining a total cell concentration of 1.0 � 1010 cells mL�1. All S.
cerevisiae and LAB cells were heat-killed, being inactivated by
boiling at 100 �C for 1 h before the binding assays, to avoid any
possible milk fermentation during the contact time.

2.2. Aflatoxin M1 binding assays

The ability of S. cerevisiae and LAB strains to bind AFM1 was
evaluated using commercial UHT skim milk samples previously
evaluated for AFM1 to confirm levels below the detection limit of
the method (0.01 ng mL�1), spiked with 0.5 ng mL�1. AFM1 stan-
dard solution (Supelco�, Bellefonte, PA, USA) was diluted in
acetonitrile in order to obtain a 2.5 mg mL�1 working solution,
which was calibrated according to Scott (1990). Two-hundred
microliters of the working solution were transferred to an Erlen-
meyer, evaporated to dryness under N2 and then 1 L of UHT skim
milk was added to the flask. Spiked milk samples were stirred, kept
at 37 �C for 15 min, and immediately used in the binding assays
with S. cerevisiae and LAB strains.

The AFM1 binding assays were performed in triplicate as
described by Pierides et al. (2000) with some modifications.
Convenient volumes of culture broths containing 109 cells of
S. cerevisiae, 1010 cells of LAB pool, or 109 cells of S. cerevisiae þ 1010

cells of LAB pool were transferred to Eppendorf tubes and centri-
fuged (Microcentrifuge CT-14000, Cientec, Piracicaba, SP, Brazil)
at 1800 g for 15 min. The supernatant was discharged and the
bacterial or yeast pellets were washed twice with sterile ultrapure
water (Milli-Q, Millipore, Bedford, MA, USA). After, the pellets were
resuspended in 1.0 mL of UHT skimmilk containing AFM1, vortexed
for 3min and incubated at 37 �C during 30min or 60min. Following
the contact times, the tubes were centrifuged again at 1800 g for
15 min, being the supernatant (milk layer) removed for analysis of
AFM1. The same procedures as described above were performed in
triplicate positive controls (only spiked skim milk containing 0.5
AFM1 mg L�1), negative controls (only S. cerevisiae, LAB pool or S.
cerevisiae þ LAB pool) and non-spiked skim milk controls.

2.3. Analysis of aflatoxin M1 in milk

Extraction and purification of the supernatant from the binding
assays for AFM1 determination were performed as described by
Fernandes, Correa, Rosim, Kobashigawa, and Oliveira (2012), with
some adaptations proposed by the manufacturer of the immu-
noaffinity columns (NeoColumn�, Neogen, Neogen Europe Ltd.,
Scotland, UK). Identification and quantification of the AFM1 resi-
dues was achieved by injecting 20 ml of sample extracts in a high
performance liquid chromatography (HPLC), using a Shimadzu
(Kyoto, Japan) 10VP liquid chromatograph with a 10 AXL fluores-
cence detector (excitation at 366 nmand emission above 428 nm). A
Synergy Fusion column (4.6 � 150 mm, 4 mm, Phenomenex, Tor-
rance, CA, USA) and a Shim-Pack pre-column (4� 10 mm, 5 mmCLC
G-ODS) were used. The systemwas stabilized for one hour at a flow
rate of 1 mL/min at room temperature with an isocratic mobile
phase containing water, acetonitrile and methanol (60:20:20).
Under these conditions, the retention time for AFM1 was approxi-
mately 5.7 min. Calibration curve of AFM1 was prepared using
standard solutions of AFM1 (Sigma, St Louis, MO, USA) previously
evaluated according to Scott (1990), at concentrations of 0.5,1.0, 2.5,
5.0 and 10.0 ng mL�1. The determination limit of the analytical
method was 0.01 ng mL�1, considered the minimum amount of
AFM1 that could generate a chromatographic peak three times over
the baseline standard deviation.

The equationbelowwasused todetermine thepercentage of AFM1
boundby themicroorganisms tested in each assay. LettersB,C,D and E
are themeanareasof chromatographicpeaksofpositive controls,non-
spiked skim milk controls, sample analyzed and negative controls,
respectively.

A ¼
�½ðB� CÞ � ðD� EÞ�

B� C

�
*100

2.4. Statistical analysis

Statistical analysis of AFM1 binding assays was carried out in the
General Linear Model of SAS� (SAS, 2004) by using the Tukey Test
for significant differences between the microorganisms tested (S.
cerevisiae, LAB and S. cerevisiaeþ LAB) and contact time at P< 0.05.

3. Results and discussion

Table 1 shows the AFM1 levels in UHT skim milk samples in the
binding assays with heat-killed S. cerevisiae cells, alone or in
combination with LAB pool cells. AFM1 levels in spiked skim milk
samples (0.5 ng AFM1 mL�1) treated with LAB pool cells (1010 cells
mL�1) for 30 and 60 min ranged from 0.442 � 0.022 to
0.443 � 0.011 ng mL�1. For milks treated with S. cerevisiae cells (109

cells mL�1) during the same contact times, or S. cerevisiae þ LAB
cells during 30min, AFM1mean concentrations were 0.037� 0.004
to 0.048 � 0.002 ng mL�1 and 0.042 � 0.003 ng mL�1, respectively.
Milk samples treated with S. cerevisiae þ LAB pool cells for 60 min
had no detectable levels of AFM1.

The percentages of AFM1 bound in UHT skim milk by the
microorganism studied after different contact times are presented
in Table 2. LAB pool showed mean percentages of AFM1 bound of
11.5 � 2.3% and 11.7 � 4.4% for 30 min and 60 min, respectively.



Table 1
Aflatoxin M1 levels in UHT skim milk samples in the binding assays with heat-killed
Saccharomyces cerevisiae and lactic acid bacteria pool cells.

AFM1 added to
milk (ng mL�1)

LAB poola

(cells mL�1)
S. cerevisiae
(cells mL�1)

Contact
time (min)

AFM1 in milkb

(ng mL�1)

0 0 0 (Control) <0.010c

0 1010 0 30 <0.010
0 1010 0 60 <0.010
0 0 109 30 <0.010
0 0 109 60 <0.010
0 1010 109 30 <0.010
0 1010 109 60 <0.010
0.5 1010 0 30 0.443 � 0.011
0.5 1010 0 60 0.442 � 0.022
0.5 0 109 30 0.048 � 0.002
0.5 0 109 60 0.037 � 0.004
0.5 1010 109 30 0.042 � 0.003
0.5 1010 109 60 <0.010

a Pool of lactic acid bacteria (LAB) strains: Lactobacillus delbrueckii spp. Bulgaricus,
Lactobacillus rhamnosus and Bifidobacterium lactis.

b Values expressed as mean � standard deviation of samples analyzed in
triplicate.

c Determination limit of the analytical method: 0.010 ng mL�1.
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Compared to the LAB pool, S. cerevisiae cells had higher (P < 0.05)
capability to bind AFM1 in milk (90.3 � 0.3% and 92.7 � 0.7% for
30 min and 60 min, respectively), although there were no differ-
ences (P > 0.05) between the contact times evaluated. When using
S. cerevisiae þ LAB pool, a significant increase (P < 0.05) was
observed in the percentage of AFM1 bound in the contact times,
which values were 91.7 � 0.5% (30 min) and 100.0% (60 min).

The percentages of AFM1 bound by the LAB pool obtained in the
present studyare in agreementwith those reported by Pierides et al.
(2000), who observed that heat-killed cells of L. rhamnosus bound to
18.8% of AFM1 in reconstituted skim milk powder and to 26.0% of
toxin in reconstituted whole milk powder after 16 h of contact.
Peltonem, El-Nezami, Haskard, Ahokas, and Salminen (2001) also
found similar binding percentages (5.6e25.7%) when using 15 LAB
strains for AFB1 removal from phosphate buffer solutions.
Accordingly, Kabak and Var (2008) observed differences in the
binding percentages to AFM1 by viable (7.85e25.94%) and non-
viable cells (12.85e27.31%) of Lactobacillus and Bifidobacterium
strains during 4 h.

By the findings of this study and others cited, it is apparent that
bacterial viability is not a prerequisite for removal of AFM1 by LAB.
Although the mechanism of action of these microorganisms on
aflatoxin has not been clarified yet, it has been hypothesized the
occurrence of a physical union with the bacterial cell wall compo-
nents, mainly to polysaccharides and peptidoglycans, instead
through a covalent binding or degradation by the microorganisms
metabolism (Lahtinen, Haskard, Ouwehand, Salminen, & Ahokas,
2004; Shetty & Jespersen, 2006). However, both polysaccharides
Table 2
Percentages of aflatoxin M1 bound in UHT skim milk by heat-killed Saccharomyces
cerevisiae and lactic acid bacteria pool cells after different contact times.

Microorganism % Binding of AFM1 (mean � SD)a

30 min 60 min

LAB poolb 11.5 � 2.3bA 11.7 � 4.4cA

S. cerevisiae 90.3 � 0.3aA 92.7 � 0.7bA

LAB poolb þ S. cerevisiae 91.7 � 0.5aB 100.0 � 0.0aA

aecIn the same column, means followed by different letters differ significantly
(P < 0.05).
AeBIn the same line, means followed by different letters differ significantly
(P < 0.05).

a Percentage of bound AFM1 from UHT skim milk spiked with 0.5 ng mL�1 AFM1.
b Pool of lactic acid bacteria (LAB) strains: Lactobacillus delbrueckii spp. bulgaricus,

Lactobacillus rhamnosus and Bifidobacterium lactis.
and peptidoglycans of bacterial cell wall are expected to be greatly
affected by the heat treatment, leading to denaturation of proteins
and increasing the hydrophobic nature of its surface. It is consid-
ered that such disturbances still allow aflatoxin to bind to bacterial
cell wall, and also to components of plasmatic membrane which
were not available when cell wall was intact (Haskard et al., 2001).
Thus the integrity of bacterial cell wall components is important in
the process of aflatoxin removal. Hernandez-Mendoza, Guzman-
de-Peña, and Garcia (2009) concluded that both bacterial cell
wall and their purified fragments were able to remove the AFB1
from the medium, but when the loss or destruction of cell wall
(total or partial) occurred in response to enzymatic treatments,
a significant decrease in removal capacity was observed.

In our study, S. cerevisiae cells bound to 90.3 � 0.3% and
92.7�0.7% ofAFM1 content inUHTskimmilk for 30min and60min,
respectively. There is no previous report on theuse of S. cerevisiae for
decontamination of milk containing AFM1, although removal rates
of AFB1 from feeds nearly to 90% were obtained by other authors
(Devegowda, Arvind, & Morton, 1996; Santin et al., 2003). The
mechanism involved in S. cerevisiae ability to bind aflatoxins
remains unclear. It is currently accepted that yeast cell wall has the
ability to adsorb the toxin (Bueno, Casale, Pizzolitto, Salano, &
Olivier, 2006; Parlat, Ozcan, & Oguz, 2001; Raju & Devegowda,
2000). Bueno et al. (2006) and Lee et al. (2003) concluded that
both viable and non-viable S. cerevisiae cells have the same adsor-
bent ability to bind AFB1, which is in accordance with data on
removal of AFM1 by S. cerevisiae inmilk as reported inpresent study.

When heat-killed cells of S. cerevisiae was used with LAB, the
removal efficiency of AFM1 slightly increased in the 30 min contact
time, and was fully effective (100%) when incubated for 60 min.
There are no previous studies evaluating the concomitant use of S.
cerevisiae and LAB for removal of AFM1. The increase in the binding
percentages may be explained by an additive effect between S.
cerevisiae and LAB cells, due the presence of a greater number of
cells available for the sequestration of AFM1. Although low levels of
AFM1 in milk can be achieved by prevention through controlling
contamination levels of AFB1 in feed, our results indicate that non-
viable cells of S. cerevisiae and LAB strains may be useful for
completely removing AFM1 frommilk containing up to 0.5 ngmL�1,
without any changes in the flavor or acidity ofmilk by fermentation.
However, not only the strains, the contact time and the viability of
the cells can influence on the formation and stability of the S. cer-
evisiae and/or LAB e aflatoxin complex. Other factors such as the
concentration of microorganisms in milk, AFM1 levels, pH and
temperature of incubation may change the efficiency of microor-
ganisms to remove aflatoxins from food products (Bovo et al., 2012;
El-Nezami, Mykkänen, Haskard, Salminen, & Salminen, 2004; Lee
et al., 2003). Thus further studies are necessary to investigate the
influence of those variables in the ability of S. cerevisiae or LAB cells
to bind to AFM1 in milk.

4. Conclusion

Heat-killed S. cerevisiae cells, alone or in combination with the
LAB pool used, has a high efficiency (>90%) to bind AFM1 in UHT
milks in a relatively short period, as therewere no differences in the
toxin binding between the contact times of 30 or 60 min. Therefore
themethods of aflatoxin removal employing S. cerevisiae, LAB and S.
cerevisiae þ LAB, mainly those strains that are already currently
used in food products, have a potential application for reducing the
levels of AFM1 in milk. However, additional studies are needed to
investigate the mechanisms involved in the removal process of
toxin by S. cerevisiae and/or LAB and the factors that affect the
stability of the toxin sequestration aiming the commercial appli-
cation in the dairy industry.
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