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Exposure to low pH and organic acids in the bovine gastrointestinal tract may result in the induced acid
resistance of Escherichia coli O157:H7 and other pathogens that may subsequently contaminate beef carcasses.
The effect of acid adaptation of E. coli O157:H7 on the ability of acetic acid spray washing to reduce populations
of this organism on beef carcass tissue was examined. Stationary-phase acid resistance and the ability to
induce acid tolerance were determined for a collection of E. coli O157:H7 strains by testing the survival of
acid-adapted and unadapted cells in HCl-acidified tryptic soy broth (pH 2.5). Three E. coli O157:H7 strains
that were categorized as acid resistant (ATCC 43895) or acid sensitive (ATCC 43890) or that demonstrated
inducible acid tolerance (ATCC 43889) were used in spray wash studies. Prerigor beef carcass surface tissue
was inoculated with bovine feces containing either acid-adapted or unadapted E. coli O157:H7. The beef tissue
was subjected to spray washing treatments with water or 2% acetic acid or left untreated. For strains ATCC
43895 and 43889, larger populations of acid-adapted cells than of unadapted cells remained on beef tissue
following 2% acetic acid treatments and these differences remained throughout 14 days of 4°C storage. For both
strains, numbers of acid-adapted cells remaining on tissue following 2% acetic acid treatments were similar to
numbers of both acid-adapted and unadapted cells remaining on tissue following water treatments. For strain
ATCC 43890, there was no difference between populations of acid-adapted and unadapted cells remaining on
beef tissue immediately following 2% acetic acid treatments. These data indicate that adaptation to acidic
conditions by E. coli O157:H7 can negatively influence the effectiveness of 2% acetic acid spray washing in
reducing the numbers of this organism on carcasses.

The involvement of E. coli O157:H7 in food-borne illness
outbreaks associated with the consumption of acidic foods such
as apple cider, fermented sausage, yogurt, and mayonnaise (3,
9, 34) has drawn attention to the acid resistance properties of
this pathogen, and many subsequent studies have demon-
strated that this bacterium can survive in a variety of acidic
foods (8, 25, 32, 33, 37, 39). In addition, other studies have
shown that adaptation to acidic conditions can further improve
the survival of E. coli O157:H7 in foods that are preserved by
low pH and acids (30, 38). Leyer et al. (30) found that acid-
adapted E. coli O157:H7 survived better than unadapted cells
during sausage fermentation and exhibited enhanced survival
in dry salami and apple cider. Tsai and Ingham (38) reported
that adaptation to acid enhanced survival of E. coli O157:H7 in
ketchup but not in mustard or pickle relish. In addition to
promoting survival in low-pH foods, the development of acid
resistance by E. coli O157:H7 may provide cross-protection
against heat, salt, and irradiation preservation of foods (7, 11,
23, 36). Furthermore, several works have indicated that acid
tolerance of E. coli O157:H7 is enhanced or sustained longer
upon refrigerated storage (10, 12, 22, 31, 33). Finally, it is
thought that acid resistance and/or induction of acid tolerance
may better enable pathogens to survive gastrointestinal acidity

and ultimately cause disease and that it may enhance virulence
(1, 15, 26, 35).

Clearly, acid resistance and the development of acid toler-
ance by food-borne pathogenic bacteria may be significant at
several points along the farm-to-table continuum of food pro-
duction. It is important that we understand how previous en-
vironment and processing conditions can affect the acid toler-
ance status of food-borne E. coli O157:H7 in order to devise
strategies for better control of the occurrence, growth, or sur-
vival of this organism in foods. Cattle are a reservoir of E. coli
O157:H7, and raw or undercooked beef and milk, as well as
food products likely contaminated with bovine feces containing
this organism, have been incriminated in many food-borne
illness episodes (21). Solutions of lactic and acetic acid are
commonly used by the beef slaughter industry as antimicrobial
spray wash interventions to reduce the microbial load on
freshly slaughtered beef carcasses. Because of the potential for
acid adaptation in the bovine gastrointestinal tract due to ex-
posure to low pH and organic acids (10, 15, 29), and because
bovine feces are a common source of bacterial contamination
of carcasses, our objective was to determine if acid adaptation
can affect the ability of 2% (vol/vol) acetic acid (2% AA) spray
washes to reduce populations of E. coli O157:H7 on prerigor
beef carcass surface tissue (BCT). Initial experiments involved
the assessment of acid resistance characteristics of a selection
of E. coli O157:H7 strains available for these experiments.

MATERIALS AND METHODS

Microorganisms and inoculum preparation. The E. coli O157:H7 strains used
in this study are listed in Table 1. Acid-adapted (A) and unadapted (NA, not
adapted) stationary-phase cells of each strain were prepared by cultivation in
Trypticase soy broth with 1% glucose (TSB1G; BBL, Becton Dickinson Micro-
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biology Systems, Cockeysville, Md.) and without glucose (TSB2G), respectively,
according to the method described by Buchanan and Edelson (6). To prepare
inocula for both acid challenge and spray wash experiments, 0.1-ml volumes from
frozen (220°C) 25% glycerol stock cultures were inoculated into 10 ml of
TSB1G and TSB2G and incubated for 18 h at 37°C prior to use.

Determination of acid resistance characteristics of E. coli O157:H7 strains.
Initial screening of the E. coli O157:H7 strains to assess their stationary-phase
acid resistance and acid adaptation characteristics was done by examining the
survival of A and NA cells inoculated into pH-adjusted broth medium (6). Brain
heart infusion broth was adjusted to pH 2.5 with concentrated HCl (BHI-2.5;
Difco Laboratories, Detroit, Mich.). The BHI-2.5 was dispensed in 10-ml vol-
umes to test tubes and sterilized by autoclaving, and the test tubes were pre-
equilibrated to 37°C prior to experiments.

For the experiments, BHI-2.5 tubes were inoculated with a 0.1-ml volume of
an 18-h culture of either A or NA E. coli O157:H7 cells. Each tube was sampled
immediately following inoculation and mixing by vortexing and then returned to
37°C to incubate statically for 6 h, when the tube was sampled again. At each
sampling time, the BHI-2.5 samples were diluted if necessary in buffered peptone
water (BPW) and spiral-plated in duplicate on both tryptic soy agar (TSA) and
MacConkey sorbitol agar (SMAC) plates, using a model D spiral plater (Spiral
Systems Instruments, Bethesda, Md.). All plates were incubated at 37°C for 24 h
prior to enumeration. Using spiral-plating procedures, the minimum detection
level was 1.30 log10 CFU/ml. Experiments were duplicated on separate days for
A and NA cells of each E. coli O157:H7 strain.

Spray wash experiments. On each day of a spray wash experiment, fresh
bovine feces were collected from three different cows on a corn silage ration. For
each individual A and NA E. coli O157:H7 strain, 75-g samples of the three fecal
specimens were pooled in a sterile beaker and mixed well with 75 ml of sterile
0.85% NaCl. To reduce interference by indigenous E. coli when we enumerated
E. coli O157:H7, fecal slurries were autoclaved at 121°C for 2 min and rapidly
cooled on ice, with occasional stirring using a sterile tongue depressor. An
additional 35 ml of 0.85% NaCl was added to the cooled feces, and the mixtures
were held at room temperature until beef tissue inoculation. Immediately prior
to tissue inoculation, 2 ml of an 18-h A or NA E. coli O157:H7 culture was added
to the fecal slurry and mixed well. Prepared in this fashion, the fecal slurries
contained 6 log10 CFU of E. coli O157:H7 per g and yielded ca. 5 log10 CFU of
E. coli O157:H7 per cm2 when inoculated with a paintbrush onto the external
surface of a 15- by 20-cm piece of lean BCT (17).

Lean BCT was obtained from the cutaneous trunci of prerigor carcasses
immediately after slaughter at a local cow and bull processing facility. The BCT
was placed in plastic bags in an insulated container to minimize cooling and
transported to the laboratory at the Roman L. Hruska U.S. Meat Animal Re-
search Center for immediate use in experiments. The BCT was aseptically
trimmed to 15- by 20-cm pieces. The entire external surface of each piece was
inoculated with the appropriate fecal slurry, prepared as described above, with a
sterile 5.1-cm-wide paintbrush. The inoculated tissues were allowed to stand for
15 min prior to spray washing; inoculated untreated control tissues were allowed
to stand for 15 min prior to sampling for enumeration.

An insertable pod of a commercial carcass washer, modified for use in a
biological safety hood, was used to apply the spray washing treatments to inoc-
ulated BCT (19). Individual BCT samples were mounted on the surface of a
stainless steel plate and, as appropriate to treatment, were spray washed with
25 6 2°C sterile tap water (W) or 25 6 2°C 2% AA prepared with W. The spray

washes were delivered at 125 lb/in2 for 15 s, with a spray nozzle oscillation rate
of 60 cycles/min.

Immediately following the spray wash treatments, BCT was placed on sterile
trays. A 5- by 5-cm sample was aseptically excised from each tissue piece and
placed in sterile side-filter sample bags (Spiral Biotech, Bethesda, Md.) for
bacterial enumeration. The BCT surface pH was measured using a flat-surface
combination probe (Corning, Inc., Corning, N.Y.). Each tray was then covered
with an inverted sterile tray and stored at 4°C for 48 h. At 48 h, BCT was again
sampled for enumeration and pH determination. At least two additional 5- by
5-cm areas were excised at this time, placed in vacuum packaging bags (3.2-mil
nylon-copolymer bags with an oxygen transmission rate at 23°C of 52 cm3/m2;
Hollymatic, Inc., Countryside, Ill.), and vacuum sealed (model LV10G; Holly-
matic, Inc.). The vacuum-packaged BCT was stored at 4°C and removed for
sampling at 7 and 14 days.

For E. coli O157:H7 enumeration, the excised 5- by 5-cm BCT samples were
pummeled for 2 min with 25 ml of BPW containing 0.1% (vol/vol) Tween 20
using a Stomacher lab blender (model 400; Tekmar, Inc., Cincinnati, Ohio).
Following pummeling, the filtered samples were serially diluted in BPW as
necessary and spiral plated or spread plated in duplicate onto SMAC plates
containing 0.05 mg of cefixime per liter and 2.5 mg of potassium tellurite (CT-
SMAC) per liter. CT-SMAC plates were incubated for 24 h at 37°C and enu-
merated.

Statistical analyses. Six replications of each spray wash experiment were done,
with three replications being done on each of two separate days for each A and
NA E. coli O157:H7 strain. Numbers of bacteria from duplicate plates of spray
wash experiments were averaged and converted to log10 CFU per square centi-
meter. Least squares means of bacterial populations were analyzed as a com-
pletely randomized factorial design (six organisms [three A and three NA] by
three treatments by five sampling periods) using the general linear model pro-
cedure of SAS (version 6.12; SAS Institute Inc., Cary, N.C.). Statistical signifi-
cance is defined as a P of #0.01 unless otherwise noted.

RESULTS AND DISCUSSION
To identify strains for use in spray wash experiments, sta-

tionary-phase acid resistance and the ability to adapt to acidic
conditions were determined for a selection of E. coli O157:H7
strains utilizing the method described by Buchanan and Edel-
son (6). After 18 h of growth in TSB2G, the final pHs of the
various cultures ranged from 6.7 to 7.2. Alternatively, after
18 h of growth in TSB1G, glucose fermentation by the cultures
resulted in final pHs ranging from 4.3 to 4.8, which is within the
pH range reported to induce acid tolerance in E. coli (5, 23, 30,
31). Final pHs of the TSB1G and TSB2G cultures were
similar to those previously reported for E. coli O157:H7 in the
same media (6, 36). As other researchers have observed, there
is a range of responses to acidic conditions among different
strains of this organism (1, 6, 14, 33). In addition, comparison
of levels of recovery of the acid-challenged cells on both non-

TABLE 1. E. coli O157:H7 strains evaluated in this study

Strain Source Description of isolate (reference) Acid resistance
categorya

ATCC 43895 ATCCb Ground beef isolate Resistant
ATCC 43894 ATCC Human feces isolate Resistant
ATCC 35150 ATCC Human feces isolate Resistant
ATCC 43889 ATCC Human feces isolate Adaptable
ATCC 43890 ATCC Human feces isolate Sensitive
ATCC 43888 ATCC Human feces isolate Sensitive
B6914-MS1 Centers for Disease Control and Prevention,

N. Strockbine
Human feces isolate Sensitive

MARCS-1 Roman L. Hruska U.S. Meat Animal Research
Center culture collection

Streptomycin (250 mg/ml)-resistant B6914-MS1
isolate (19)

Sensitive

2886-75 E. coli Reference Center Human feces isolate Resistant
86-24 National Animal Disease Center, E. Nystrom Human feces isolate (27) Resistant
NADC 5570 National Animal Disease Center, E. Nystrom Streptomycin (100 mg/ml)-resistant E. coli

O157:H7 86-24 isolate (27)
Resistant

NADC 4477 National Animal Disease Center, T. Casey Nalidixic acid (50 mg/ml)-resistant E. coli
O157:H7 86-24 isolate (27)

Adaptable

a Based on survival and injury patterns of cells grown in TSB1G and TSB2G, following exposure to pH 2.5 for 6 h.
b ATCC, American Type Culture Collection.
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selective TSA and the selective SMAC was useful for assessing
the degrees of both the acid resistance and the acid injury of
the strains. Based on these survival and injury patterns follow-
ing exposure to pH 2.5 for 6 h, and for our particular objec-
tives, the E. coli O157:H7 strains tested were grouped into
three broad categories as either acid resistant, acid adaptable,
or acid sensitive (Table 1). Initial numbers and survival of A
and NA E. coli O157:H7 cells following a 6-h exposure to pH
2.5 are shown in Fig. 1 for strains ATCC 43895, ATCC 43889,
and ATCC 43890, which were categorized as acid resistant,
adaptable, and sensitive, respectively. These results are repre-
sentative of those seen with the other E. coli O157:H7 strains
in the same acid resistance categories (Table 1). For all acid-
resistant strains, adaptation to acidic conditions did improve
survival at pH 2.5; however, high numbers of NA cells re-
mained viable after the 6-h exposure. Members of this acid-
resistant group may be similar to E. coli strains that have been
described as exhibiting pH-independent acid tolerance or be-
ing constitutively acid tolerant (6). For strains categorized as
acid adaptable, growth in TSB1G and the resultant adaptation
to acidic conditions were important to the survival of these
strains upon exposure to pH 2.5. For adaptable strains, A cell
counts recovered on TSA after the 6-h exposure approximated
initial counts, although recovery on SMAC indicated ca. 90%
cell injury. Alternatively, NA cell counts of the adaptable
strains approached or were below detectable levels on both
TSA and SMAC following the exposure to pH 2.5. For strains
in the acid-sensitive group, adaptation to acidic conditions did
not enhance cell survival to the pH 2.5 acid challenge. Follow-
ing the 6-h exposure, both A and NA cells of acid-sensitive
strains typically were below detectable levels on both TSA and
SMAC.

E. coli O157:H7 strains ATCC 43895, ATCC 43889, and
ATCC 43890, representing each of the three acid resistance
categories, were used to examine the effects of acid adaptation
on the ability of acetic acid spray washes to reduce levels of E.
coli O157:H7 from beef carcasses. The initial levels of A and
NA cells of all three strains on BCT prior to spray washing
were the same, at ca. 5 log10 CFU/cm2 (P # 0.01). The pH
values of BCT surfaces following treatments and during 4°C
storage are shown in Table 2.

Results of spray washing experiments with A and NA E. coli
O157:H7 ATCC 43895 cells are shown in Fig. 2. The acid
adaptation of the resistant strain ATCC 43895 was demon-
strated to affect the ability of 2% AA spray washes to reduce
populations of this strain from BCT. Significantly larger pop-

ulations of ATCC 43895 A cells than NA cells remained on
BCT immediately following 2% AA treatments, and these dif-
ferences remained throughout the 14 days of refrigerated stor-
age. Instead, populations of A cells immediately following 2%
AA washes were the same as those of both A and NA cells
remaining on BCT following W washes. Similar results were
seen with A and NA cells of the adaptable E. coli O157:H7
strain ATCC 43889 (Fig. 3). Higher levels of A cells than of
NA cells remained on the BCT following 2% AA treatments.
As seen with strain ATCC 43895, remaining A cell populations
of strain ATCC 43889 immediately after 2% AA treatments
were similar to those of A and NA cells populations after W
treatments. Sizes of populations of A and NA cells on 2%
AA-treated tissues were different through the 14 days of stor-
age. Figure 4 shows the effects of 2% AA and W washes on
populations of A and NA E. coli O157:H7 ATCC 43890 cells
on BCT. Unlike with the resistant and adaptable strains, no
differences were seen between levels of A and NA cells of this
acid-sensitive strain immediately following 2% AA spray wash
treatments. However, during the course of the refrigerated
storage, NA cell populations declined, and cell levels of A and
NA cells on 2% AA-treated BCT were different at 2, 7, and 14
days.

For both A and NA cells of all strains examined, there was
a trend that indicated a gradual decline in E. coli O157:H7
populations on W-treated and untreated BCT over the 14 days
of refrigerated storage (Fig. 2 to 4). This same trend was not as
apparent for populations on 2% AA-treated BCT, which, in
comparison, remained constant during the 4°C storage. There
are at least two possible reasons for this observation. One
possibility is that there were increasing populations of a com-
peting microflora present on W-treated and untreated BCT,

FIG. 1. Survival of A and NA E. coli O157:H7 cells initially (0 h) and after 6 h of exposure in BHI-2.5, as enumerated on TSA and SMAC plates. E. coli O157:H7
strains ATCC 43895, ATCC 43889, and ATCC 43890 were categorized as acid resistant, acid adaptable, and acid sensitive, respectively. The horizontal dotted line at
1.30 log10 CFU/ml denotes the minimum detection level. Error bars indicate standard deviations.

TABLE 2. Average pHs of beef tissue surfaces following the
various treatments and during 14 days of storage at 4°C

Sample day
pH after:

No treatment W treatment 2% AA treatment

0a 6.84 6.75 4.61
2 6.35 6.13 5.35
7 6.03 5.87 5.38
14 5.98 5.86 5.36

a Day 0 pH of beef tissue surfaces measured shortly after wash treatments
(,0.5 h).
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compared to those on 2% AA-treated BCT, resulting in a
depression of E. coli O157:H7 populations on these samples
during storage. General bacterial microflora populations were
not monitored in this study; however, previous studies have
demonstrated that while both organic acid and water spray
washes reduce populations of mesophilic aerobic bacteria, or-
ganic acids can contribute the added residual effect of slowing
or suppressing the growth of this group of bacteria on beef
tissue during storage, compared to their more rapid growth on
untreated or water-washed beef (18, 20). A second reason for
this observation may be the cross-protective relationship be-
tween E. coli O157:H7 acid adaptation and cold temperature.
Conner and Kotrola (13) reported that the presence of organic
acids, including acetic, citric, and lactic acids, in broth medium
held at 4°C enhanced the survival of E. coli O157:H7, com-

pared to its survival in unacidified control medium held at the
same temperature. Likewise, other works have demonstrated
that once induced, the acid tolerance of this pathogen is en-
hanced or maintained longer when the organism is held at
colder temperatures (10, 12, 22, 31, 33). To determine if A cells
of E. coli O157:H7 sustained acid tolerance on BCT during
refrigerated storage, an additional experiment was incorpo-
rated during the course of spray wash experiments with the
acid-adaptable E. coli O157:H7 strain ATCC 43889. When
BCTs were sampled for enumeration at 2, 7, and 14 days, 200
ml of the filtered samples, following pummeling, were placed
into 3 ml of BHI adjusted to pHs 2.5, 3.5, and 4.0 with HCl
(n 5 3). The BHI media were incubated for 1 h at 37°C,
surviving cells were enumerated on CT-SMAC, and these cell
numbers were compared to the initial counts. Because of the
low numbers of cells available for this assay and the small
volume of inoculum that could be applied without changing the
pH of the BHI, the surviving cell populations could only be
estimated (data not shown). However, these limited observa-
tions suggested that at 2, 7, and 14 days, A cells of ATCC 43889
did not maintain the degree of acid resistance that they had
when they were initially inoculated onto the meat, following
growth in TSB1G. Counts of surviving cells after 1 h of expo-
sure to pHs 3.5 and 4.0 suggested that there were possible
differences in survival between A and NA cells. Further studies
are planned to confirm these observations.

Log reductions in viable cell counts were compared in order
to ascertain if differences in degrees of acid resistance between
the three E. coli O157:H7 strains affected immediate reduc-
tions on BCT by 2% AA spray washes. For NA cells of all three
strains, there were no differences in log reductions due to 2%
AA spray washes. However, when cells were adapted to acidic
conditions, there was a significant difference in log reductions
by 2% AA treatments between the acid-resistant strain ATCC
43895 and acid-sensitive strain ATCC 43890 (log reductions of
1.61 and 2.38, respectively; P # 0.01). These results indicate
that differences in acid resistance between strains can affect the
efficacy of organic acid spray washes to reduce the number of
these organisms from BCT. Cutter and Siragusa (14) previ-
ously reported E. coli O157:H7 strain differences in resistance
to 1, 3, or 5% acetic, lactic, or citric acid washes of lean BCT,

FIG. 2. Initial reductions of cell numbers and growth or survival of A and NA
E. coli O157:H7 ATCC 43895 (acid-resistant strain) cells on lean BCT stored at
4°C following spray washing treatment with W or 2% AA or after no treatment
(n 5 6). The standard error of the least squares means was equal to 0.14.

FIG. 3. Initial reductions of cell numbers and growth or survival of A and NA
E. coli O157:H7 ATCC 43889 (acid-adaptable strain) cells on lean BCT stored at
4°C following spray washing treatment with W or 2% AA or following no
treatment (n 5 6). The standard error of the least squares means was equal to
0.14.

FIG. 4. Initial reductions of cell numbers and growth or survival of A and NA
E. coli O157:H7 ATCC 43890 (acid-sensitive strain) cells on lean BCT stored at
4°C following spray washing treatment with W or 2% AA or following no
treatment (n 5 6). The standard error of the least squares means was equal to
0.14.
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when bacteria were enumerated after a 24-h incubation of the
tissue at 4°C following washing. Among the strains examined in
that study, E. coli ATCC 43895 was observed to exhibit the
greatest resistance to the organic acid spray treatments, as was
noted in the present study. The present study and other reports
have noted the high level of acid resistance of this E. coli
O157:H7 isolate (1, 30). In fact, differences in levels of acid
resistance or abilities to adapt to acidic conditions of different
isolates may account for conflicting reports of the efficacies of
organic acid spray washing treatments to reduce populations of
E. coli O157:H7 on beef (4, 16, 18). This possibility further
emphasizes the importance of determining the resistance char-
acteristics of candidate bacterial strains as relevant to the pro-
cess under examination, prior to their use in studies to validate
food preservation processes.

A recent report concerning the effects of feed ration com-
position on the development of acid resistance by E. coli in
cattle has sparked discussion about the relevance of this pos-
sible event to the survival of E. coli O157:H7 in the human
gastric environment (15, 28, 29). The pertinence of the devel-
opment of acid tolerance in the bovine gut to public health has
been questioned because of the length of time that typically
occurs between the time the pathogen is shed in feces and the
time the pathogen may be consumed in food or water. During
this interval, the bacteria will experience changes in environ-
ment and therefore subsequent changes in adaptive state. In
the present work, we have demonstrated that acid adaptation
of E. coli O157:H7 can negatively affect the ability of organic
acid spray washing to reduce the numbers of this organism
from prerigor BCT. Pathogens contaminating freshly slaugh-
tered beef carcasses typically are recent residents of the bovine
gastrointestinal tract, arriving in feces or ingesta from intesti-
nal organs that are accidentally damaged during removal from
the carcass or from feces or environmental soil from the hide
or hooves (2, 24). Organic acid spray washes are used in the
early steps of beef carcass processing. They may be applied to
carcasses after hide removal and before or after evisceration
but prior to chilling of the carcasses. Therefore, the acid tol-
erance status of E. coli O157:H7 as shed from cattle is signif-
icant to the microbial safety of meat products. Work is planned
to determine the relative acid tolerance of enterohemorrhagic
E. coli as naturally shed from cattle, and current work is fo-
cused on determining the variation in levels of acid resistance
and the ability to adapt to low pH and acidic conditions among
recent livestock isolates of this pathogen.
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