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Abstract

Microbial communities play a pivotal role in the functioning of plants by influ-

encing their physiology and development. While many members of the rhizo-

sphere microbiome are beneficial to plant growth, also plant pathogenic

microorganisms colonize the rhizosphere striving to break through the protec-

tive microbial shield and to overcome the innate plant defense mechanisms in

order to cause disease. A third group of microorganisms that can be found in

the rhizosphere are the true and opportunistic human pathogenic bacteria,

which can be carried on or in plant tissue and may cause disease when intro-

duced into debilitated humans. Although the importance of the rhizosphere

microbiome for plant growth has been widely recognized, for the vast majority

of rhizosphere microorganisms no knowledge exists. To enhance plant growth

and health, it is essential to know which microorganism is present in the rhizo-

sphere microbiome and what they are doing. Here, we review the main func-

tions of rhizosphere microorganisms and how they impact on health and

disease. We discuss the mechanisms involved in the multitrophic interactions

and chemical dialogues that occur in the rhizosphere. Finally, we highlight sev-

eral strategies to redirect or reshape the rhizosphere microbiome in favor of

microorganisms that are beneficial to plant growth and health.

Introduction

Plants are colonized by an astounding number of (micro)

organisms that can reach cell densities much greater than

the number of plant cells (Fig. 1). Also, the number of

microbial genes in the rhizosphere outnumbers by far the

number of plant genes (Fig. 1). An overwhelming number

of studies have revealed that many plant-associated

microorganisms can have profound effects on seed germi-

nation, seedling vigor, plant growth and development,

nutrition, diseases, and productivity (Fig. 2). Consistent

with the terminology used for microorganisms colonizing

the human body (Qin et al., 2010; Zhao, 2010; Gevers

et al., 2012), the collective communities of plant-associated

microorganisms are referred to as the plant microbiome

or as the plants’ other genome. In this context, plants can

be viewed as superorganisms that rely in part on their

microbiome for specific functions and traits. In return,

plants deposit their photosynthetically fixed carbon into

their direct surroundings, that is, spermosphere, phyllo-

sphere, rhizosphere, and mycorrhizosphere (Nelson, 2004;

Frey-Klett et al., 2007; Raaijmakers et al., 2009; Berendsen

et al., 2012; Vorholt, 2012), thereby feeding the microbial

community and influencing their composition and activi-

ties. To date, the interplay between plants and microor-

ganisms has been studied in depth for various leaf

pathogens, symbiotic rhizobia, and mycorrhizal fungi.

However, for the vast majority of plant-associated micro-

organisms, there is limited knowledge of their impact on

plant growth, health, and disease. Hence, deciphering the

plant microbiome is critical to identify microorganisms

that can be exploited for improving plant growth and

health.

The rhizosphere, that is, the narrow zone surrounding

and influenced by plant roots, is a hot spot for numerous

organisms and is considered as one of the most complex
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ecosystems on Earth (Hinsinger & Marschner, 2006; Pier-

ret et al., 2007; Jones & Hinsinger, 2008; Hinsinger et al.,

2009; Raaijmakers et al., 2009). Organisms found in the

rhizosphere include bacteria, fungi, oomycetes, nema-

todes, protozoa, algae, viruses, archaea, and arthropods

(Fig. 1; Lynch, 1990; Meeting, 1992; Bonkowski et al.,

2009; Bu�ee et al., 2009; Raaijmakers et al., 2009). Most

members of the rhizosphere microbiome are part of a

complex food web that utilizes the large amount of nutri-

ents released by the plant. Given that these rhizodeposits

(e.g. exudates, border cells, mucilage) are a major driving

force in the regulation of microbial diversity and activity

on plant roots, Cook et al. (1995) postulated that plants

may modulate the rhizosphere microbiome to their bene-

fit by selectively stimulating microorganisms with traits

that are beneficial to plant growth and health. Others

have argued that exudates are passively ‘released’ as over-

flow/waste products of the plant (Hartmann et al., 2009;

Jones et al., 2009; Dennis et al., 2010). So, whether plants

are using exudates to ‘cry for help’ or are ‘just crying’

remains to be addressed.

Rhizosphere organisms that have been well studied for

their beneficial effects on plant growth and health are the

nitrogen-fixing bacteria, mycorrhizal fungi, plant growth-

promoting rhizobacteria (PGPR), biocontrol microorgan-

isms, mycoparasitic fungi, and protozoa. Rhizosphere

organisms that are deleterious to plant growth and health

include the pathogenic fungi, oomycetes, bacteria, and

nematodes. A third group of microorganisms that can be

found in the rhizosphere are the human pathogens. Over

the past decade, there is an increasing number of reports

describing the proliferation of human pathogenic bacteria

Fig. 1. Overview of (micro)organisms present in the rhizosphere zoo. The circle’s size, except for VIRUSES, is a measure of the average number

of genes in the genomes of representative species of each group of organisms; the size (or size range) of their respective genomes is indicated

between parentheses. For each of these (micro)organisms, the approximate numbers for their abundance are indicated between square brackets

(Alexander, 1977; Brady, 1974; Lynch, 1988; Meeting, 1992; Bu�ee et al., 2009). The endophytic microorganisms, including endosymbionts, are

not included. The species selected to illustrate the composition of the rhizosphere microbiome and used to calculate the number of genes and

genome sizes are: PLANT: Glycine max, Populus trichocarpa, Zea mays, Oryza sativa, Arabidopsis thaliana, and Vitis vinifera; PROTOZOA:

Dictyostelium discoideum; VIRUSES: Pseudomonas phage 73, Fusarium graminearum dsRNA mycovirus-4, Agrobacterium phage 7-7-1,

Rhizoctonia solani virus 717; ALGAE: Chlorella variabilis and Chlamydomonas reinhardtii; BACTERIA: Pseudomonas fluorescens, Bradyrhizobium

japonicum, Rhizobium leguminosarum, Bacillus cereus, Bacillus amyloliquefaciens, Burkholderia cenocepacia, and Streptomyces filamentosus;

ARTHROPODES: Metaseiulus occidentalis, Acromyrmex echinatior, and Solenopsis invicta; NEMATODES: Caenorhabditis elegans and Meloidogyne

hapla; FUNGI/OOMYCETES: Laccaria bicolor, Nectria haematococca, Piriformospora indica, Verticillium dahliae, Metarhizium anisopliae, Fusarium

oxysporum, Sporisorium reilianum, Phytophthora sojae, Phytophthora parasitica, Aphanomyces euteiches, Phytophthora cinnamomi, and Pythium

ultimum; ARCHAEA: Candidatus Nitrosoarchaeum koreensis.
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in and on plant tissues (van Baarlen et al., 2007; Tyler &

Triplett, 2008; Holden et al., 2009; Teplitski et al., 2011;

Kaestli et al., 2012). Understanding the processes that

shape and drive the composition and dynamics of the

rhizosphere microbiome is therefore an essential step not

only to safeguard plant productivity but also to safeguard

human health. In this review, we will focus on the fre-

quency, diversity, and activities of plant beneficial (‘the

good’), plant pathogenic (‘the bad’), and human patho-

genic (‘the ugly’) microorganisms in the rhizosphere and

how they impact on health and disease. It should be

emphasized that the use of the terms ‘the good’, ‘the

bad’, and ‘the ugly’ is arbitrary as a specific microbial

species may be beneficial or deleterious depending on its

abundance (Maurhofer et al., 1992). Hence, this anthro-

pogenic terminology is merely used to facilitate the dis-

cussion of the complex rhizosphere microbiome

environment. Specific attention is given to mechanisms

involved in multitrophic interactions and chemical dia-

logues that occur in the rhizosphere. Finally, we will dis-

cuss strategies to redirect or reshape the rhizosphere

microbiome in favor of those microorganisms that are

beneficial to plant growth and health. Given the enor-

mous number of publications in this multidisciplinary

field of research, it was not possible to cover the entire

literature. Instead, we decided to highlight several themes

and, when necessary, refer to more comprehensive

reviews on specific aspects of rhizosphere research.

The rhizosphere microbiome – who is
there?

Culture-independent approaches have shown that micro-

bial diversity of soil and rhizosphere microbiomes is

highly underestimated. Next-generation sequencing tech-

nologies have demonstrated that only a minority (c. up to

5%) of bacteria have been cultured by current methodol-

ogies and that a significant proportion of the bacterial

phyla detected by these technologies has no cultured rep-

resentative yet. For example, the rarefaction curve built

from 16S rRNA gene sequencing data obtained in a soil

metagenome study failed to reach saturation and revealed

that, of 150 000 sequencing reads obtained for a soil

clone library, < 1% exhibited overlap with the sequencing

reads of other independent soil clone libraries (Tringe

et al., 2005). In one of the first studies in this research

field, Torsvik et al. (2002) estimated that the number of

bacterial species in a gram of boreal forest soil was

c. 10 000. Following the same strategy with substantial

computational improvements, Gans et al. (2005) pre-

dicted that 1 g of soil can contain more than 1 million

distinct bacterial genomes, exceeding previous estimates

by several orders of magnitude. Two years later, Roesch

et al. (2007) obtained 139 819 bacterial and 9340 crenar-

chaeotal rRNA gene sequences from four distinct soils

and counted, based on diversity estimators, a maximum of

52 000 operational taxonomic units (OTUs). Bacteroidetes,

Betaproteobacteria, and Alphaproteobacteria were the most

abundant bacterial groups in the four soils investigated

(Roesch et al., 2007).

For the rhizosphere, most studies to date have focused

on the number and diversity of bacterial taxa rather than

on other rhizosphere inhabitants. Depending on the tech-

niques used, numbers reported in rhizosphere studies

range from < 100 to more than 55 000 OTUs (Table 1).

For example, a meta-analysis of 19 clone libraries

obtained from the rhizosphere of 14 plant species

revealed more than 1200 distinguishable bacterial taxa

from 35 different taxonomic orders, with the Proteobacte-

ria as the most dominant phylum (Hawkes et al., 2007).

Based on 454 pyrosequencing, Uroz et al. (2010) detected

5619 OTUs in the rhizosphere of oak and showed that

the bacterial community was dominated by the Acidobac-

teria and Proteobacteria. Their study also showed that the

bacterial diversity was higher in the bulk soil than in the

oak rhizosphere (Uroz et al., 2010). Using the same approach,

Uroz et al. (2012) demonstrated that also the ectomy-

corrhizospheres of Xerocomus pruinatus and Scleroderma

Fig. 2. Schematic overview of the functions and impact of plant

beneficial (‘the good’), plant pathogenic (‘the bad’), and human

pathogenic microorganisms (‘the ugly’) on the host plant. The terms

‘the good’, ‘the bad’, and ‘the ugly’ are arbitrary as microbial species

may be beneficial or deleterious depending on its abundance

(Maurhofer et al., 1992). For example, also plant pathogenic and

human pathogenic microorganisms may influence several of the

functions depicted for the plant beneficial microorganisms. This

anthropogenic terminology is merely used to facilitate the description

of the complex rhizosphere microbiome environment.
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Table 1. Number of bacterial and archaeal taxa identified in the rhizosphere microbiome

Host Approach* Main findings related to rhizosphere microbiome composition References

Erica andevalensis in a

naturally metal-enriched

and extremely acidic

environment

16S rRNA gene

clone library

Bacteria: of 101 sequenced clones, the majority was affiliated with

the Actinobacteria (38 clones; 12 OTUs) followed by the

Acidobacteria (21 clones; 10 OTUs), and Proteobacteria

(18 clones; eight OTUs). Archaea: considering 27 clones, the

community was composed by Crenarchaeota (21 clones; four

OTUs) and Euryarchaeota (six clones; two OTUs)

Mirete et al. (2007)

Maize crop nifH Cluster I

clone library

Azospirillum, Bradyrhizobium, and Ideonella were the most

abundant genera found in the rhizosphere, comprising c. 5%,

21% and 11% of the clones, respectively. The portion of

unidentified bacteria was of 27%

Roesch et al. (2007)

Oat microcosms 16S rRNA gene

microarray

A total of 1917 taxa were detected, and the community was

dominated by Proteobateria and Firmicutes. Less expected

rhizosphere-competent phyla were also detected, including

Actinobacteria, Verrucomicrobia, and Nitrospira

DeAngelis et al.

(2009)

Deschampsia antarctica

and Colobanthus

quitensis in the Arctic

16S rRNA gene

pyrosequencing

Firmicutes was the most abundant group found, and

Acidobacteria was rarely detected. The predominant genera

found were Bifidobacterium (phylum Actinobacteria), Arcobacter

(phylum Proteobacteria), and Faecalibacterium (phylum Firmicutes)

Teixeira et al. (2010)

Oak in a forest soil 16S rRNA gene

pyrosequencing

In one of the rhizosphere samples, 5619 OTUs were identified in

the bacterial community. The predominant phyla were

Proteobacteria (38%), Acidobacteria (24%), and Actinobacteria

(11%). A high proportion of unclassified bacteria (20%) were

observed

Uroz et al. (2010)

Sugar beet in

agricultural soil

16S rRNA gene

microarray

A total of 33 346 bacterial and archaeal OTUs were detected, and

the community was dominated by Proteobacteria (39%),

Firmicutes (20%), and Actinobacteria (9%). The Gamma- and

Betaproteobacteria and Firmicutes were identified as the most

dynamic taxa associated with disease suppression

Mendes et al. (2011)

Potato in field soil 16S rRNA gene

microarray

A total of 2432 OTUs were detected in at least one of the

samples. The highest number of OTUs belonged to the

Proteobacteria (46%), followed by Firmicutes (18%),

Actinobacteria (11%), Bacteroidetes (7%), and Acidobacteria

(3%).The bacterial families Streptomycetaceae,

Micromonosporaceae, and Pseudomonadaceae showed the

strongest response at the potato cultivar level

Weinert et al. (2011)

Rhizophora mangle and

Laguncularia racemosa

in mangroove

Archaeal 16S

rRNA gene

pyrosequencing

About 300 archaeal OTUs were identified. Four classes were

found: Halobacteria, Methanobacteria, Methanomicrobia, and

Thermoprotei

Pires et al. (2012)

Potato in field soil Pyrosequencing A total of 55 121 OTUs were found. Actinobacteria and

Alphaproteobacteria were the most abundant groups, followed

by Gammaproteobacteria, Betaproteobacteria, Acidobacteria,

Gemmatimonadetes, Firmicutes, Verrucomicrobia,

Deltaproteobacteria, Cyanobacteria, Bacteriodetes, and the TM7

group

Inceoglu et al. (2011)

Rhizophora mangle in

mangroove

16S rRNA gene

pyrosequencing

Proteobacteria was the most abundant phylum in all samples

covering 36–40% of the total sequencing reads

Gomes et al. (2010)

Mannillaria carnea

(cactus) in semi-arid

environment

16S rRNA gene

pyrosequencing

Dominant bacterial groups were Acidobacteria, Actinobacteria,

Proteobacteria, and Bacteroidetes

Torres-Cortes et al.

(2012)

Arabidopsis thaliana in

Cologne and Golm soils

16S rRNA gene

pyrosequencing

About 1000 OTUs were estimated in the rhizosphere and 1000

OTUs in root compartments. The rhizosphere was dominated by

Acidobacteria, Proteobacteria, Planctomycetes, and

Actinobacteria. Proteobacteria, Actinobacteria, and Bacteroidetes

were found as dominant phyla in root bacterial communities and

significantly enriched compared with soil and rhizosphere

Bulgarelli et al. (2012)
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citrinum hosted significantly more Alpha-, Beta-, and

Gammaproteobacteria than bulk soil. Despite the harsh

abiotic conditions in Antarctic soils, up to 732 OTUs

were detected in the rhizosphere of two vascular plants

(Teixeira et al., 2010). For most of the rhizosphere

samples from the Antarctic, Firmicutes were the most

abundant phylum, whereas in many other rhizosphere

studies, the Proteobacteria are commonly more abundant.

Using a high-density 16S rRNA gene oligonucleotide

microarray, referred to as the PhyloChip (Fig. 3),

DeAngelis et al. (2009) detected 2595 OTUs in the oat

rhizosphere with 1917 OTUs consistently present in all

three replicate samples. The dynamic subset (147 OTUs)

responsive to root growth was dominated by the Alpha-

proteobacteria, Firmicutes, and Actinobacteria (DeAngelis

et al., 2009). PhyloChip analysis has also been used to

access bacterial communities in the rhizosphere of other

plant species, including potato and sugar beet. The work

Table 1. Continued

Host Approach* Main findings related to rhizosphere microbiome composition References

Arabidopsis thaliana

in Mason farm and

Clayton soils

16S rRNA gene

pyrosequencing

18 783 bacterial OTUs were firstly detected, and 778 measurable

OTUs were used for analysis. The rhizosphere microbiome was

dominated by Proteobacteria, Bacteroidetes, Actinobacteria, and

Acidobacteria. The endophytic compartment was dominated by

Actinobacteria, Proteobacteria, and Firmicutes and was depleted

of Acidobacteria, Gemmatimonadetes, and Verrucomicrobia

Lundberg et al. (2012)

OTUs, operational taxonomic units.

*Here, we focused on a select number of microarray and pyrosequencing studies; for more studies that used the clone library approach to access

the dominant bacterial groups in the rhizosphere, we refer to Bu�ee et al. (2009).

Fig. 3. Overall workflow of the PhyloChip

technology to assess the diversity and

abundance of the bacterial communities in the

rhizosphere (adapted from Mendes et al.,

2011).
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by Weinert et al. (2011) showed that the number of

OTUs found in the rhizosphere of three potato cultivars

grown at two distant field sites ranged from 1444 to

2015. The dominant phylum detected was the Proteobac-

teria (46%), followed by Firmicutes (18%), Actinobacteria

(11%), Bacteroidetes (7%), and Acidobacteria (3%). Inter-

estingly, the relative abundance of the top 10 dominant

phyla was similar for all three potato cultivars at both

sites (Weinert et al., 2011). With the increased capacity of

the latest PhyloChip generation (G3), which includes

c. 60 000 OTUs representing 147 phyla and 1123 classes

of Bacteria and Archaea domains (Hazen et al., 2010),

over 33 000 OTUs were detected in the rhizosphere of

sugar beet seedlings grown in soils from agricultural fields

in the Netherlands (Mendes et al., 2011). Similar to the

results obtained by Roesch et al. (2007), the Proteobacte-

ria was the most dominant phylum followed by the

Firmicutes, Actinobacteria, and Bacteroidetes. The unclassi-

fied bacteria represented a relatively large group (16%)

among the OTUs detected in the sugar beet rhizosphere

(Mendes et al., 2011). Recently, the taxonomic classifica-

tion of the Greengenes database has been updated

(McDonald et al., 2012). By reevaluating the proportion

of unclassified taxa found in the sugar beet rhizosphere

using the updated database, the number of unclassified

taxa in the sugar beet rhizosphere decreased to 7.5%

(R. Mendes and J.M. Raaijmakers, unpublished data).

Hence, expanding our basic taxonomic knowledge of

microorganisms is essential to further improve the tech-

nological resolution and capabilities of next-generation

sequencing to study the diversity and functional potential

of plant and other microbiomes.

Consistent with the approaches and concepts in human

microbiome studies, Lundberg et al. (2012) and Bulgarelli

et al. (2012) recently investigated the spatial distribution

of bacterial communities in the rhizosphere of different

Arabidopsis accessions to determine the composition of

the core microbiome. By pyrosequencing 16S rRNA gene

segments of bacteria from bulk soil, rhizosphere, and

endophytic root compartments of more than 600 Arabid-

opsis plants, Lundberg et al. (2012) showed a strong

influence of the soil type on the bacterial communities in

each of the compartments. Their results also showed that

the endophytic root compartment was enriched with

Actinobacteria and Proteobacteria and that the plant’s

developmental stage and genotype can drive differential

recruitment and/or differential exclusion of bacterial com-

munities (Lundberg et al., 2012). Using different PCR

primers, different computational pipelines and physico-

chemically different soils, similar findings were reported

by Bulgarelli et al. (2012).

The discovery that Archaea represent an important

group of ammonia oxidizers in soils (Leininger et al.,

2006) has led to an increasing number of studies on this

microbial group. In a global survey of 146 soils, Bates

et al. (2011) used a set of universal primers for nearly all

bacterial and archaeal taxa and showed that the Archaea

domain comprised an average of 2% of the total 16S

rRNA gene sequences recovered from these soils and that

their relative abundance was higher in soils with lower

C : N ratios. For the rhizosphere, an earlier study by

Chelius & Triplett (2001) identified six unique archaeal

sequences associated with maize roots. In mangroves,

about 300 archaeal OTUs distributed over four classes

(Halobacteria, Methanobacteria, Methanomicrobia, and

Thermoprotei) were recently identified in association with

Rhizophora mangle and Laguncularia racemosa (Pires

et al., 2012). In the rhizosphere of sugar beet seedlings

grown in agricultural soils, we detected 70 archaeal OTUs

representing 0.21% of the total archaeal and bacterial

community accessed by PhyloChip analysis (R. Mendes

and J.M. Raaijmakers, unpublished data). Interestingly,

we found a correlation between the composition of the

Archaeal communities and the level of suppressiveness of

soils to Rhizoctonia damping-off disease. Whether Archaea

play a role in protection of plants against soilborne

pathogens is not yet known.

The rhizosphere microbiome – what are
they doing?

In addition to a comprehensive phylogenetic analysis of

the rhizosphere microbiome, there is a strong need to go

beyond cataloguing microbial communities (‘collecting

stamps’) and to determine which microorganisms are

active during the different developmental stages of plant/

root growth and which functions and pathways are dis-

played in time and space. In the review by Barret et al.

(2011), a variety of molecular approaches to study gene

expression in the rhizosphere was discussed. From their

detailed overview, it is apparent that most of our current

knowledge of genes and functions expressed in the rhizo-

sphere is still based on studies with reporter genes.

Despite their limitations, reporter genes do enable the

evaluation of how specific members of the rhizosphere

microbiome perceive their habitat in terms of chemical,

physical, and biological stimuli. An elegant promoter-

trapping strategy, referred to as in vivo expression tech-

nology (IVET), was adopted to identify Pseudomonas fluo-

rescens genes with elevated levels of expression in the

rhizosphere (Rainey, 1999). Genes induced in P. fluores-

cens during rhizosphere colonization were genes involved

in nutrient acquisition, stress response, and secretion

(Rainey, 1999). In another study, the IVET technology

revealed that proteins involved in environmental sensing,

control of gene expression, metabolic reactions, and
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membrane transport were specifically expressed in the

pea-nodulating bacterium Rhizobium leguminosarum A34

during rhizosphere colonization (Barr et al., 2008). Next

to IVET, a number of studies have used a diverse panel

of reporter genes to study specific processes in the rhizo-

sphere, including responses of bacteria to carbon, nitro-

gen, phosphorus availability (Kragelund et al., 1997;

Jensen & Nybroe, 1999; Ramos et al., 2000; Koch et al.,

2001; DeAngelis et al., 2005), temperature, and water

potential (Ullrich et al., 2000; Axtell & Beatie, 2002;

Herron et al., 2010). Bioreporters were also successfully

adopted to study bacterial communication in the rhizo-

sphere (Andersen et al., 2001; Steidle et al., 2001; Withers

et al., 2001; Loh et al., 2002; Steindler & Venturi, 2007;

Ferluga & Venturi, 2009) as well as the in situ production

of antimicrobial compounds (Hay et al., 2000; Kulakova

et al., 2009; Rochat et al., 2010). For more detailed infor-

mation on the results of these and other reporter gene

studies, we refer to Gage et al. (2008), Sorensen et al.

(2009), and van der Meer & Belkin (2010).

To go beyond the ‘one-gene-at-a-time’ approach,

Mark et al. (2005) used whole genome transcriptome

profiling to evaluate the effects of root exudates from

two sugar beet cultivars on gene expression in Pseudomo-

nas aeruginosa. In addition to genes previously identified

in plant–microbe interactions (i.e. metabolism, chemo-

taxis, type III secretion), Mark et al. (2005) showed that

104 genes were significantly altered in response to both

root exudates and that the majority of these genes were

regulated in response to only one of the two exudates.

Recently, a whole genome microarray was also used to

study endophytic colonization of rice by Azoarcus sp.

BH72 (Shidore et al., 2012). Among 3992 protein-coding

genes analyzed, 2.4% was up-regulated and 2.0% was

found down-regulated when exposed to root exudates.

Subsequent mutational analysis indicated that genes

encoding pilin PilX or signal transduction proteins with

GGDEF domains and a serine–threonine kinase were

important in colonization. The authors further suggested

that strain BH72 is primed by root exudates for a

lifestyle as endophyte, that is, microorganisms that live

inside plant tissues without causing any immediate, overt

negative effects (Shidore et al., 2012). Microarrays

have also been used to identify functional activities of

multiple members within a complex microbial commu-

nity. The functional gene array, termed GeoChip, con-

tains more than 10 000 genes covering more than 150

functions involved in nitrogen, carbon, sulfur and phos-

phorus cycling, metal reduction and resistance, and

organic contaminant degradation (He et al., 2007). For

example, the GeoChip 3.0 revealed that infection of

citrus trees by the pathogen Candidatus Liberibacter

asiaticus caused shifts in the composition and functional

potential of rhizosphere microbial communities (Trivedi

et al., 2011).

‘Omics’ approaches that enable the identification of

gene transcripts, proteins, or metabolites have been devel-

oped to provide a more detailed insight into the genes

and functions expressed in the plant microbiome. A

metaproteogenomic approach was first reported for bacte-

rial communities in the phyllosphere of Arabidopsis, soy-

bean, and clover plants (Delmotte et al., 2009). For the

rhizosphere, a recent metaproteomics study revealed com-

plex interactions between plants and rhizosphere microor-

ganisms in different cropping systems (Wang et al.,

2011). MALDI-TOF/TOF-MS resulted in the identifica-

tion of 189 protein spots from rice rhizosphere samples

and approximately one-third of the protein spots could

not be identified (Wang et al., 2011). The origin of each

protein was determined, being from plants (107 proteins),

fauna (10), fungi (29), or bacteria (43). Bacterial proteins

were mostly linked to the Proteobacteria and Actinobacte-

ria. They also found that 50% of the bacterial groups

classified by proteomic analysis were not found in the

genomic-based T-RFLP analysis and vice versa, highlight-

ing the importance of combining different approaches to

access the microbial community (Wang et al., 2011). A

similar approach was used to study the rhizosphere

microbiome of the medicinal plant Rehmannia glutinosa

(Wu et al., 2011) and the phyllosphere plus rhizosphere

microbiomes of rice (Knief et al., 2011). The latter study

resulted in the identification of about 4600 proteins and

revealed the presence of one-carbon conversion processes,

predominantly methanogenesis, in both rhizosphere and

phyllosphere (Knief et al., 2011).

Also, the development of stable isotope probing (SIP)

to track plant-derived carbon into microbial nucleic acids

has provided exciting new insights into the metabolically

active rhizobacterial populations (Rangel-Castro et al.,

2005; Prosser et al., 2006). Applying DNA-SIP to 13CO2-

exposed plants greatly helped to identify bacterial

communities that actively assimilate root exudates in the

rhizosphere of four plant species: wheat, maize, rape, and

clover (Haichar et al., 2008). Bacteria related to Sphingo-

bacteriales and Myxococcus assimilated root exudates of all

four plants, while Sphingomonadales were specific to

monocotyledons (Haichar et al., 2008). Analysis of fungal

and bacterial biomarkers (phospholipid fatty acids)

extracted from the rhizosphere of 13CO2-exposed plants

indicated that also fungi metabolized a significant amount

of root exudates (Bu�ee et al., 2009). Hence, bacteria do

not monopolize the rhizosphere and fungi can respond

rapidly to the provision of easily degradable root exudates

(Broeckling et al., 2008; De Graaff et al., 2010). Studying

the community dynamics of saprotrophic fungi in the

rhizosphere of six potato cultivars, Hannula et al. (2010)
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indeed found that fungi make up a significant part of the

rhizosphere microbial biomass especially during flowering

and senescence. Based on DNA-SIP data, Drigo et al.

(2010) provided a conceptual model in which plant-

assimilated carbon is rapidly transferred to arbuscular

mycorrhizal fungi (AMF), followed by a slower release

from AMF to the active bacterial and fungal rhizosphere

communities. Collectively, these studies exemplify that a

combination of functional approaches provide powerful

tools to infer physiological traits of microbial communities

in situ.

Impact of the rhizosphere microbiome
on plant growth, health, and disease

Rhizosphere microorganisms directly and indirectly influ-

ence the composition and productivity (i.e. biomass) of

natural plant communities (van der Heijden et al., 1998,

2006, 2008; Schnitzer et al., 2011). Hence, microbial spe-

cies richness belowground has been proposed as a predic-

tor of aboveground plant diversity and productivity (De

Deyn et al., 2004; Hooper et al., 2005; van der Heijden

et al., 2008; Lau & Lennon, 2011; Wagg et al., 2011).

Wagg et al. (2011) further suggested that belowground

diversity may act as insurance for maintaining plant pro-

ductivity under different environmental conditions. Due

to their sensitivity to small changes in abiotic conditions,

including environmental stress and perturbation, soil

and rhizosphere microorganisms are considered as bio-

indicators of soil quality. Here, we will discuss which

rhizosphere microorganisms impact on plant growth and

health. We will focus on the plant beneficial (‘the good’),

plant pathogenic (‘the bad’), and human pathogenic (‘the

ugly’) microorganisms.

The good

Rhizosphere microorganisms promote plant growth and

protect plants from pathogen attack by a range of mecha-

nisms (Lugtenberg & Kamilova, 2009; Raaijmakers et al.,

2009). These involve biofertilization, stimulation of root

growth, rhizoremediation, control of abiotic stress, and

disease control. These mechanisms are well documented

for rhizobacteria belonging to the Proteobacteria and Fir-

micutes, that is, Pseudomonas and Bacillus, as well as for

fungi from the Deuteromycetes, that is, Trichoderma and

Gliocladium, and from the Sebacinales order, that is, Piri-

formospora (Kogel et al., 2006; Qiang et al., 2012). Fortu-

nately, more information is being obtained in the past

years on the functions of other soil and rhizosphere

inhabitants, including ‘unusual’ or ‘rare’ microbial genera

such as the Planctomycetes (Hol et al., 2010; Jogler et al.,

2012).

Effects of rhizosphere microorganisms on nutrient
acquisition by plants

Members of the rhizosphere microbiome can significantly

influence the nutrient status of plants (Fig. 2). Well-known

examples are the nitrogen-fixing rhizobia and the mycor-

rhizal fungi that facilitate phosphorus uptake (Hawkins

et al., 2000; Richardson et al., 2009; Miransari, 2011). The

importance of symbionts such as mycorrhizal fungi for

translocation of nutrients and minerals from soil to the

plant (Gianinazzi et al., 2010; Adeleke et al., 2012; Johnson

& Graham, 2013), for soil physical structuring and generat-

ing stable soil aggregates (Degens et al., 1996; Miller &

Jastrow, 2000), and for suppression of soilborne plant

pathogens (Whipps, 2001; Pozo & Azcon-Aguilar, 2007) is

well recognized and documented (Smith & Read, 1997;

Varma & Hock, 1998; Kapulnik & Douds, 2000; Brundrett,

2002; van der Heijden & Sanders, 2002; Johnson et al.,

2012; Salvioli & Bonfante, 2013). Next to Rhizobium and

Bradyrhizobium, various other nitrogen-fixing bacterial

genera living in the rhizosphere have been identified (Zehr

et al., 2003; Gaby & Buckley, 2011). For example, analysis

of the cowpea rhizosphere revealed a high genetic diversity

of symbiotic rhizobial species in the western Amazon

(Guimar~aes et al., 2012). Based on glasshouse experiments

and 16S rRNA gene sequencing, they indicated that Brady-

rhizobium, Rhizobium, Burkholderia, and Achromobacter

species were able to nodulate cowpea and were efficient in

biological nitrogen fixation (Guimar~aes et al., 2012).

Despite extensive research on nitrogen fixation by rhizobia,

the transfer of the legume-specific symbiosis to other agri-

culturally important plant species has not been achieved

yet. In their recent review, Geurts et al. (2012) indicated

that understanding the fundamental differences between

the seemingly similar cellular responses induced by

Rhizobium and mycorrhizal fungi will be necessary to

achieve this ‘old dream’.

Rhizosphere microorganisms can also facilitate the

uptake of specific trace elements such as iron. Iron is abun-

dant in soil but, under neutral to alkaline conditions, it

exists primarily in the insoluble ferric oxide form, which is

not available for microbial growth. Due to the scarcity of

available iron in many microbial habitats as well as the tox-

icity of free iron at elevated concentrations, bacteria

employ a variety of mechanisms to regulate intracellular

iron concentrations by secretion of siderophores (Lindsay

& Schwab, 1982; Andrews et al., 2003; Buckling et al.,

2007; Hider & Kong, 2010). On the host side, plants

respond to iron limitation by increasing the solubility of

inorganic iron in the rhizosphere (strategy I) or by releas-

ing phytosiderophores that are subsequently transported

back into the root tissue by a specific uptake system (strat-

egy II) (Walker & Connolly, 2008). In rice, iron can be
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acquired by both strategies (Walker & Connolly, 2008).

Various studies have proposed an additional strategy of

iron acquisition by plants involving the use of iron

chelated to microbial siderophores (Marschner &

R€omheld, 1994; Vansuyt et al., 2007; Lemanceau et al.,

2009a, b). This was exemplified in studies with fluorescent

pseudomonads, which promoted iron nutrition via sidero-

phores not only for Graminaceous plants but also for

dicotyledonous plant species (Vansuyt et al., 2007; Shirley

et al., 2011). Also, rhizoferrin, a fungal siderophore pro-

duced by Rhizopus arrhizus, was found to be an efficient

carrier of iron to plants with an efficiency that was compa-

rable to that of synthetic chelates (Yehuda et al., 2000).

Rhizobacteria are also able to activate the plant’s own iron

acquisition machinery as was shown for Bacillus subtilis

GB03 (Zhang et al., 2009). In Arabidopsis, strain GB03

up-regulated transcription of the Fe-deficiency-induced

transcription factor 1 (FIT1), thereby inducing the ferric

reductase FRO2 and the iron transporter IRT1 (Zhang

et al., 2009). For more detailed overviews of the mecha-

nisms by which rhizosphere microorganisms influence iron

uptake by plants, we refer to Lemanceau et al. (2009a, b),

and Marschner et al. (2011).

Most rhizobacterial species are organotrophs, that is,

they obtain the energy from the assimilation of organic

compounds. The availability and accessibility of degrad-

able organic compounds are limited in most soils, and

carbon availability is the most common limiting factor

for soil bacteria growth (Alden et al., 2001; Demoling

et al., 2007; Rousk & Baath, 2007). Bacterial communities

play an essential role in releasing the nutritive cations

from soil minerals required not only for their own nutri-

tion but also for plant nutrition. Mineral weathering

bacteria have been isolated from various environments,

and particularly from rhizosphere and ectomycorrhizo-

sphere (Puente et al., 2004; Calvaruso et al., 2007;

Collignon et al., 2011) and can contribute to plant

growth in nutrient-poor soils (Leveau et al., 2010; Mapelli

et al., 2012).

Supporting plant growth under biotic stress

The rhizosphere provides the frontline defense for plant

roots against attack by soilborne pathogens (Cook et al.,

1995). Various members of the rhizosphere microbiome

can antagonize soilborne pathogens before and during

primary infection, and during secondary spread on and

in root tissue (Fig. 2). The main mechanisms by which

rhizosphere microorganisms ward off plant pathogens are

antibiosis (Haas & D�efago, 2005; Lugtenberg & Kamilova,

2009; Raaijmakers & Mazzola, 2012), competition for

trace elements, nutrients and microsites (Duffy, 2001),

parasitism (Druzhinina et al., 2011; Mela et al., 2011),

interference with quorum sensing affecting virulence (Lin

et al., 2003; Uroz et al., 2009; Chan et al., 2011), and

induced systemic resistance (Conrath, 2006; van Loon,

2007; Yang et al., 2009; Pieterse, 2012; Schenk et al.,

2012).

Most, if not all, rhizobacteria produce metabolites that

inhibit the growth or activity of competing microorgan-

isms. Also, rhizosphere fungi are prolific producers of

antibiotic metabolites (Hoffmeister & Keller, 2007; Brakh-

age & Schroeckh, 2011). Especially, Trichoderma species

have received considerable attention for the production of

antimicrobial compounds (Vyas & Mathus, 2002; Harman

et al., 2004; Mathivanan et al., 2005; Elad et al., 2008;

Druzhinina et al., 2011). Most fungal and bacterial bio-

control strains produce more than one antibiotic com-

pound with overlapping or different degrees of

antimicrobial activity. For example, bacteriocins such as

agrocin 84 produced by Agrobacterium radiobacter

(Reader et al., 2005; Kim et al., 2006) exhibit antibiotic

activities against closely related genera, whereas many

polyketide and nonribosomal peptide antibiotics exhibit

broad-spectrum activities (Gross & Loper, 2009; Raaij-

makers et al., 2010). Interestingly, many antibiotic com-

pounds have different effects on other microorganisms at

subinhibitory concentrations, an observation which led to

an exciting new direction in research on the natural func-

tions of antibiotics. Recent studies have indeed shown

that antibiotics function in a concentration-dependent

manner, acting as growth inhibitors at high concentra-

tions and as mediators of intercellular signaling at low

concentrations (Davies et al., 2006; Fajardo & Martinez,

2008; Romero et al., 2011). Other natural functions

attributed to antibiotics include a role in defense against

predatory protozoa, motility, biofilm formation, and

nutrition (Raaijmakers & Mazzola, 2012).

Among the metabolites produced by rhizosphere

microorganisms, volatile organic compounds (VOCs) are

receiving more attention over the past years. Some of

them were shown to modulate plant growth and to medi-

ate the intricate dialogues between microorganisms and

plants (Bailly & Weisskopf, 2012; Effmert et al., 2012).

Although VOCs appear to represent a small proportion

of the total number of metabolites produced by fungi and

bacteria, their unique properties have been proposed to

play essential functions in long-distance communication

in the rhizosphere and in soil ecosystems. VOCs are small

molecules (< 300 Da) with high vapor pressures able to

diffuse through the water- and gas-filled pores in soil

(Wheatley, 2002; Insam & Seewald, 2010). Various bacte-

rial species including Stenotrophomonas maltophilia, Serra-

tia plymuthica, Pseudomonas trivialis, P. fluorescens,

B. subtilis, and Burkholderia cepacia produce VOCs that

inhibit mycelial growth of fungal plant pathogens (Kai
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et al., 2007, 2009; Vespermann et al., 2007; Zou et al.,

2007; Jamalizadeh et al., 2010). Most work on VOCs to

date, however, is conducted in vitro on nutrient-rich

media and may not be representative of the conditions

that prevail in the rhizosphere. Effects of specific abiotic

conditions on VOC production were shown by Weise

et al. (2012), who reported a discrepancy in the number

and spectrum of volatiles produced by a Xanthomonas

species grown in broth culture and on solid agar media.

Recent work showed that the spectrum of volatiles

released by rhizobacteria can be influenced by the avail-

able pool of root exudates (P. Garbeva, unpublished

data). For example, volatiles produced in soil amended

with artificial root exudates without amino acids had

strong antibacterial effects but mild antifungal effects,

whereas volatiles produced from root exudates supple-

mented with amino acids had strong antifungal effects

(P. Garbeva, unpublished data). Conversely, bacterial

volatiles may promote growth of ectomycorrhizal fungi

(Schrey et al., 2005) and play important regulatory roles

in mycorrhizal network establishment (Bonfante & Anca,

2009). They may also play a role in the tripartite interac-

tions between bacteria, fungi, and nematodes. In this con-

text, Son et al. (2009) showed that Paenibacillus polymyxa

and Paenibacillus lentimorbus exhibited strong antifungal

activities, thereby interfering with the interactions

between Meloidogyne incognita and Fusarium oxysporum

and concomitant nematode infestation of tomato plants.

Recently, Chernin et al. (2011) reported that bacterial

volatiles can also interfere with quorum sensing of phylo-

genetically different bacteria by suppressing the transcrip-

tion of the N-acyl-homoserine lactone synthase genes.

Dimethylsulfide was identified as one of the compounds

that interfered with quorum sensing (Chernin et al.,

2011). Finally, VOCs can also induce systemic resistance

in plants (Ryu et al., 2003, 2004; Han et al., 2006) and

promote plant growth (Ryu et al., 2003; Cho et al., 2008;

Blom et al., 2011a, b; Bailly & Weisskopf, 2012).

Members of the rhizosphere microbiome can also mod-

ulate the plant immune system (De Vleesschauwer &

Hofte, 2009; Pineda et al., 2010; Berendsen et al., 2012;

Zamioudis & Pieterse, 2012). The systemic resistance

response induced in plants by beneficial rhizobacteria is

in many cases regulated by the phytohormones jasmonic

acid (JA) and ethylene (ET) (Zamioudis & Pieterse,

2012). However, some bacterial strains do not induce sys-

temic resistance via the JA/ET pathway but via the sali-

cylic acid (SA)-pathway (Maurhofer et al., 1994;

De Meyer & Hofte, 1997; Maurhofer et al., 1998; De

Meyer et al., 1999; Audenaert et al., 2002; Barriuso et al.,

2008; van de Mortel et al., 2012). Other rhizobacteria

such as Bacillus cereus AR156 induce systemic resistance

by activating both signaling pathways (Niu et al., 2011).

Furthermore, quorum-sensing molecules from rhizobacte-

ria can provoke a range of plant responses, including the

activation of various defense-related genes such as MPK3,

MPK6, WRKY22, WRKY29, and Pdf1.2 (reviewed in

Hartmann & Schikora, 2012). Over the past years, signifi-

cant progress has been made in unraveling the transcrip-

tional and metabolic changes induced in plants by

rhizobacteria. For those bacterial strains that induce resis-

tance via the JA/ET pathways, relatively few transcrip-

tional changes were observed in Arabidopsis (Verhagen

et al., 2004; Cartieaux et al., 2008; ). However, for rhizo-

bacterial strains that induce resistance in Arabidopsis via

the SA pathway, substantial, transcriptional, and meta-

bolic changes were observed (van de Mortel et al., 2012).

By integrating metabolic pathways and transcript profiles,

Weston et al. (2012a, b) further showed that two distinct

strains of P. fluorescens reduced the host plant’s carbon

gain, but provided a fitness benefit when the plants were

challenged with the pathogen Pseudomonas syringae.

These studies indicated that rhizobacteria can have

diverse and profound effects on the immune response

and physiology/metabolism of the host plant (Fig. 2),

enhancing the production of known secondary metabo-

lites but also inducing the biosynthesis of structurally

unknown metabolites (van de Mortel et al., 2012). Analy-

sis of the identity and activities of ‘cryptic’ plant com-

pounds induced by rhizobacteria should be pursued to

resolve their putative functions in induced systemic resis-

tance and other physiological processes.

Supporting plant growth under abiotic stress

It has been postulated that the rhizosphere microbiome

contributes to the ability of some plant species to survive

under extreme conditions (Jorquera et al., 2012). For

example, Achromobacter piechaudii ARV8, a soil isolate

obtained from an arid and saline environment, signifi-

cantly increased the biomass of tomato and pepper seed-

lings exposed to transient drought stress (Mayak et al.,

2004a, b). Also, under conditions of flooding, rhizobacte-

ria were shown to support plant growth (Grichko &

Glick, 2001). In diverse production systems, plant pro-

ductivity can be strongly affected by soil salinity due to

osmotic and drought stress. Halotolerant bacteria thrive

under salt-stress conditions and in association with the

host plant are able to express traits that promote plant

growth. From the rhizosphere of wheat plants grown in a

saline zone, Upadhyay et al. (2009) showed that of 130

rhizobacterial isolates, 24 were tolerant to relatively high

levels (8%) of NaCl. All of the 24 salt-tolerant isolates

produced indole-3-acetic acid, 10 isolates solubilized

phosphorus, eight produced siderophores, six produced

gibberellin, and two isolates contained the nifH gene,
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indicating their potential for nitrogen fixation. The domi-

nant bacterial genus isolated under these conditions was

Bacillus (Upadhyay et al., 2009). Halotolerant bacterial

strains were also isolated from halophytic plant species

found in coastal soils in Korea. Several of the obtained

isolates enhanced plant growth under saline stress, and

the reduction in ET production via ACC deaminase activ-

ity was proposed as the underlying mechanism of plant

growth promotion (Siddikee et al., 2010). New halotoler-

ant diazotrophic bacteria harboring indole acetic acid

production, phosphate solubilization, and 1-aminocyclo-

propane-1-carboxylic acid (ACC) deaminase activity were

isolated from roots of the extreme halophyte Salicornia

brachiate (Jha et al., 2012). The isolates were identified as

Brachybacterium saurashtrense sp. nov., Zhihengliuella sp.,

Brevibacterium casei, Haererehalobacter sp., Halomonas

sp., Vibrio sp., Cronobacter sakazakii, Pseudomonas spp.,

Rhizobium radiobacter, and Mesorhizobium sp. (Jha et al.,

2012). For more comprehensive reviews on the beneficial

effects of soil biota on plant responses to saline stress, we

refer to reviews by Dodd & P�erez-Alfocea (2012) and

Berg et al. (2013). In these reviews, several mechanisms

are described by which microorganisms may alter plant

physiological response under saline stress, including their

effects on: (1) water homeostasis by osmolyte accumula-

tion, (2) plant energetics by modulating the source-sink

relationships, (3) root uptake of toxic ions and nutrients

by altering host physiology, modifying physical barriers

around the roots, or by directly reducing foliar accumula-

tion of toxic ions, and (4) crop salt tolerance by altering

hormonal root–shoot signaling.
Environments with low temperatures harbor microor-

ganisms adapted to live under such conditions. It is inter-

esting to note that despite the impact of low

temperatures on nodule formation and nitrogen fixation,

native legumes in the high arctic can nodulate and fix

nitrogen at rates comparable to those reported for

legumes in temperate climates (Bordeleau & Pr�evost,

1994). There is great interest in agriculture and horticul-

ture for microbial inoculants that enhance growth of

plants under cold conditions. For example, Burkholderia

phytofirmans PsJN increased grapevine root growth and

physiological activity at temperatures down to 4°C (Barka

et al., 2006). When coinoculated with Bradyrhizobium

japonicum, Serratia proteamaculans stimulated soybean

growth at 15°C, the temperature at which soybean nodule

infection and nitrogen fixation are normally inhibited

(Zhang et al., 1995, 1996). To identify mechanisms

involved in plant growth promotion at low temperatures,

Katiyar & Goel (2003) selected cold-tolerant mutants of

different P. fluorescens strains for their ability to solubilize

phosphorus and to promote plant growth. They identified

two cold-tolerant mutants that were more efficient in

phosphorus solubilization at 10 °C than their respective

wild types (Katiyar & Goel, 2003). Also, Trivedi & Sa

(2008) found two mutants (of 115) that were more effi-

cient than the wild-type strain Pseudomonas corrugata in

phosphorus solubilization across a temperature range

from 4 to 28 °C. In both studies, the identity of the genes

associated with cold tolerance and phosphorus solubiliza-

tion was not mentioned.

Other abiotic factors that may adversely affect plant

growth are pH and high concentrations of toxic com-

pounds. Soils with low pH or contaminated soils are

major challenges in many production systems worldwide.

In the case of pH stress, it was demonstrated that foliar

lesions induced on corn growing in a low-pH soil were

significantly reduced on plants treated with a 2,4-diac-

etylphloroglucinol (DAPG)-producing P. fluorescens

strain. This was the first evidence that DAPG producers,

in addition to their role in pathogen control, can also act

to ameliorate abiotic stress factors (Raudales et al., 2009).

The presence of pollutants in soil has promoted the

search for efficient bioremediation methods as an alterna-

tive for excavation and incineration. Rhizoremediation, a

combination of phytoremediation and bioaugmentation

(Kuiper et al., 2004), is a promising strategy to clean pol-

luted sites. During rhizoremediation, exudates of plants

stimulate the survival and activity of rhizobacteria that

degrade pollutants. A recent study, using a split-root

model and a combination of T-RFLP, DGGE, and 16S

rRNA gene pyrosequencing, showed that Trifolium and

other legumes respond to polycyclic aromatic hydrocar-

bons contamination in a systemic manner (Kawasaki

et al., 2012). Verrucomicrobia and Actinobacteria were

more abundant in the contaminated rhizospheres, and

the betaproteobacterium Denitratisoma was substantially

increased in the presence of the contaminant, suggesting

that this genus may be important in the rhizoremediation

process (Kawasaki et al., 2012). Also, fungi are important

players in rhizoremediation of hydrocarbons as was

shown by inoculation of the endophytic fungus Lewia sp.

in the rhizosphere of Festuca arundinacea (Cruz-Hern�andez

et al., 2012).

In conclusion, members of the rhizosphere microbiome

can alleviate biotic and abiotic stresses on plants (Fig. 2),

providing an environmentally sound alternative for

genetic engineering and plant breeding. However, success-

ful implementation of microbial inoculants is still in its

infancy due to multiple constraints, including variable

efficacy across environments and different plants species,

limited shelf-life, and different registration procedures in

different countries. To resolve several of these constraints,

more fundamental knowledge is required on how benefi-

cial rhizosphere microorganisms communicate with the

host plant, which molecular and metabolic changes are
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induced in plants, and how beneficial microorganisms

affect the population dynamics and virulence of plant

pathogenic microorganisms.

The bad

Soilborne plant pathogens cause major yield reductions in

the production of food, feed, fiber, and fuel crops

(Fig. 2). Two main groups of soilborne plant pathogens

are the nematodes and the fungi, including the true fungi

and the fungal-like oomycetes. In temperate climates,

plant pathogenic fungi, oomycetes, and nematodes are

agronomically more important than plant pathogenic

bacteria, although some bacterial genera (i.e. Pectobacteri-

um, Ralstonia) can cause substantial economic damage in

some crops. For bacterial pathogens that infect plants via

roots, Agrobacterium tumefaciens, Ralstonia solanacearum,

Dickeya dadanthi and Dickeya solani, and Pectobacterium

carotovorum and Pectobacterium atrosepticum are among

the top 10 most notorious (Mansfield et al., 2012). Also,

viruses can infect plants via the roots but require vectors

such as nematodes or zoosporic fungi to enter the root

tissue (Campbell, 1996; Macfarlane, 2003). Compared

with our understanding of the role of rhizodeposits in the

communication between symbionts and plants, informa-

tion on root exudates that activate and attract soilborne

plant pathogens is more scarce and fragmented. Weston

et al. (2012a, b) indicated that the limited knowledge of

the communication between plants and root pathogens is

largely due to a poor understanding of the complex phys-

ical–chemical conditions in soil and rhizosphere environ-

ments. Hence, expanding our analytical skills to elucidate

the chemistry of rhizodeposits and their spatiotemporal

production and distribution patterns, collectively termed

‘ecometabolomics’ (Sardans et al., 2011; Weston et al.,

2012a, b), will be important to resolve the dialogues

between pathogens and plant roots. Here, we will discuss

which processes and chemical cues are important for soil-

borne pathogens to colonize the rhizosphere and to infect

the root tissue. We will focus on few examples of fungi,

oomycetes, and nematodes.

Fungi and oomycetes

For germination, growth and establishment in the rhizo-

sphere, fungal, and oomycete pathogens depend on sev-

eral different cues from the host plant. Dormancy of

fungal spores can be triggered by a range of factors,

including changes in abiotic conditions (i.e. pH) and root

exudates. Wu et al. (2008a, b) found that phenolic com-

pounds like p-hydroxybenzoic, gallic, coumaric, cinnamic,

ferulic, salicylic, and sinamic acids in root exudates stim-

ulated, at low concentrations, conidial germination of

pathogenic fungi; when concentrations increased, an

inhibitory effect was observed. Also, Zhang et al. (2012)

found similar effects of four phenolic acids from cotton

root exudates on germination of Verticillium dahliae

spores. Also, alkaloids from roots of Veratrum taliense

(Liliaceae) were shown to inhibit growth of Phytophthora

capsici and Rhizoctonia cerealis (Zhou et al., 2003). Inter-

estingly, work by Joosten et al. (2009) showed that soil

type and soil microorganisms greatly affected the compo-

sition of alkaloids in roots and shoots of Jacobaea vulga-

ris, in particular retrorsine and retrorsine N-oxide. Both

alkaloids inhibit mycelium growth of several plant-associ-

ated fungi, including F. oxysporum, Fusarium sambuci-

num, and Trichoderma sp. (Hol & Van Veen, 2002).

Based on these results, Joosten & van Veen (2011) postu-

lated that the effect of microorganisms on the alkaloid

composition of plants could have other ecological conse-

quences as these changes may attract specialist herbivores

aboveground while deterring generalists.

Saponins are probably the best examples of chemical

constituents of roots that adversely affect plant pathogenic

fungi. Saponins represent a structurally diverse group of

glycosides with triterpene or steroid backbones. They form

complexes with sterols causing pore formation and loss of

membrane integrity in fungal pathogens (Gonzalez-Lamo-

the et al., 2009; Osbourn et al., 2011). Compelling evi-

dence for a role of saponins in protection of plants against

root-infecting fungi was provided by studies on avenacin

(Bednarek & Osbourn, 2009; Gonzalez-Lamothe et al.,

2009; Osbourn et al., 2011). Avenacin A-1 exhibits anti-

fungal activity and is localized in the epidermal cells of

root tips and emerging lateral roots of oats. The fungal

root pathogen Gaeumannomyces graminis var avenae (Gga)

can detoxify avenacin A-1 and infect oat roots, whereas

Gga-mutants that lack the detoxifying hydrolase, desig-

nated avenacinase, were more sensitive to avenacin A-1

and were no longer able to infect. On the plant side, avena-

cin-deficient mutants showed compromised resistance to

several pathogens. Recent studies further suggested that

avenacin or avenacin intermediates may also elicit other

processes in the plant such as callose deposition (Bednarek

& Osbourn, 2009) which in turn strengthens the defense

response. Other studies indicated that plant metabolites,

like glucosinolates in cruciferous plants, are mobilized to

pathogen infection sites where they are enzymatically con-

verted into biologically active compounds only when they

are released by disruption of the plant tissue (Bednarek &

Osbourn, 2009). Pathways and mechanisms involved in

the safe storage and exudation of secondary metabolites in

plants were highlighted in recent reviews by Sardans et al.

(2011) and Weston et al. (2012a, b).

In contrast to root-infecting fungi, oomycete pathogens

produce motile zoospores that swim toward the plant
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root to initiate infection. Next to the effects of specific

compounds in seed and root exudates on zoospore

behavior (Morris & Ward, 1992; Nelson, 2004; Hua et al.,

2008), the work by van West et al. (2002) pointed to

electrotaxis as a key root-targeting mechanism for zoosp-

ores. Plant roots generate external electrical currents due

to the flow of protons and other ions into and out of

growing and wounded regions (van West et al., 2002). In

a series of experiments, van West et al. (2002) showed

that the profile of endogenous electrical fields generated

by plant roots coincided with the sites where electrotactic

species of zoospores accumulated. They also showed that

induced or imposed electrical fields were capable of over-

riding local chemical cues in the rhizosphere that either

mediate attraction or repulsion. They further postulated

that electrotaxis is an important cue for zoosporic patho-

gens to selectively colonize living rather than dead roots,

thereby maximizing their survival rate. Whether electro-

taxis also plays a role in the chemotactic responses of

soilborne pathogenic fungi and bacteria is, to our knowl-

edge, not known yet.

Nematodes

Most nematodes in soil are free living, but some feed on

the root exterior (migratory ectoparasitic), some penetrate

and move in the root interior (migratory endoparasitic),

while others develop a feeding site in the root where they

reproduce (sedentary endoparasites). For plant parasitic

nematodes other than cyst or polyphagous root knot

nematodes, it is critical to exploit chemical gradients to

find their host plant (Rasmann et al., 2012). Their sen-

sory apparatus enables them to orientate, move, and

locate nutrient sources. In the physico-chemically com-

plex soil matrix, volatile as well as water-soluble com-

pounds are important cues for nematode foraging.

Volatile compounds have been suggested to play a major

role in long-range chemotaxis, whereas water-soluble

compounds were proposed to be more suitable for short-

range chemotaxis (Rasmann et al., 2012). Most studies to

date have reported on plant-derived compounds that

attract nematodes, but also nematode repellent com-

pounds have been identified like a-terthienyl, inositol,

and cucurbitacin A (Johnson & Nielsen, 2012; Rasmann

et al., 2012; Turlings et al., 2012). Among the volatiles

emitted by plant roots, CO2 is the main so-called long-

distance kairomone for root location by plant parasitic

nematodes, with a theoretical action-radius of up to 1 m

for a single root and more than 2 m for a complete root

system (Johnson & Nielsen, 2012). Turlings et al. (2012)

postulated that CO2 most likely serves as a ‘response acti-

vator’ that alerts the entomopathogenic nematodes to the

general presence of other organisms and may enhance

their responsiveness to more specific cues. Besides CO2,

many other compounds from different chemical classes

induce chemotaxis in nematodes such as 2,4-dihydroxy-7-

methoxy-1,4-benzoxazin-3-one (DIMBOA), glutamic and

ascorbic acid (Rasmann et al., 2012). Knowledge of the

chemical cues that attracts nematodes and other patho-

gens can and has been exploited to attract these patho-

gens to nonhost crops (Franco et al., 1999). Classic

examples of these trap crops are Asparagus officinalis and

Tagetes species that attract a wide range of nematodes

which, after being lured in, are killed by defensive com-

pounds such as glycosides (Bilgrami, 1997; Rasmann

et al., 2012).

The ugly

In the last decade, disease outbreaks linked to human

pathogen contamination of fresh plant produce are a

growing concern worldwide (Berg et al., 2005; van Baar-

len et al., 2007; Tyler & Triplett, 2008; Whipps et al.

2008; Holden et al., 2009; Teplitski et al., 2009; Critzer

& Doyle, 2010). Salmonellosis is increasingly linked to

contaminated horticultural products, including fruits,

lettuce, cabbage, and other raw salad vegetables. Simi-

larly, Escherichia coli O157:H7, the causal agent of the

life-threatening hemorrhagic colitis and hemolytic ure-

mic syndrome, has been isolated with increased fre-

quency from fresh food products. A series of studies

have clearly shown that human pathogenic bacteria can

enter the food production chain not only after harvest

and during handling of fresh food products, but also

during the preharvest stages of crop production. Prehar-

vest entry can occur via contaminated manure and irri-

gation water, animals, or seeds. Their ability to survive

in soils and to colonize the plant exemplifies that

human pathogenic bacteria are not solely adapted to

propagate and survive in the animal gastrointestinal

tracts. Instead, there appears to be a continuum of

available microsites on different hosts that allows for

cross-kingdom jumps by human pathogenic bacteria

(van Baarlen et al., 2007; Holden et al., 2009; Kaestli

et al., 2012). In this context, Tyler & Triplett (2008)

suggested that human pathogens may use plants ‘as an

alternative host to survive in the environment and as a

vehicle to re-colonize animal hosts once ingested’.

Opportunistic human pathogens in the
rhizosphere

Next to the ‘true’ human pathogens such as Salmonella

enterica serovar Typhimurium and E. coli O157:H7, the

plant environment is a niche for pathogens that cause dis-

eases only in debilitated or immunocompromised humans.

ª 2013 Federation of European Microbiological Societies FEMS Microbiol Rev 37 (2013) 634–663
Published by John Wiley & Sons Ltd. All rights reserved

646 R. Mendes et al.



These so-called opportunistic or facultative human patho-

gens have been associated with significant case fatality

ratios in patients in Europe and Northern America, and

their impact on human health has increased substantially

over the past two decades (Berg et al., 2005; Teplitski

et al., 2011). Various wild and cultivated plant species have

been reported to host opportunistic human pathogens in

the rhizosphere (Fig. 2), in particular B. (ceno)cepacia,

P. aeruginosa, and S. maltophilia (Berg et al., 2005). How-

ever, also other bacterial species that cause skin, wound,

and urinary tract infections (e.g. B. cereus, Proteus vulgaris)

can be found in rhizosphere environments (Berg et al.,

2005). Although many studies have highlighted the pres-

ence of opportunistic human pathogens in the rhizosphere,

relatively little is known about their virulence relative to

their clinical counterparts. In a recent study on P. aeruginosa

PaBP35, a strain isolated from the aerial shoots of black

pepper plants grown in a remote rain forest in southern

India, we used a panel of discriminatory genotyping meth-

ods such as recN sequencing, multilocus sequence typing,

and comparative genome hybridization to assess the

strain’s identity and to determine its genetic relatedness to

P. aeruginosa strains that originated from clinical habitats

(Kumar et al., 2013). These polyphasic approaches showed

that strain PaBP35 was a singleton among a large collection

of P. aeruginosa strains, clustering distantly from the typi-

cal clinical isolates (Kumar et al., 2013). However, subse-

quent analyses revealed that strain PaBP35 was resistant to

multiple antibiotics, grew at temperatures up to 41°C,
produced rhamnolipids, hydrogen cyanide, and phenazine

antibiotics, displayed cytotoxicity on mammalian cells, and

caused infection in an acute murine airway infection

model (Kumar et al., 2013). In contrast, Wu et al. (2011)

found that plant-associated P. aeruginosa M18 was more

susceptible to several antimicrobial agents and easier to be

erased in a mouse acute lung infection model than clinical

strain LESB58. These and other studies highlighted the ver-

satile functional and adaptive behavior of P. aeruginosa

and exemplified that P. aeruginosa strains originating from

different environments can differ in accessory genome

regions, genome expression profiles, virulence activities,

and antibiotic resistance spectrum.

The occurrence of human pathogenic bacteria in the

rhizosphere has been ascribed to several factors, including

the high nutritional content, protection from UV radia-

tion, and the availability of water films for dispersal and

for preventing desiccation (Berg et al., 2005; Tyler &

Triplett, 2008). Others have argued that the abundant

and highly diverse indigenous rhizosphere microbial com-

munities provide a strong barrier against the invasion of

human pathogens. This was exemplified in a study by

Colley et al. (2003) where growth of S. enterica and

E. coli O157:H7 on roots of Arabidopsis thaliana was

strongly inhibited by a plant-associated strain of Entero-

bacter asburiae. Nevertheless, many of the human patho-

genic bacteria can be highly competitive for nutrients and

produce various antimicrobial metabolites allowing them

to colonize and proliferate on plant surfaces in the pres-

ence of the indigenous microbial communities. For exam-

ple, P. aeruginosa was shown to be an excellent colonizer

of the wheat rhizosphere (Troxler et al., 1997). Also,

clinical and plant-associated Stenotrophomonas strains

efficiently colonized the strawberry rhizosphere and even

stimulated root growth and root hair development

(Suckstorff & Berg, 2003). Interestingly, the mechanisms

involved in rhizosphere colonization and antimicrobial

activity of human pathogenic bacteria appear to be

similar to the mechanisms involved in virulence and

colonization of human tissues (Berg et al., 2005; van

Baarlen et al., 2007; Holden et al., 2009). For example,

several of the B. cepacia strains that caused disease in a

lung infection model were also virulent on alfalfa (Bernier

et al., 2003). For S. enterica, several pathogenicity genes

as well as genes related to carbon utilization were differ-

entially regulated in the presence of lettuce root exudates

(Klerks et al., 2007). Combined with the results of che-

motaxis assays, Klerks et al. (2007) postulated that the

root exudates trigger chemotaxis in S. enterica and switch

on genes that play a role in adherence. Several other

genes and traits have been identified to play a role in the

attachment of human pathogens to plant surface, includ-

ing fimbriae, adhesins, and capsule production. For more

comprehensive reviews on this topic, we refer to van

Baarlen et al. (2007), Tyler & Triplett (2008), Holden

et al. (2009), and Teplitski et al. (2011).

Plant colonization by human pathogens

Following attachment, human pathogenic bacteria and in

particular the Enterobacteriaceae can invade the root tis-

sue. For a more extensive list of examples on internaliza-

tion of human pathogens in plants, we refer to Warriner

& Namvar (2010). In contrast to the invasion of animal

hosts, enteric bacteria appear to reside mostly in the apo-

plastic spaces of plant hosts (Holden et al., 2009). Vari-

ous studies have indicated that human pathogenic

bacteria enter the root tissue at sites of lateral root emer-

gence. This was shown for Salmonella and E. coli O157:

H7 on roots of Arabidopsis and lettuce, and for Klebsiella

pneumoniae on multiple plant species (Tyler & Triplett,

2008). Endophytic and systemic colonization of barley by

the foodborne pathogen S. enterica serovar Typhimurium

was also demonstrated by Kutter et al. (2006). Also for

opportunistic human pathogens, damaged roots provide

an easy access point resulting in invasion and endophytic

colonization. For example, P. aeruginosa PaBP35 was able
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to colonize the shoots of black pepper stem cuttings at

relatively high densities (> 105 CFU per gram of shoot

segment) already after 8 min of root treatment (Kumar

et al., 2013). The invasive and endophytic behavior of

strain PaBP35 was not limited to black pepper but was

also demonstrated for tomato seedlings (Kumar et al.,

2013). Interestingly, strain PaBP35 established signifi-

cantly higher population densities in the root and shoot

of tomato seedlings than P. aeruginosa PA01 (Kumar

et al., 2013), suggesting some level of specificity in endo-

phytic colonization.

Not only do the sites of lateral root emergence provide

entry points, but damage caused by plant pathogens may

also contribute to plant colonization and invasion by

human pathogenic bacteria. To date, most studies have

focused on the role of pathogen infection of edible plant

produce on human pathogen colonization. For example,

fruits and vegetables infected with soft rot pathogens led

to significant increases in populations of Salmonella and

E. coli O157:H7 (Teplitski et al., 2011). Next to a loss of

cell tissue integrity and a concomitant release of nutrients

from infected plant tissue, degradation of plant tissue by

macerating plant pathogens may also lead to an increase

in pH that could be beneficial to enteric pathogens

(Holden et al., 2009; Teplitski et al., 2011). Furthermore,

plant pathogens may also suppress plant defenses that

otherwise would have limited the invasion and endo-

phytic colonization by human pathogens (Iniguez et al.,

2005). Teplitski et al. (2011) further postulated that con-

trolling plant pathogens would reduce the predisposition

of plant produce to colonization by human pathogens.

Soil health status and occurrence of potential
human pathogens

In a first attempt to determine the effect of the soil and

plant health status on the abundance and diversity of

opportunistic human pathogenic bacteria in the rhizo-

sphere, we analyzed the PhyloChip data obtained in the

rhizosphere microbiome study conducted for sugar beet

seedlings grown in soils that are suppressive or conducive

to Rhizoctonia damping-off disease (Mendes et al., 2011).

In these disease-suppressive soils, the fungal pathogen

Rhizoctonia solani did not cause disease or only very little

as compared with the disease-conducive (nonsuppressive)

soil. Disease suppressiveness was microbial in nature as it

was eliminated by selective heat treatments or by c-irradi-
ation (Mendes et al., 2011). For both the Rhizoctonia-sup-

pressive and Rhizoctonia-conducive soils, we screened the

PhyloChip data for the presence of 44 potentially human

pathogenic bacteria reported previously by Berg et al.

(2005) for the rhizosphere of other plant species. Based

on these analyses, a total of 249 OTUs distributed over

29 bacterial species were detected in disease-conducive

and disease-suppressive soils. However, most of these

potentially human pathogenic bacterial OTUs were signif-

icantly more abundant in the conducive soil (158; 63.5%)

than in the suppressive soil (91; 36.5%) (Fig. 4a). All Fir-

micutes (25 OTUs), with B. cereus as the dominant group

(88%), were more abundant in the rhizosphere of sugar

beet seedlings grown in the conducive soil. Considering

the total abundance of each species, that is, the sum of

the relative abundance of all OTUs within each species,

nine potentially human pathogens were statistically

more abundant in the nonsuppressive soil, including

Achromobacter xylosoxidans, Alcaligenes faecalis, Alcaligenes

xylosoxidans, Janthinobacterium lividum, Enterobacter

amnigenus, Serratia marcescens, B. cereus, and Staphylococ-

cus aureus (Fig. 4b). Conversely, S. maltophilia was signifi-

cantly more abundant in suppressive than in conducive

rhizosphere soil (Fig. 4b). These results suggest that the

rhizosphere of sugar beet seedlings grown in a disease-

conducive soil harbors more potentially human pathogenic

bacteria than seedlings grown in a disease-suppressive soil.

It should be noted that these preliminary data should be

interpreted with caution as the PhyloChip-based 16S

rRNA gene analysis does not allow accurate classification

at the species level (Philippot et al., 2010). Additional

molecular markers, including virulence genes, should be

used to further enhance the taxonomic resolution of these

analyses and to support the hypothesis that root-infecting

plant pathogens can lead to a substantial increase in the

population densities of opportunistic human pathogens on

and in root tissue.

Shaping the rhizosphere microbiome

From the previous sections, it is obvious that the rhizo-

sphere microbiome is a dynamic blend of beneficial and

pathogenic (plant, human) microorganisms. The compo-

sition, relative abundance, and spatiotemporal dynamics

of these members of the rhizosphere microbiome will not

only impact on plant growth but may also affect human

health. Hence, there is a major interest to develop strate-

gies that reshape the rhizosphere microbiome in favor of

microorganisms that improve plant productivity and that

prevent the proliferation of plant and human pathogens.

Numerous studies conducted over the past three decades

have clearly shown that the plant genotype and the soil

type are two main drivers that shape the rhizosphere mi-

crobiome (Berg & Smalla, 2009; Bakker et al., 2012).

Plants are able to recruit specific members of the soil

microbiome as was elegantly shown for malic-acid-medi-

ated stimulation of beneficial B. subtilis (Rudrappa et al.,

2008). Recently, evidence was provided that beneficial

Pseudomonas putida is not only tolerant but also attracted
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to DIMBOA, the allelochemical that is exuded in rela-

tively high quantities from roots of young maize seedlings

(Neal et al., 2012). However, several metabolites that act

as chemoattractant for beneficial microorganisms may

also trigger the germination and directional growth of

plant pathogens. For example, isoflavones from soybean

roots attract the symbiont B. japonicum but also the

oomycete pathogen Phytophthora sojae (Morris et al.,

1998). Plant flavonoids also stimulate mycorrhizal spore

germination and hyphal branching and can affect quorum

sensing (Faure et al., 2009; Guo et al., 2011; Hassan &

Mathesius, 2012). Similarly, volatiles released from plant

roots attract both plant parasitic and entomopathogenic

nematodes, and may also exhibit direct antimicrobial

activities (Garbeva et al., 2011a; Rasmann et al., 2012;

Turlings et al., 2012).

The effects of soil type on the rhizosphere microbiome

have been demonstrated for a variety of plant species

worldwide (Berg & Smalla, 2009). Soils represent highly

complex and heterogeneous environments, which in turn

affect plant physiology, root exudation patterns, and con-

comitantly the rhizosphere microbiome. A key soil factor

in this is pH. Fierer & Jackson (2006) collected 98 soil

samples from across North and South America and

showed that bacterial diversity was unrelated to site tem-

perature, latitude, and other variables that typically pre-

dict plant and animal diversity. The diversity and richness

of soil bacterial communities differed by ecosystem type

and were largely explained by soil pH. They observed that

bacterial diversity was highest in neutral soils and lower

in acidic soils, with soils from the Peruvian Amazon as

the most acidic and least diverse (Fierer & Jackson,

2006). Also, Lauber et al. (2009) found that the overall

bacterial community composition in 88 different soils was

significantly correlated with soil pH. This influence of pH

on community composition was evident at a coarse level

of taxonomic resolution with the relative abundance of

certain bacterial phyla (e.g. Actinobacteria, Bacterioidetes,

and Acidobacteria) changing in a constant manner across

the soil pH gradient (Lauber et al., 2009). When studying

the abundance and diversity of the amoA gene in 47 well-

characterized soils in the UK with pH ranges from 3.5 to

8.7, Gubry-Rangin et al. (2011) found evidence that also

individual archaeal lineages were adapted to specific pH

(a) (b)

Fig. 4. Occurrence of putative opportunistic human pathogenic bacteria in the rhizosphere of sugar beet seedlings grown in soils suppressive or

conducive to the fungal pathogen Rhizoctonia solani. Of more than 33 000 bacterial OTUs detected in the rhizosphere of sugar beet by

PhyloChip analysis (Mendes et al., 2011), 249 OTUs, distributed over 29 bacterial species, were detected in both soils and classified as potential

human pathogens. (a) Number of OTUs: the bars indicate the number of opportunistic human pathogenic OTUs that are more abundant in

suppressive or conducive soil. For example, all of the 23 OTUs classified as Bacillus cereus were more abundant in the conducive soil. (b) Relative

abundance: the bars indicate the average (N = 4) of the total relative abundance of the putative human pathogenic OTUs. Asterisks indicate

statistically significant differences (P < 0.05, Student’s t-test).
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ranges. The apparent influence of soil pH on microbiome

structure has also been documented in several other stud-

ies (Baath & Anderson, 2003; Cookson et al., 2007) and

may be explained, in part, by the relatively narrow pH

growth tolerance of bacterial taxa (Rousk et al., 2010).

Redirecting the rhizosphere microbiome by

plant breeding and genetic engineering

A number of strategies have been proposed to reshape

the microbial composition of the rhizosphere and to redi-

rect microbial activity. Considering the role of root exu-

dates in the attraction of plant pathogens and the

subsequent activation of virulence factors, changing the

quantity and/or quality of root exudates via plant breed-

ing or genetic modification is an obvious approach to

redirect the rhizosphere microbiome. This strategy, also

referred to as ‘rhizosphere engineering’ (Oger et al., 2004;

Ryan et al., 2009; Bakker et al., 2012), requires in-depth

understanding of the chemical diversity of rhizodeposits

and of the molecular communication in the rhizosphere.

Although our understanding of communications and

interactions is progressing, there are still only a few exam-

ples of breeding programs that have considered rhizo-

sphere-related traits and root exudation characteristics

(Smith & Goodman, 1999; Smith et al., 1999; Rengel,

2002; Wissuwa et al., 2009). In this context, Bakker et al.

(2012) stated that currently there is no known breeding

program that evaluates plant lines for their broad interac-

tion with the soil microbiome. Smith et al. (1999) pro-

vided one of the initial studies to investigate the genetic

basis in plants for interactions with rhizobacteria that are

antagonistic to plant pathogens. Using several inbred lines

of tomato, they identified three quantitative trait loci

(QTL) associated with disease suppression by a strain of

B. cereus. They detected significant phenotypic variation

among recombinant inbred lines of tomato and made an

attempt to identify loci associated with resistance to

Pythium torulosum, disease suppression by B. cereus, and

with growth of B. cereus on the seed. Genetic analyses

revealed that three QTL associated with disease suppres-

sion explained 38% of the phenotypic variation among

the recombinant inbred lines. Their results indicated that

genetic variation in host plant species can be exploited to

enhance the beneficial associations between plants and

rhizosphere microorganisms. Their work also suggested

that modern plant breeding may have selected against

plant traits that are essential for hosting and supporting

beneficial microorganisms.

Genetic engineering is a promising alternative to tradi-

tional plant breeding but is time-consuming. Some of the

genetic engineering has been performed to modify the

rhizosphere pH (Gevaudant et al., 2007; Yang et al.,

2007), to modulate organic anion efflux (Tesfaye et al.,

2001; Anoop et al., 2003; Delhaize et al., 2004; Sasaki

et al., 2004; Li et al., 2005), or to facilitate citrate efflux

(Furukawa et al., 2007; Wang et al., 2007). Results from

experiments with transgenic plants manipulated to secrete

specific signal molecules have also shown that plants

communicate with microorganisms in the rhizosphere

(Oger et al., 1997, 2000). For example, plants release

chemical compounds that interfere with bacterial quorum

sensing (Gao et al., 2003; Bauer & Mathesius, 2004). GM

potato plants able to interfere with bacterial quorum

sensing via expression of a lactonase gene, showed a

higher level of resistance to the bacterial plant pathogen

P. carotovorum (Dong et al., 2001). Transgenic potato

plants with increased production of 5-O-glucosyltransfer-

ase (Lorenc-Kukula et al., 2005) and pectate lyase

(Wegener, 2001) also showed increased resistance to

P. carotovorum. To date, however, our knowledge of root

exudation in situ is limited, and the composition of root

exudates is mostly determined in hydroponic culture con-

ditions. Hence, there are few specific targets available yet

for plant breeding. Another bottleneck is the potentially

high variability of root exudation across environments,

soil types, and plant physiological conditions such as

growth stage (Sandnes et al., 2005; Dessureault-Rompre

et al., 2006, 2007; Phillips et al., 2008; Shi et al., 2011).

Redirecting the rhizosphere microbiome by

introducing or stimulating microorganisms

Other strategies to redirect the rhizosphere microbiome

are (1) to introduce beneficial microorganisms in soil,

onto seeds, and planting materials, or (2) to stimulate

resident beneficial rhizosphere microorganisms by soil or

crop management. Many beneficial rhizobacterial and

fungal strains with different traits have been introduced

into soil or onto seeds or planting materials to boost

plant performance (Bhattacharyya & Jha, 2012). Reshap-

ing the rhizosphere microbiome by introducing beneficial

microorganisms that protect the host plant against patho-

gen infections is in many ways comparable with the use

of probiotics in humans. Probiotic bacteria, mainly

Lactobacillus and Bifidobacterium species, have been exten-

sively studied for prevention and treatment of diarrhea

(Guandalini, 2011; Hempel et al., 2012) and inflamma-

tory bowel disease (Calafiore et al., 2012). Related to

plant pathogens, Fgaier & Eberl (2011) recently adopted a

theoretical approach to investigate whether a probiotic

strategy could eradicate a well-established pathogen by

introducing a siderophore-producing bacterium. Their

simulations indicated that a one-time or short-time expo-

sure of the agricultural system to a control agent is not

sufficient to eradicate the pathogen even if temporarily
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very low cell counts of the pathogen can be achieved. If

the treatment was stopped too early, the pathogen popu-

lation can recover and reestablish thereby out-competing

the biocontrol agent. Hence, effective beneficial microor-

ganisms should proliferate and survive in the rhizosphere

microbiome and attain cell densities above a specific

threshold density at a time and place that is critical for

pathogen infection. When introduced into new environ-

ments, however, many microbial strains do not survive or

cannot establish densities in the rhizosphere that are nec-

essary to control soilborne pathogens (Raaijmakers et al.,

2009). One approach to meet these criteria is to develop

so-called designer probiotics, which are genetically engi-

neered microbial strains (Paton et al., 2006; Picard &

Bosco, 2008; Picard et al., 2008; Berlec, 2012). However,

this approach has not been widely adopted due to public

concerns about the use of recombinant microorganisms.

Instead of the ‘one-microorganism’ approach, the use

of assemblages of different microorganisms with comple-

mentary or synergistic traits will probably provide a more

effective and consistent effect. As indicated by Bakker

et al. (2012), such consortia may serve to reduce the per-

iod of time required for the rhizosphere microbiome to

achieve niche saturation and to competitively exclude

pathogens. This concept of so-called concerted rhizo-

sphere communities is gaining more and more momen-

tum. However, to find or select the right players of a

consortium is difficult due to problems with compatibil-

ity between the consortium members. In most of the bio-

control studies published to date, combinations of

microorganisms usually consisted of strains (bacterial,

fungal) that were effective on their own and/or controlled

pathogens by different mechanisms (Raupach & Kloepper,

1998; Jetiyanon & Kloepper, 2002). Studies by Garbeva &

de Boer (2009), however, showed that microorganisms

that are not antagonistic on their own, can exhibit sub-

stantial antimicrobial activities when they are part of a

microbial consortium. Subsequent transcriptome analyses

further revealed that expression of specific genes involved

in signal transduction and secondary metabolite produc-

tion of one of the bacterial consortium members was

strongly affected by the identity of other members (Garb-

eva et al., 2011b). These results illustrated that rhizobac-

teria are able to distinguish among their neighbors and

fine-tune the biosynthesis of antimicrobial metabolites.

These studies also highlight the complexity of designing a

microbial consortium for controlling soilborne plant

pathogens.

Natural disease-suppressive soils probably provide the

best framework to unravel the optimal composition of a

microbial consortium that efficiently protects plants from

soilborne pathogens. Using PhyloChip-based metagenom-

ics, Mendes et al. (2011) detected more than 33 000

bacterial and archaeal species in the rhizosphere of sugar

beet plants grown in a soil suppressive to Rhizoctonia

damping-off disease. Based on the relative abundance of

these bacterial taxa in the rhizosphere of sugar beet plants

grown in soils with different levels of disease suppressive-

ness, they were able to pinpoint bacterial phyla that were

consistently associated with disease suppression, including

the Proteobacteria, Firmicutes, and Actinobacteria. For spe-

cific members of the Gammaproteobacteria, they demon-

strated that the disease-suppressive activity was governed

by the production of a chlorinated lipopeptide, designated

thanamycin (Mendes et al., 2011; Watrous et al., 2012).

For the other consortium members, it is not yet clear

whether and how they contribute to disease suppressive-

ness. Also, the microarray-based analyses by Kyselkov�a

et al. (2009) of soils suppressive to black root rot of

tobacco showed that multiple bacterial genera, including

Azospirillum, Gluconacetobacter, Burkholderia, Comamon-

as, Sphingomonadaceae, and the fluorescent Pseudomonas,

were more prevalent on roots of tobacco plants grown in

disease suppressive than in conducive (nonsuppressive)

soils. Recent studies by Rosenzweig et al. (2012) on a

potato common scab-suppressive soil from Michigan

(USA) revealed a higher number of Lysobacter and of Aci-

dobacteria (groups 4 and 6) in the suppressive soil as

compared with the conducive soil. Although the potential

role of the identified bacterial communities in disease

suppressiveness was not addressed in these two latter

studies, their initial characterizations will help to target

specific groups for functional analyses. Collectively, these

studies indicated that suppressiveness of soils is not a

matter of the exclusive presence of specific groups of

antagonistic microorganisms but is largely determined by

their relative abundance. Ramette et al. (2006) further

hypothesized that suppressiveness may also be governed

by differential effects of environmental factors on the

expression of key biocontrol genes in rhizobacteria rather

than by differences in their population structures. Collec-

tively, these and other studies highlight the need for a

community systems (CoSy) biology approach to resolve

the interplay between individual community members,

the host plant, and the soil environment. In this context,

Zengler & Palsson (2012) indicated that top-down

approaches such as metagenomics and bottom-up

approaches targeting individual species or strains should

be integrated and combined with modeling approaches to

provide a comprehensive coverage and understanding of

the microbial community as a whole. Zilber-Rosenberg &

Rosenberg (2008) proposed the hologenome theory of

evolution, where the hologenome is defined as the sum of

the genetic information of the host and its microbiome.

This proposition fits within the framework of the ‘super-

organism’ (Wilson & Sober, 1989). In the case of animals,
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Eberl (2010) described the immunity as the homeostasis

of the superorganism, where the immune system is not a

killer, but rather a force that shapes homeostasis within the

superorganism. Extending this view to plants, we can

assume that the intimate interaction between the host

and its microbiome is a driving force for host develop-

ment and functioning. Considering the adaptive behavior

of pathogen populations to microbial antagonism (Duffy

et al., 2003), Kinkel et al. (2011) proposed a coevolution-

ary framework for inducing or managing natural disease

suppressiveness of soils. They proposed, among others, to

identify the nutrient conditions under which the micro-

bial communities follow an antagonistic coevolutionary

trajectory vs. a coevolutionary displacement trajectory.

They also emphasized that ‘effective antagonistic popula-

tions or phenotypes are likely to vary for different plant

pathogens suggesting that distinct evolutionary and coevolu-

tionary trajectories may be significant to disease suppression

in different cropping systems’. Top-down and bottom-up

analyses of a number of different disease-suppressive soils

will be required to determine whether this latter state-

ment is actually true or whether a specific subset of

microbial taxa contributes to suppressiveness of soils

against multiple plant pathogens.

Conclusions and outlook

Although the importance of the rhizosphere microbiome

in the functioning of plant ecosystems has been widely

recognized, traditional approaches to unravel these

functions are limited in their capacity and for the vast

majority of rhizosphere organisms, no knowledge exists.

Coupling traditional approaches with advanced next-

generation sequencing techniques to assess organismal or

community ecology and physiology will bring new

insights to understand microbial life in the rhizosphere.

Identification of the exudates, signals, and key players in

the rhizosphere microbiome will provide chemical and

microbial markers to elucidate whether and how plants

recruit and stimulate beneficial (micro)organisms. Unrav-

eling the rhizosphere microbiome also holds potential to

improve crop protection and to uncover numerous yet

unknown soil microorganisms, functions, and genes for

diverse applications. Another challenge we face is how to

prevent human pathogen proliferation in plant environ-

ments to critical doses causing human disease. Therefore,

a better understanding of the factors and cues that enable

human pathogens to find a suitable niche on plant

surfaces is essential to safeguard human health.

To keep plant and human pathogens in check, different

and complementary strategies should be developed that

redirect the rhizosphere microbiome in favor of microor-

ganisms that prevent pathogens to germinate, grow,

attach, and invade the root tissue. One potential

approach is to initiate plant breeding programs that are

directed toward unraveling the molecular basis of interac-

tions between plant lines and beneficial members of the

rhizosphere microbiome. The initial studies by Smith

et al. (1999) on QTL mapping of tomato lines for traits

that support beneficial rhizobacteria provide an excellent

framework for this. Combined with in-depth analysis of

the rhizosphere microbiomes of wild relatives of econom-

ically important food crops, it should be feasible to

resolve whether modern plant breeding can select for

plant traits that are essential for hosting beneficial micro-

organisms. This approach of going ‘back to the roots’ will

most likely also lead to the identification of new rhizo-

sphere microorganisms, genes, and traits that can be

exploited for other applications. To reduce the impact of

plant diseases, we propose to design a ‘core microbiome’

that is effective against soilborne pathogens in different

agro-ecosystems. Analogous to the concept of the core

microbiome in human microbiology (Turnbaugh et al.,

2009; Huse et al., 2012; Ursell et al., 2012), we define the

core rhizosphere microbiome in the context of plant

health as the set of microorganisms that are needed to

effectively protect plants from soilborne pathogens. How

many microorganisms should be part of the core microb-

iome is not known, and also, the number of traits needed

to effectively protect plants from pathogens remains elu-

sive. Given that several antagonistic traits are shared by

different rhizosphere microorganisms, there may be a cer-

tain level of functional redundancy among members of

the core microbiome. In this respect, one could also

design a ‘minimal microbiome’. Analogous to the concept

of the minimal genome (Gill et al., 2006; Moya et al.,

2009; Juhas et al., 2011), the minimal microbiome would

comprise the minimal set of microbial traits needed to

fulfill a specific ecosystem service, in this case protection

of plants against soilborne diseases. One may argue that

control of different pathogens on different crops requires

a different subset of antagonistic microorganisms (Kinkel

et al., 2011). This is probably true for the different groups

of soilborne plant pathogens, that is, bacteria, fungi,

oomycetes, and nematodes. However, designing a core

microbiome for each of these pathogen groups separately

may be feasible. This assumption is based on several

observations: studies on natural disease-suppressive soils

have pointed to common players and identical mecha-

nisms and genes in the suppressiveness of soils to differ-

ent fungal pathogens; also, the onset of natural disease

suppressiveness of soils follows a similar pattern for vari-

ous fungal pathogens (Weller et al., 2002), suggesting that

similar processes, mechanisms, and microorganisms may

be required for the transition of a soil from a condu-

cive to a suppressive state. Knowledge of the shifts in

ª 2013 Federation of European Microbiological Societies FEMS Microbiol Rev 37 (2013) 634–663
Published by John Wiley & Sons Ltd. All rights reserved

652 R. Mendes et al.



microbial community composition and activities during

this transition phase will provide the basis to select

potential candidate members of the core microbiome and

to set their initial densities to jump start disease suppres-

siveness. A core microbiome also can be designed for the

other functions listed in Fig. 2 that support and sustain

plant growth and health. Following the work of Burke

et al. (2011), we propose to assemble the core microbio-

mes more from a functional perspective than based on

taxonomic classification only.
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