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ABSTRACT

An outbreak of Shiga toxin-producing Escherichia coli (STEC) O148 infection occurred among wedding
attendees in France in June 2002. A retrospective cohort study was performed and ten cases were
identified, including two adults with haemolytic uraemic syndrome (HUS). The analytical study
revealed that > 80% of affected individuals had eaten lightly roasted mutton and poultry pâté, but only
the consumption of pâté tended to be associated with illness (relative risk 3.4; 95% CI 0.8–14.4). Left-
overs (cooked mutton and raw offal) and processed foods (pâté) from the same batches as served at the
party were sampled. Human, food and environmental samples were examined for the Shiga toxin (stx)
gene and virulence traits by PCR. Stx-positive samples were cultured for STEC. HUS cases were tested
for serum antibodies against 26 major STEC serogroups. An STEC O26 strain (stx1, eae, ehxA) was
isolated from one case with diarrhoea, and an STEC O148 strain (stx2c) from one case of HUS. Serum
antibodies against O26 were not detected in either of these patients; antibodies against O148 were not
tested. Three STEC strains were isolated from the mutton and the offal (stx2c, O148), and two from the
pâté (stx2c, O-X and O-Y). The isolates from the mutton were indistinguishable from the human stx2c
isolate, whereas the pâté isolates differed. Although four different STEC strains were identified in
patients and foods, the results of molecular subtyping, in conjunction with analysis of food consumption
patterns, strongly suggested that this outbreak was caused by mutton contaminated with STEC O148.
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INTRODUCTION

Shiga toxin-producing Escherichia coli (STEC),
especially E. coli O157:H7, are an important cause
of foodborne disease in industrialised countries.
Clinical manifestations of infection with STEC
range from mild diarrhoea to severe and specific
complications, such as haemolytic uraemic syn-
drome (HUS) [1]. The main natural reservoir of
STEC is ruminants, especially cattle. Human
infections are mainly food-related, but person-

to-person and direct contact with contaminated
cattle or goats have also been identified as
transmission routes [2]. Several outbreaks of
STEC and E. coli O157 infection in industrialised
countries have been associated with various food
sources, including undercooked ground beef,
unpasteurised milk products, raw vegetables,
unpasteurised cider and water [3].

In France, surveillance of STEC infections
is based on nationwide surveillance for HUS
in children aged < 15 years [4]. Since 1996, the
annual incidence of HUS has been stable
in France (mean 0.74 ⁄ 100 000 children aged
< 15 years), with most cases being sporadic and
caused by E. coli O157 infection [5]. During the
last 10 years, only three outbreaks of infection
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have been detected [6–8]. This report describes an
outbreak investigation that illustrates the com-
bined use of epidemiological and microbiological
methods to identify the source of a non-O157
STEC outbreak.

MATERIALS AND METHODS

On 10 July 2002, the hospitalisation of two adults with HUS
was notified to the national public health authority (Institut de
Veille Sanitaire). Both individuals had attended a wedding
party, 2 days before the onset of illness. Several other wedding
attendees were reported to have suffered from gastroenteritis.
An investigation was initiated to determine the extent of the
outbreak and the source of infection.

Epidemiological and trace-back investigations

A retrospective cohort study was conducted to identify
wedding attendees with diarrhoea (more than three stools
per day for at least 1 day) during the 8-day period following
the party on 29 June 2002. All guests were interviewed by
telephone to determine the food and drinks consumed during
the party. The suspected foods were traced to identify the
supply channels of the retail outlets and the origin of the
food. Since one of the suspected foods was distributed
nationally, all French nephrology hospital departments were
asked to notify all cases of HUS in June and July in order to
identify any increase in HUS cases or cases related to the
suspected food.

Party attendees, food and animal sampling

Stool specimens were taken from cases of diarrhoea, and
serum specimens were also taken from the HUS cases. Left-
overs and suspected food from the same batches that were
served at the party (when no food remained to be sampled)
were sampled. At the farm where the animals were slaugh-
tered, the faeces from other animals, water from the drinking
trough and feed were also sampled. All human, food and

animal samples were sent to the relevant reference laboratories
(the National Reference Laboratory for E. coli and Shigella and
the National Veterinary School) for immediate processing and
analysis by culture and PCR. Human stool samples were
examined for Salmonella, Shigella, Campylobacter, Yersinia spp.
and STEC.

Isolation and detection of STEC from stool samples

A single swab was obtained from each patient and placed in
transport medium. Swabs were plated on trypticase soy agar,
Drigalski agar and MacConkey agar (Oxoid, Dardilly, France).
After overnight growth at 37�C, between ten and 50 lactose-
positive colonies were chosen from each sample and identified
as E. coli by conventional biochemical methods or by ampli-
fication of the b-glucuronidase gene (uidA) [9]. The E. coli
isolates were stored at ) 80�C on glass beads in glycerol 50%
w ⁄v in brain–heart infusion broth (Difco, Detroit, MI, USA).

One loopful of each isolated colony was suspended in 1 mL
of sterile water and then centrifuged to pellet the cells. DNA
was extracted with InstaGene Matrix (Bio-Rad, Marnes-le-
Coquette, France). Primers LIN5¢ and LIN3¢ were used for the
amplification of all members and variants of the stx gene
family [10]. Subtyping of stx2 genes was performed by HincII
digestion of the 900-bp DNA product, and by HaeIII and PvuII
digestion of the 348-bp DNA product, both as described
previously [11,12]. The eae gene was detected using primer
pairs fM1 and rYu4 as described by Beaudry et al. [13], and the
ehxA gene was detected using primer pairs hlyA1 and hlyA4 as
described by Schmidt et al. [14] (Table 1). Reference E. coli
strains used as controls were EDL933 (O157:H7, stx1, stx2,
ehxA, eae), H19 (O26:H11, stx1, eae), E32511 (stx2, stx2c, eae),
HB101 (negative control), and 2348 ⁄ 69 (eae) [11].

Isolation and detection of STEC from food, animal and

environmental samples

Portions (25 g) of each food and animal sample were placed
aseptically in a stomacher bag with 225 mL of buffered
peptone water (bioMérieux, Marcy l’Etoile, France), mixed
using a stomacher apparatus, and incubated at 37�C overnight.

Table 1. Primer sequences used for
detection of the stx, stx1, stx2, eae,
ehxA and uidA genes

Gene Primer Sequence

PCR product

size (bp) Reference

Stool samples
uidA UAL AAA ACG GCA AGA AAA AGC AG 147 [9]

UAR ACG CGT GGT TAC AGT CTT GCG
stx LIN5¢ GAA CGA AAT AAT TTA TAT GT 900 [10]

LIN3¢ TTT GAT TGT TAC AGT CAT
eae FM1 CAT TAT GGA ACG GCA GAG GT 790 [13]

RYu4 ATC TTC TGC GTA CTG CGT TCA
ehxA hlyA1 GGT GCA GCA GAA AAA GTT GTA G 1551 [14]

hlyA4 TCT CGC CTG ATA GTG TTT GGT A
Food, animal and environmental samples
uidA PT2 GCG AAA ACT GTG GAA TTG GG 252 [16]

PT3 TGA TGC TCC ATC ACT TCC TG
stx ES149 CGA AAT (CT)C(CT) CTC TGT AT(CT) TG(CT) C 323 [15]

ES151 GA(AG) C(AG)A AAT AAT TTA TAT GT
stx1 LP30 CAG TTA ATG TGG TGG CGA AGG 348 [16]

LP31 CAC CAG ACA ATG TAA CCG CTG
stx2 LP43 ATC CTA TTC CCG GGA GTT TAC G 584

LP44 GCG TCA TCG TAT ACA CAG GAG C
eae EAEP1 CTG AAC GGC GAT TAC GCG AA 917 [17]

EAEP2 CCA GAC GAT ACG ATC CAG
ehxA hlyAF GCA TCA TCA AGC GTA CGT TCC 534 [18]

hlyAR AAT GAG CCA AGC TGG TTA AGC T
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Synthetic probes. E. coli O103:H2 possessing only the stx1 gene
(provided by the Institut Pasteur, Lille, France) and E. coli
O157:H7 possessing only the stx2 gene (ATCC 43895) were
used to prepare stx1 and stx2 DNA probes, respectively. The
DNA from each strain was extracted with phenol–chloroform,
and PCR for stx genes was performed with degenerate primers
ES149 and ES151, as described by Read et al. [15] (Table 1).
PCR detection of the O157:H7 uidA gene was performed on the
stx-positive samples with primers PT2 and PT3 as described by
Cebula et al. [16] (Table 1).

The PCR fragments were separated on and excised from
agarose gels, and purified using the Geneclean II kit
(QBiogen, Heidelberg, Germany). Digoxigenin labelling was
performed with the DIG-High Prime kit (Boehringer, Mann-
heim, Germany) as recommended by the manufacturer. In
brief, DNA (c. 1 lg) was first denatured by heating in a
boiling bath for 10 min and chilling quickly in an ice–
ethanol bath. Hexanucleotide primers, nucleotides (dATP,
dTTP, dGTP, dCTP and digoxigenin-11-dUTP) and Klenow
enzyme were then added, giving a final volume of 20 lL.
Labelling took place at 37�C overnight. The reaction was
stopped by heating to 65�C for 10 min. The labelled probes
were stored at ) 20�C.

Colony hybridisation. Enriched samples that gave a positive
result with the stx PCRwere processed as follows: 100 lL of the
10)4 and 10)5 dilutions of each enriched sample were spread on
MacConkey agar plates (bioMérieux). After overnight incuba-
tion at 37�C, the dilution with the highest number of isolated
colonies was selected for colony hybridisation and was cooled
at 4�C for 30 min. A nylon membrane disk (Boehringer) was
placed on the surface of the plate for 10 min, then on blotting
paper (Schleicher & Schuell, Dassel, Germany) soaked with
denaturation solution (0.5 M NaOH, 1.5 M NaCl) for 10 min,
and then on paper soaked with neutralisation solution (1.5 M
NaCL, 1 M Tris-HCl, pH 7.4) for 15 min. Finally, the disk was
placed on blotting paper soakedwith 2· SSC (1· SSC is 150 mM
NaCl, 15 mM sodium citrate, pH 7.0) for 10 min, dried, and
then baked for 90 min at 80�C. The colony lift was then treated
with 1 mL of proteinase K 2 mg ⁄mL (Merck, Darmstadt,
Germany) to remove cell debris, and washed vigorously with
2· SSC for 15 min. Prehybridisation, hybridisation (with a
hybridisation solution containing 100 ng of each labelled
probe) and immunological detection were performed with
the DIG Nucleic Acid Detection Kit (Boehringer), following the
manufacturer’s instructions. The STEC isolates corresponding
to positive hybridisation signals were picked from the hybrid-
isation plate and grown overnight in nutrient broth. The
isolates were confirmed as E. coli with the API 20E system
(bioMérieux) and were examined for the presence of the stx1,
stx2, eae and ehxA genes as described previously [16–18]
(Table 1).

Serogrouping of all human, food, animal and environmental

STEC isolates

Serogrouping was performed by standard procedures with
commercial antisera raised against E. coli somatic (O) antigens;
sera were obtained from Bio-Rad, Eurobio (Les Ulis, France) or
Statens Serum Institut (Copenhagen, Denmark). These tests
were able to identify the following 42 serogroups: O1, O6, O8,
O15, O18, O20, O25, O26, O27, O28ac, O29, O44, O55, O63,
O78, O86a, O111, O112ac, O114, O115, O119, O124, O125,

O126, O127a, O128, O136, O142, O143, O144, O146, O151,
O152, O153, O157, O158, O159, O164, O166, O167, O168 and
O169. When serogrouping was negative, isolates were inves-
tigated for their O types by PCR amplification of the O-antigen
gene cluster [19], followed by restriction enzyme cleavage of
PCR products with MboII. Restriction fragment length poly-
morphism patterns were analysed using Taxotron software
[20] and a database containing the restriction fragment length
polymorphism patterns of reference strains [19]. The O
antigen of suspected strains was confirmed at the WHO
International Escherichia and Klebsiella Centre (Statens Serum
Institut).

Ribotyping of all human, food, animal and environmental

STEC isolates

Automated ribotyping was performed using the RiboPrinter
Microbial Characterization System (Qualicon, Wilmington,
DE, USA) according to the manufacturer’s instructions. Diges-
tion by restriction endonuclease MluI, gel separation, transfer
and hybridisation with a chemiluminescent-labelled DNA
probe containing the E. coli rRNA operon, were completed
within 8 h. Gel images were analysed and compared using the
Taxotron package [20].

Pulsed-field gel electrophoresis (PFGE) of all human, food,

animal and environmental STEC isolates

Each isolate was grown overnight at 37�C on trypticase soy
agar. Several colonies were resuspended in 10· TE buffer
(100 mM Tris, 10 mM EDTA, pH 8.0) to OD600 1.6–1.8. DNA
plugs were prepared using standard PFGE procedures. Diges-
tion of genomic DNA embedded in plugs was carried out using
30 U of XbaI (Amersham Pharmacia Biotech, Uppsala, Sweden)
at 37�C overnight. PFGEwas performed using the CHEF DR III
system (Bio-Rad) in SeaPlaque GTG agarose (BMA, Rockland,
ME, USA) 1% w ⁄v gels in 0.5· TBE (89 mM Tris, 89 mM boric
acid, 2.5 mM EDTA, pH 8.2) at 6 V ⁄ cm for 24 h at 14�C, with a
ramped pulse time of 7–12 s for 11 h, followed by 20–40 s for
13 h, and an electric field angle of 120�. Multimers of phage
lambda, Low Range Size Marker (New Englands Biolabs,
Beverly, MA, USA) and Salmonella enterica serovar Branderup
DNA digested with XbaI were used as molecular size stand-
ards. After electrophoresis, the gels were stained with ethidium
bromide or SYBR Green (BMA) (1 mg ⁄L) for 30 min and
photographed under UV light. The PFGE patterns obtained
were analysed and compared using the Taxotron package [20].

Serum antibodies to lipopolysaccharide (LPS)

LPS from E. coli O1, O2, O4, O14, O25, O26, O29, O55, O91,
O103, O104, O105, O111, O113, O115, O118, O127, O128, O136,
O145, O153, O157, O163 and O164 was prepared by digestion
with proteinase K at 60�C for 1 h [21]. Sera were tested for
antibodies to LPS by the line blot immunoassay technique [22].
Alkaline phosphatase-labelled antibodies against human IgM
and IgA were used as detecting reagents, and enzymic
immunodetection was performed with 5-bromo-4-chloro-3-
indolyl-phosphate and nitroblue tetrazolium. Controls inclu-
ded O157-positive and -negative human serum samples,
Shigella dysenteriae 1, Salmonella enterica serovar Urbana and
Yersinia enterocolitica O9, with the last two antigens cross-
reacting with O157 antigen.
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RESULTS

Epidemiological and trace-back investigations

Following interviews with 73 guests, ten cases
were identified with a date of onset of illness
between 30 June and 3 July 2002. Nine cases were
adults (age range 25–65 years), and one was a
child aged 4 years. Besides diarrhoea, the most
common symptoms reported were abdominal
cramps (70%) and bloody diarrhoea (40%). Two
adults developed HUS and were hospitalised. No
deaths were reported.

Nine of the ten cases reported consumption of
lightly roasted mutton (consumed pink by at least
four individuals), and eight reported consumption
of poultry pâté. Consumption of the roast mutton
was not associated with illness (relative risk 1.8;
95% CI 0.2–12.9). Only consumption of poultry
pâté tended to be associated with illness (relative
risk 3.4; 95% CI 0.8–14.4).Noother foodsordrinks
were associated with an increased risk of illness.

The trace-back investigation revealed that the
two sheep were slaughtered at a local farm and
cooked as spit-roastedmutton, and that the poultry
pâté was produced industrially and distributed
nationally. No poultry pâté specimens from the
meal consumed on 29 June were available for
testing. No additional cases of HUS related to
consumption of poultry pâté were reported by hos-
pital nephrology departments throughout France.

Molecular screening for Shiga toxin genes stx1
and stx2

Among the stool specimens taken from five
diarrhoea cases, two (40%) were positive for stx
genes by PCR, indicating the presence of STEC.
From these two samples, two different STEC
strains were isolated. An stx1, eae, ehxA-positive
isolate that gave a positive agglutination result for
serogroup O26 was isolated from a case with
diarrhoea, and an stx2c-positive isolate with an
undetermined serogroup was obtained from one
HUS case (Table 2).

Among the 24 food, environmental and animal
samples analysed, 15 (63%) were positive for stx
genes and none was positive for the uidA gene.
Six STEC strains were isolated from the 15 stx-
positive samples, following colony hybridisation:
three from mutton and offal (liver and kidney),
two from poultry pâté (two different batches) and
one from sheep faeces.

The five isolates from food samples had the
same toxin type (stx2c), but the isolate from sheep
faeces had a different toxin type (stx1, stx2, ehxA)
(Table 2). No isolates harboured the eae gene.

PCR amplification of the O-antigen gene cluster

For the seven food or stool strains of undetermined
serogroup, PCR amplification of the O-antigen
gene cluster identified five O-patterns (Table 2);
the principal O-pattern was R-148, seen in four
isolates from one HUS case, as well as in isolates
from the mutton and offal samples. The other
isolates haddifferentO-patterns, referred to asR-X,
R-Y and R-Z. The isolate with O-pattern R-148 was
confirmed as E. coli O148:H8 by the International
Escherichia and Klebsiella Centre.

Ribotyping and PFGE of STEC isolates from
patients and food

During this outbreak, eight STEC isolates were
examined by ribotyping and PFGE. Four distinct
ribotypes and four distinct PFGE patterns were
observed among the eight STEC isolates (Table 2).
Ribotype M2 was seen in four (50%) isolates, and
ribotypes M4, M1 and M3 were seen in two
(25%), one (13%) and one (13%) isolate, respect-
ively. PFGE pattern P2 was seen in five (63%)
isolates, and patterns P1, P3 and P4 were seen in
one (13%) isolate each.

Serum antibodies to LPS

No antibodies against the O antigens included in
the panel tested were detected in the sera of the
two HUS cases. O148 was not included in the
panel.

Table 2. Characteristics of patient, food and animal STEC
isolates, June–July 2002

Strain origin
Virulence
characteristics Serogroupa Ribotype

PFGE
pattern

HUS case stx2c R-148b M2 P2
Diarrhoea case stx1, eae, ehxA R-26bc M1 P1
Mutton stx2c R-148b M2 P2
Sheep kidney stx2c R-148b M2 P2
Sheep liver stx2c R-148b M2 P2
Sheep faeces stx1, stx2, ehxA R-X M4 P2
Poultry pâté (batch 1) stx2c R-Y M3 P3
Poultry pâté (batch 2) stx2c R-Z M4 P4

aR, PCR serogroup.
bSerotype O148:H8 confirmed by the International Escherichia and Klebsiella Centre
(WHO) (Copenhagen).
cSerogoup O26.
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DISCUSSION

In order to identify the origin of this outbreak, it
was necessary to collect the complete epidemio-
logical, microbiological and veterinary data. All
these data suggested that the outbreak was caused
by E. coli O148:H8 infection, linked to the con-
sumption of undercooked mutton. Mutton was
consumed by 90% of the patients, including the
two HUS cases, and the microbiological investiga-
tion revealed that the three STEC isolates from the
mutton and the offal were indistinguishable from
the isolate from one of the HUS cases (stx2c toxin
type, P2 PFGE pattern, M2 ribotype and O148
serogroup), whereas the pâté isolates differed.

The investigation emphasised the need to com-
bine epidemiological, microbiological and envi-
ronmental investigations. Thus, although the
results of the cohort study were unable to pinpoint
the mutton as a source of the infection, this could
be explained by the fact that the two sheep
carcasses, cooked whole on the spit-roast, were
probably contaminated initially in a heterogene-
ous manner (i.e., accidental contamination with
intestinal contents at slaughter time), and then
secondarily according to the variable degrees of
cooking resulting from the positions of individual
pieces of meat (i.e., from the surface of the carcass
or from deep down). These hypotheses were not
confirmed, as the precise pieces of meat consumed
were not identifiable by the guests. No association
was found between eating pink (undercooked)
meat and illness. However, infection caused by
consumption of contaminated mutton is plausible.
Outbreaks of E. coli O157:H7 infection associated
with contact with sheep or consumption of mutton
have been described previously [23–25]. Like all
ruminants, sheep are reservoirs of STEC [26–29],
and prevalence studies in slaughterhouses have
shown that meat from sheep (lamb sausages,
minced mutton, sheep carcasses) can be contam-
inated by STEC [24,30].

During these investigations, four different
strains (different molecular serogroups, distinct
ribotypes and distinct PFGE patterns) were isola-
ted from food of various origin. Isolation of an
STEC strain from a food sample does not permit a
conclusion that the food is the origin of an
outbreak or of a sporadic case [28,31]. In partic-
ular, the presence of stx genes in a food sample
simply indicates possible contamination and not
necessarily the presence of viable STEC in the

sample. In the present investigation, it would not
have been possible to identify the origin of the
contamination without using complementary dis-
criminatory techniques to characterise the STEC
isolates (serogrouping, ribotyping and PFGE).

The STEC isolates were recovered from two of
the five patients from whom stool samples were
obtained. However, a negative STEC result in a
stool sample obtained 10–11 days after onset of
diarrhoea does not exclude a diagnosis of STEC
infection. The excretion of STEC in stools is
short-term, and often for < 10 days following
exposure [32]. Moreover, serology, regarded
usually as the most efficient method for detec-
tion at 1 week following diarrhoea, could not be
used to confirm the STEC infection because the
LPS of the implicated serotype was not included
in the test panel. These results illustrate the
limitations of both stool culture and serology
when used as single diagnostic tools, and
emphasise the need to combine these two meth-
ods with clinical criteria in the diagnosis of STEC
infections. The isolation of two different STEC
strains (O148 and O26) from the patients could
be explained, in an outbreak context, either by
infection of the patients following consumption
of meat that was itself contaminated by several
strains, only one of which was isolated from the
meat, or by concomitant infection of one of the
patients [33] by another strain not implicated in
this outbreak.

E. coli O148 belongs to the group of enterotoxi-
genic E. coli, and has been described previously as
being responsible for diarrhoea in children and
adults in several countries [34–38]. An E. coli
O148:H8 strain (stx2d-positive and eae-negative)
was isolated from a case of bloody diarrhoea in
Germany [39]. In the present outbreak, the E. coli
O148 strain isolated was associated with haemor-
rhagic colitis and HUS, and possessed the stx2c
gene, which confirms its characterisation as an
STEC strain. E. coli O157:H7 is found most fre-
quently during sporadic infections or outbreaks,
but other non-O157 serogroups (O26, O103, O111,
O121, O145, O153, etc.) have also been implicated
in STEC infections and HUS [33,40,41]. However,
the actual frequency of non-O157 serogroups is
difficult to estimate, and is probably underesti-
mated because of unsuitable detection methods or
a failure to search for non-0157 serogroups [1].

The strain implicated in the present outbreak
possessed only the stx2c gene. The absence of the
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eae and ehxA genes does not appear to have
diminished its virulence, but other pathogenicity
traits (e.g., saa, cnf, katP) were not studied. Clinical
symptoms observed in STEC infections are asso-
ciated primarily with the production of stx [42],
and stx2 and stx2c have both been associated with
increased virulence of STEC [43,44]. The eae gene,
when present in STEC, produces intimin, which is
associated significantly with bloody diarrhoea
and HUS [45], but may not be essential for the
development of HUS in adults [46]. Enterohaem-
olysin, which has been suspected of playing a role
in pathogenicity following the finding of anti-
EhxA antibodies in patients [14], is not present in
all STEC isolates from clinical samples, and its
impact on pathogenicity is still a matter for
debate. Thus, the role of virulence factors found
in classical microbiological investigations of STEC
infections should be interpreted according to the
clinical and epidemiological context. Patients with
HUS in the present outbreak were adults, who are
regarded as being less susceptible to developing
HUS after STEC infection. This suggests that the
pathogenesis of STEC in adults has not yet been
fully elucidated, and that additional virulence
factors in these strains may remain to be identi-
fied.

Genes coding for virulence factorswere found in
food products that were both associated and non-
associated with the occurrence of cases. This
illustrates the difficulty of determining whether a
strain of STEC isolated from a food or animal
sample is pathogenic or not, and also shows that
the conclusion cannot be based exclusively on the
presence of genes coding for virulence factors, or
on the number of different genes found. The results
described in this study also demonstrate that
molecular subtyping is an essential complement
to epidemiological investigations in order to iden-
tify the source of an outbreak of non-O157 STEC
infections.
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