
ORIGINAL ARTICLE

Stress-adaptive responses by heat under the microscope
of predictive microbiology
V.P. Valdramidis1, A.H. Geeraerd2 and J.F. Van Impe1

1 Division of Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, Katholieke Universiteit Leuven,

Leuven, Belgium

2 Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), Katholieke Universiteit Leuven,

Leuven, Belgium

Introduction

Bacteria once exposed to a mild stress exhibit an ability

called stress-adaptive response (SAR), which enables them

to resist further stresses (homologous or heterologous). If

this stress is because of a heat treatment the resulting

physiological phenomenon is named ‘acquired microbial

thermotolerance’ (Yousef and Courtney 2003). The same

phenomenon is also reported in the literature as adaptive

response, induced thermotolerance, habituation, acclima-

tization or stress hardening (Yousef and Courtney 2003).

Several literature studies focused on the effect of the

increasing heating rates (similar to those employed for

minimally processed food products) on the acquired

microbial thermotolerance as it influences clearly the

observed microbial inactivation kinetics. These studies (as

summarized next) have been performed for evaluating the

kinetics of different bacteria, i.e. Escherichia coli, Salmon-

ellae, Listeria monocytogenes, Staphylococcus aureus and

also the yeast Saccharomyces cerevisiae.

Tsuchido et al. (1974, 1982) studied the effect of a

temperature elevating process (for linearly increasing tem-

peratures from 0 to 50�C and heating rates of 1, 2Æ1, 5,

27, 750�C min)1 (Tsuchido et al. 1974) and of 0Æ3, 0Æ6, 1,

10, 17Æ5�C min)1 (Tsuchido et al. 1982), on the subse-

quent isothermal death of E. coli K12 inoculated in a
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Abstract

Aims: In previous studies the microbial kinetics of Escherichia coli K12 have

been evaluated under static and dynamic conditions (Valdramidis et al. 2005,

2006). An acquired microbial thermotolerance following heating rates lower

than 0Æ82�C min)1 for the studied micro-organism was observed. Quantifica-

tion of this induced physiological phenomenon and incorporation, as a model

building block, in a general microbial inactivation model is the main outcome

of this work.

Methods and Results: The microbial inactivation rate observed (kobs) under

time-varying temperature conditions is studied and expressed as a function of

the heating rate (dT ⁄ dt). Hereto, a model building block related to the micro-

bial physiology (kphys) under stress conditions is developed. Evaluation of the

performance of the developed mathematical approach depicts that physiological

adaptation is an essential issue to be considered when modelling microbial

inactivation.

Conclusions: Consideration, at a mathematical level, of microbial responses

resulting in physiological adaptations contribute to the reliable quantification

of the safety risks during food processing.

Significance and Impact of the Study: By taking into account the physiological

adaptation, the microbiological evolution during heat processing can be accu-

rately assessed, and overly conservative or fail dangerous food processing

designs can be avoided.
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nutrient broth. The thermal resistance of the cells of E.

coli K12 decreased with increase of the heating rates. Sim-

ilar results were obtained by Valdramidis et al. (2006) for

the same strain and when the temperature increased from

30 to 55�C and the heating rates varied between 0Æ15 and

1Æ64�C min)1.

Thompson et al. (1979) and Juneja and Marks (2003)

also encountered this phenomenon by studying the inacti-

vation kinetics for Salmonella Typhimurium (linearly

increasing temperature from 47 to 60�C) and Salmonella

spp. (linearly increasing temperature from 10 to 58�C),

respectively, in beef products. The heating rates under

investigation were 0Æ1–0Æ2�C min)1 for the former and

0Æ27–0Æ8�C min)1 for the latter case study. These studies

indicate that cells during slow come-up times are able to

adjust to environmental changes and thus become more

resistant. The observed change in the heat resistance of

Salmonellae was in accordance with the studies of Mackey

and Derrick (1987). In that study the survival of S.

Typhimurium when heated at a rate of 0Æ6–10�C min)1

in a broth system and at a temperature increasing linearly

from 20 to 55�C was under investigation.

An inverse relation between induced thermotolerance

and heating rate was also reported in case studies of

L. monocytogenes. On the one hand, Quintavalla and

Campanini (1991) observed that heating cells of L. mono-

cytogenes in meat emulsions at rising temperatures of

0Æ5�C min)1 from 40�C to different final constant tem-

peratures, i.e. 60, 63, 66�C, increased the heat resistance

of the organism. On the other hand, Stephens et al.

(1994), found that at heating rates between 5Æ0 and

0Æ7�C min)1 (up to a subsequent holding temperature of

60�C), there were cells that developed an increased ther-

motolerance. Kim et al. (1994) proved that the heat

resistance of L. monocytogenes (serotype 1) in ground

pork increased with the decrease of the heating rate from

8 to 1Æ3�C min)1. Hansen and Knochel (1996) evaluated

the effects on the heat resistance in sous-vide cooked

beef. The product was inoculated with the same micro-

organism and at heating rates of 0Æ3, 0Æ6 and 10�C min)1,

and a significant increase on the heat resistance especially

for pH values higher than 5Æ8, was observed. Finally,

Hassani et al. (2005) also observed for the same micro-

organism that the slower the heating rate the greater the

induced microbial heat resistance at a linearly increasing

temperature profile from 30 to 70�C (heating rates 0Æ5 to

9�C min)1 and for different levels of pH, i.e. 4, 5Æ5, 7Æ4).

Similar results were obtained at pH levels of 5Æ5 and 7Æ4,

when the same experimental protocol was followed for

studying the inactivation kinetics of Staph. aureus (Has-

sani et al. 2006).

Observations like those encountered for vegetative

micro-organisms can be found for the yeast S. cerevisiae

(Marechal et al. 1999; Martinez de Marañón et al. 1999;

Guyot et al. 2005).

In most of these studies the microbial heat resistant at

the final constant temperatures is quantified. However, to

the best of the author’s knowledge, a sound mathematical

approach making use of differential equations and incor-

porating the effect of the heating rate on the microbial

inactivation has not been developed yet.

The following general expression for the inactivation of

a microbial population N in a homogeneous food

(model) product as a function of time can be proposed

and consists of the following set of n differential equa-

tions (Vereecken et al. 2000; Bernaerts et al. 2004; Van

Impe et al. 2005).

dN

dt
¼ �kð�Þ ¼ �kðN;< env >;< phys >Þ � N ð1Þ

where N is the cell density of the microbial species

(CFU ml)1), <env> is the actual (micro)environmental

conditions (not or only slightly influenced by the micro-

bial evolution) such as temperature, high pressure, salt

concentration, water activity and so on and <phys> is the

physiological state of the species, for instance, as influ-

enced by the temperature history.

During previous research within our team, the micro-

bial inactivation of E. coli K12 under dynamic conditions

was predicted based on static model developments and by

taking into account N, <env> and <phys> (only reflecting

the physiological state of the cells at static thermal experi-

mental conditions) in k(Æ) [see eqn (1)]. A consistent

underestimation of the microbial population level, or, in

other words, a consistent overestimation of the inactiva-

tion achieved, was observed (Valdramidis et al. 2006).

The aim of this study is to develop a sound differential

equation that describes accurately the microbial inactiva-

tion kinetics by incorporating physiological adjustments

during the experiments, in this case, for changing tem-

perature conditions. Therefore, another factor also related

to the physiological state (<phys>) of E. coli K12

MG1655, namely, as influenced by the exposure to a mild

thermal stress, is developed.

Materials and methods

Microbial data

In our work, E. coli K12 MG1655 strain was chosen as a

surrogate for the food-borne pathogen E. coli O157:H7.

Survival data at static and dynamic temperature condi-

tions of early stationary phase cultures as described in

previous research (Valdramidis et al. 2005, 2006) were

used. For these experiments sealed sterile glass capillary

tubes (Hirschmann) filled with 100 ll of cell suspension
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of early stationary phase cultures of E. coli K12 MG1655

were immersed in a circulating water bath (GR150-S12,

Grant). On the one hand the isothermal microbial inacti-

vation data were obtained at the constant temperatures of

52, 54, 54Æ6 and 55�C (Valdramidis et al. 2005). On the

other hand the dynamic experimental data (partially

duplicated) were generated at six different heating rates of

0Æ15, 0Æ20, 0Æ40, 0Æ55, 0Æ82, 1Æ64�C min)1 with an initial

and a final temperature of 30 and 55�C, respectively (for

more details see Valdramidis et al. 2006).

Available model based on static data

A reduced version (namely, not incorporating the so-

called tailing, as it was not apparent in the experimental

data) of the dynamic model of Geeraerd et al. (2000), has

been used for estimating the inactivation parameters fol-

lowing a global identification procedure in which all the

static data are used.

dN

dt
¼ �kmaxðTÞ �

1

1þ Cc

� �
� N ð2Þ

dCc

dt
¼ �kmaxðTÞ � Cc ð3Þ

Herein, 1
�

1þ Ccð Þ is a factor influenced by the physio-

logical state of the cells at static experimental thermal

conditions and it describes the so-called shoulder effect

(Geeraerd et al. 2000, 2005). This factor can be denoted

as k(<phys1>). Cc is called the critical component of the

cells [-], and it follows a first-order decrease [eqn (3)],

while kmax is the specific inactivation rate [1 ⁄ min]. Under

static conditions this model reads as follows, with Sl

denoting the shoulder length [min]:

NðtÞ ¼ Nð0Þ � expð�kmax � tÞ

� expðkmax � SlÞ
1þ ðexpðkmax � SlÞ � 1Þ � expð�kmax � tÞ

ð4Þ

Observe that this static inactivation model equation is

a simple analytical expression suitable for the description

of such survivor curve shapes: all parameters have a clear

biological ⁄ graphical meaning and the shoulder effect is

easily recognizable, including the occasions where Sl is

zero or very large (approaching infinity). In these limiting

cases, the third factor reduces to one (eqn (4) reduces to

classical log-linear inactivation) or to exp(kmax t) [eqn (4)

reduces to N(t)¼N(0)], respectively. The effect of the

temperature on parameter kmax was described by the use

of the Bigelow (1921) model [eqn (5)]

kmaxðTÞ ¼
ln 10

AsymDref
� exp

ln 10

z
� ðT � Tref Þ

� �
ð5Þ

Herein, AsymDref (min) denotes the asymptotic decimal

reduction time at a reference temperature Tref (�C) and z

(�C) is the thermal resistance constant (Juneja et al. 2001).

The microbial parameters were identified by the use of

eqns (2), (3) and (5). The estimated parameters for Tref ¼
53Æ5�C were as follows: AsymDref ¼ 26Æ46 (min) ± 1Æ86,

z ¼ 3Æ34 (�C) ± 0Æ31, logCc(0) ¼ 0Æ85 (-) ± 0Æ21.

When studying the microbial evolution under the

dynamic temperature profiles the temperature evolution

was given by the modified Dabes kinetics. The Dabes-type

model (written with the parameters of interest of this

study) is given by the equation t ¼ A � Tþ ðB � TÞ
�

ðTdiff � TÞ(Roels 1983). If A ¼ ðtcrit � BÞ
�

Tdiff then the

modified Dabes kinetics as described by Van Impe et al.

(1994) is given by eqn (6). Observe that To is an intercept

added to the modified Dabes model.

T ¼ To þ Tdiff �
ðt þ tcritÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt þ tcritÞ2 � 4 � ðtcrit � BÞ � t

q
2 � ðtcrit � BÞ

ð6Þ

Parameter To (�C) represents the initial temperature

(equals 30�C in all cases), Tdiff (�C) is the difference

between the initial and the final temperatures (equals

25�C in all cases), B (min) refers to a shape parameter

(fixed at 5 � 10�4min as it takes very low values in all

studied cases) and the tcrit (min) is the critical time, i.e.

the time to reach the holding temperature To + Tdiff (see

also Fig. 1). Estimates for the tcrit (min) were 15Æ27,

30Æ61, 45Æ41, 61Æ98, 128Æ89, 168Æ27 min for the heating

rates of 1Æ64, 0Æ82, 0Æ55, 0Æ40, 0Æ20, 0Æ15�C min)1, respect-

ively (Valdramidis et al. 2006).

For performing predictions of the microbial population

during the different heating profiles as based on the iso-

thermal inactivation kinetics, eqn (6) is plugged into (5)

and the latter to eqns (2) and (3). N(0) equals the experi-

mental microbial population at time zero and parameters

AsymDref, z and Cc are the ones estimated before. Addi-

tionally, the following microbiological hypotheses are

considered [similar to the approach discussed in Valdra-

midis et al. (2006)]: (i) thermal inactivation starts at

49Æ5�C, consequently till that time kmax of eqn (5) is set

equal to zero, (ii) potential microbial growth during the

start of the come-up phase is not considered and would,

in any case, be very limited.

Characterization of the observed inactivation rate

The microbial inactivation rate observed during the

dynamic experimental conditions is studied. This is

cperformed by evaluating a so-called observed inactiva-

tion rate, kobs (min)1), i.e. the actual slope of the micro-
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bial inactivation curve. For estimating these slopes a repa-

rameterized model of eqn (4) is proposed, in which kmax

is replaced by kobs and Sl by Md (as explained next):

NðtÞ ¼ Nð0Þ � expð�kobs� tÞ

� expðkobs �MdÞ
1þ ðexpðkobs �MdÞ � 1Þ � expð�kobs� tÞ

ð7Þ

or in log-transformation:

logðNðtÞÞ ¼ logðNð0ÞÞ � kobs � t
Inð10Þ þ

kobs �Md

Inð10Þ
� logð1þ ðexpðkobs �MdÞ � 1Þ � exp ð�kobs � tÞÞ ð8Þ

kobs (min)1) denotes the observed inactivation rate under

dynamic conditions, log(N(0)) (CFU ml)1) is the initial

microbial load and parameter Md (min) (Md stands for

the microbial delay) denotes the observed delay on the

microbial inactivation during dynamic conditions which

can be attributed either to temperatures too low to yield

microbial inactivation or to an (induced) microbial heat

resistance (see example of Fig. 1). Obviously, Md has a

clearly different meaning in comparison with the so-called

shoulder length Sl described for the original version of

the model in which this shoulder length has significance

only in static conditions (Geeraerd et al. 2000). The focus

of using this model is to estimate the observed inactiva-

tion rate of the dynamic experimental studies. In case Md

is larger than the time to reach the holding temperature,

tcrit, then the region where kobs is identified, represents a

static environment (no change of temperature) as in the

example represented in Fig. 1.

Identification of a new model building block

For studying the observed inactivation rate, kobs, with

respect to the heating rate (dT ⁄ dt), a Monod-type equa-

tion is chosen. In order to create an unscaled mathema-

tical expression the kobs is divided by the maximum

specific inactivation rate, kmax, at which the come-up time

is equal to zero (i.e. kmax 55 of the static experiment at

55�C which equals 0Æ26 min)1) (Valdramidis et al. 2005).

Consequently, the following expression is derived having

two parameters, i.e. k1, k2 (see also Fig. 2).

kð<phys2 >Þ ¼ kobs

kmax 55
¼ k1 �

ðdT
�

dtÞ
k2 þ ðdT

�
dtÞ

ð9Þ

k(<phys2>) is then the physiological state of the cells as

influenced by the dynamic temperature environment they

experience. This equation implies that the lower the

heating rate, dT ⁄ dt, the lower the physiological state

k(<phys2>). Mathematically speaking. eqn (9) tends to a

point of (0, 0) with infinite slope. Although experiment-

ally this point cannot be part of an experimental study

because at dT ⁄ dt = 0 the final temperature of 55�C is not

reached, the way the dependent variable of the function

evolves with respect to dT ⁄ dt is the desirable one (i.e. the

lower the heating rate the more the induced microbial

heat resistance to be expected). The necessity of having a

second factor [next to the k(<phys1>) indicated previ-

ously in this text] describing the physiological state of the

cells arises because of the need of incorporating the

dynamic temperature influences on the microbial kinetics.

Additionally, clear separation of the ‘shoulder’ effect and

the ‘induced heat resistance’ effects is desirable for inter-

preting separately these phenomena.

Simulations of the microbial inactivation kinetics when

the effect of the microbial adaptation is considered are

performed by the use of the following equation [based on

the general expression of eqn (1) and the model of Geer-

aerd et al. (2000)].

dN

dt
¼ �kmaxðTÞ �

1

1þ Cc

� �
� kð<phys2 >Þ � N ð10Þ

dCc

dt
¼ �kmaxðTÞ � Cc ð11Þ

The third factor is represented by eqn (9) and is the

additional model building block that aims at describing

the microbial stress-adaptive responses as discussed

before. The effect of the temperature on parameter kmax

is described by the use of the Bigelow (1921) model [eqn

(5)] and the temperature evolution is given by the

modified Dabes kinetics [eqn (6)]. Simulations with the

new developed modelling approach [eqns (10) and (11)]

are performed by using the isothermal inactivation kinetic

parameters AsymDref, z and Cc(0), the experimental N(0),

the identifed parameters of eqn (9) and the already dis-

cussed microbiological hypotheses.
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Figure 1 Graphical example visualizing the significance of parameters

kobs, Md and log(N(0)) based on eqn (8). The heating rate of the

chosen profile is 0Æ20�C min)1.
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Performance capability

In our case study, the accuracy and bias factors (which

are consistent with the least squares algorithm of fitting

models) presented by Baranyi et al. (1999) are considered

in order to evaluate the performance capability of the

developed model.

Af ¼ 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðlog10 N̂i � log10 NiÞ2

n

vuut
ð12Þ

Bf ¼ 10

Xn

i¼1

ðlog10 N̂i � log10 NiÞ
n ð13Þ

where log10 N̂i denotes the predicted microbial load and n

is the number of the experimental measurements. The indi-

ces of eqns (12) and (13) are adapted from their original

form in order to be used for inactivation kinetics and to

compare residuals of observed and simulated microbial

load [in a similar way that Geysen et al. (2006) used them

for growth kinetics]. On the one hand, the accuracy factor

indicates the spread of results around the simulation or, in

other words, how close, on average, simulations are to

observations (values close to 1 are indicative of small devia-

tions). On the other hand, the bias factor evaluates whether

the observed values lie above the simulation line (i.e.

Bf < 1, underprediction of microbial load or fail-danger-

ous) or below the simulation line (i.e. Bf > 1, overpredic-

tion of microbial load or fail-safe) (Ross 1996).

Results

As discussed in Materials and methods, if Md > tcrit then

the region in which kobs is identified is a region in which

temperature does not change (as is the case for the example

in Fig. 1). For this study and for all the examined data sets,

Md > tcrit except for the case where the heating rate is

0Æ15�C min)1. Therefore, the parameter kobs at a heating

rate of 0Æ15�C min)1 is estimated with Md fixed to the

value of the corresponding tcrit. Consequently, kobs will rep-

resent the observed inactivation rate during the final static

temperature, 55�C, of the dynamic experiments, similarly

to the other heating profiles at hand. The estimated para-

meters kobs and Md of eqn (8) are tabulated in Table 1.

At a second step the evolution of the k(<phys2>) with

respect to the heating rate (dT ⁄ dt) is evaluated by eqn

(9). Parameters k1 and k2 are estimated following a non-

linear fitting procedure (Fig. 3) of this Monod-type equa-

tion and result in k1 = 0Æ696 (-) (±0Æ009), k2 = 0Æ042

(�C min)1) ± 0Æ005 (SE).

Finally, microbial simulations of the population level

taking into account the induced microbial heat resistance

are performed with eqns (11) and (14) [as based on eqns

(9) and (10)].

ðdN
�

dtÞ ¼ �kmaxðTÞ �
1

1þCc

� �
� k1 �

ðdT
�

dtÞ
k2 þ ðdT

�
dtÞ

 !
�N

ð14Þ

A posteriori, it can be observed that the newly introduced

factor can be re-arranged in a similar way [having the gen-

eral format 1 ⁄ (1+v)] like the factor describing the shoulder

effect, i.e. as k(<phys1>). If it is assumed that Tk ¼
k2 ⁄ (dT ⁄ dt) then the third factor of the right hand side of

eqn (14) can be reformulated as k1 Æ 1 ⁄ (1þTk).

In Fig. 4, the performance of the developed mathemat-

ical approach incorporating the acquired induced micro-

bial heat resistance is illustrated and confronted with the
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Figure 2 Simulations of eqn (9) for different values of k1 and k2. Left plot: k1 = 0Æ7 ( ), 0Æ8 ( ), 0Æ9 ( ) and k2 = 0Æ04 (�C min)1). Right plot:

k1 = 0Æ8 and k2 = 0Æ04 ( ), 0Æ14 ( ) (�C min)1), 0Æ34 ( ).
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microbial inactivation data at hand. Additionally, these

simulations are plotted next to the microbial predictions

performed without incorporating the factor describing the

induced microbial heat resistance [i.e. the third factor of

the right hand side of eqn (14) is not incorporated] as

discussed before in the section ‘Available model based on

static data’. The deviation of the models from the experi-

mental data is tabulated in Table 2.

Discussion

A model building block related with the microbial

physiology (kphys) under stress conditions is developed.

Evaluation of the performance of the developed mathe-

matical approach depicts that physiological adaptation is

an essential issue to be considered when modelling micro-

bial inactivation. Despite the empiricism of the developed

equation, it can be observed that the equation suitably

describes a qualitative observation originating from the

physiological responses of the cells, i.e. the lower the

heating rate, the larger the induced microbial heat resist-

ance to be expected. In a previous study, an empirical

temperature shift term (i.e. not the actual temperature,

but the actual temperature lowered by some �C is being

used in the model), correcting for the effect of increased

resistance, was incorporated in a microbial modelling

approach (Baranyi et al. 1996). The current alternative

approach aims at introducing an independent factor that

is estimated in relation to the heating rate and respects

the observed phenomenon of induced heat resistance. The

development of a more mechanistic approach is an

important alley towards the future, and may require thor-

ough studies that focus on the quantification of the

molecular adaptations (e.g. production of heat shock pro-

teins) or on the exploitation of microscopical experi-

ments.

It should be stated that for this study the developed

model [eqn (14)] is used only for simulation purposes.

These simulations cannot be called ‘predictions’ as they

are based on information from dynamic data (namely,

kobs). The model based on the static data, on the other

hand, is used for predicting the microbial inactivation

kinetics under unexplored dynamic temperature condi-

tions. The developed approach could describe more accu-

rately the microbial load at all the examined heating rates

than the classical approach in which the add-in model

building block k(<phys2>) is not used. The low values of

Af indicate a small deviation of the microbial population

simulations from the experimental data (see Table 2).

Particularly, the approach based on eqn (14) could des-

cribe (in all cases) with higher accuracy the microbial

population than the other approach. When the model

quality is studied for all the experimental sets, the micro-

bial simulations of eqn (14) gave Bf values close to one.

On the contrary, predictions based on the modelling

approach in which the microbial-induced heat resistance

is not incorporated (Valdramidis et al. 2006) resulted in

very low Bf values, or pronounced fail-dangerous situa-

tions. This means that the developed modelling approach

eventuated in simulations that describe reliably the micro-

bial load and can be considered for ensuring the micro-

bial safety of the examined product under the studied

microbial kinetics.

As discussed in the Materials and methods, for this

study the accuracy factor, Af, and the bias factor, Bf, as

described by Baranyi et al. (1999) are used in order to

evaluate the preformance capability of the model. Various

statistical indices are suggested in the literature in order

to compare competing models. Among these indices

Jeyamkondan et al. (2001) referred to graphical plots,

mean relative percentage residual (MRPR), mean absolute

relative residual (MARR) and root mean squared residual

(RMSR). Similarly, Ross (1996) suggested the use of the

Table 1 Estimated parameters kobs, Md and their standard errors by

using eqn (7), for the studied heating rates

(dT ⁄ dt) (�C min)1) kobs (min)1) ± SE Md (min) ± SE

1Æ64 0Æ1677 ± 0Æ0076 23Æ77 ± 2Æ94

0Æ82 0Æ1652 ± 0Æ0074 38Æ31 ± 2Æ68

0Æ55 0Æ1657 ± 0Æ0100 55Æ59 ± 3Æ66

0Æ40 0Æ1608 ± 0Æ0052 72Æ44 ± 2Æ46

0Æ20 0Æ1431 ± 0Æ0049 134Æ13 ± 2Æ30

0Æ15 0Æ1241 ± 0Æ0074 157Æ72 ± 5Æ47

0Æ15 0Æ1356 ± 0Æ0092 Fixed to 168Æ72
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Figure 3 Fitting of eqn (9) for estimating parameters k1 and k2.

R2
adj ¼ 1� ðn� 1Þ

ðn� pÞ �
ðSSEÞ
ðSSTOÞ ¼ 0�960, where n and p, are number of

data points and number of parameters, respectively, whereas SSE,

SSTO, are the sum of squared errors and the total sum of errors.
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bias (Bf) and accuracy factors (Af) for assessing the pre-

dictive performance of secondary models (e.g. growth rate

or generation time). Additionally, Campos et al. (2005)

discussed the use of the robustness index (RI) and the

mean relative error (RE) for comparing experimental and

predicted microbial counts. Among these statistics the

MRPR, MARR and RE should be considered with caution

as normalization takes place (i.e. residuals are divided by

0 20 40 60 80 100
1

2

3

4

5

6

7

8

9

10

lo
g 1

0 
N

 (
lo

g 1
0 

C
F

U
 m

l−
1 )

lo
g 1

0 
N

 (
lo

g 1
0 

C
F

U
 m

l−
1 )

lo
g 1

0 
N

 (
lo

g 1
0 

C
F

U
 m

l−
1 )

lo
g 1

0 
N

 (
lo

g 1
0 

C
F

U
 m

l−
1 )

lo
g 1

0 
N

 (
lo

g 1
0 

C
F

U
 m

l−
1 )

lo
g 1

0 
N

 (
lo

g 1
0 

C
F

U
 m

l−
1 )

1

2

3

4

5

6

7

8

9

10

Time (min) 

0 20 40 60 80 100 120 140

Time (min) 

20

25

30

35

40

45

50

55

60

65

T
em

pe
ra

tu
re

 (
°C

)

20

25

30

35

40

45

50

55

60

65

T
em

pe
ra

tu
re

 (
°C

)

1

2

3

4

5

6

7

8

9

10

20

25

30

35

40

45

50

55

60

65

T
em

pe
ra

tu
re

 (
°C

)

1

2

3

4

5

6

7

8

9

10

20

25

30

35

40

45

50

55

60

65

T
em

pe
ra

tu
re

 (
°C

)

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140

Time (min) 

0 50 100 150

Time (min) 

20

25

30

35

40

45

50

55

60

65

T
em

pe
ra

tu
re

 (
°C

)

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250

Time (min) 

0 50 100 150 200 250 300

Time (min) 

20

25

30

35

40

45

50

55

60

65

T
em

pe
ra

tu
re

 (
°C

)

Figure 4 Microbial inactivation experiments of Escherichia coli K12 and corresponding temperature profile at all studied heating rates. From left

to right, first row: 1Æ64, 0Æ82�C min)1, second row: 0Æ55, 0Æ40�C min)1, third row: 0Æ20, 0Æ15�C min)1. Thick line: simulations by incorporating

the factor k(<phys2>) [eqn (14)], dashed line predictions without taking into account the k(<phys2>) factor (Valdramidis et al. 2006).

Modelling the microbial heat resistance V.P. Valdramidis et al.

1928 Journal compilation ª 2007 The Society for Applied Microbiology, Journal of Applied Microbiology 103 (2007) 1922–1930

ª 2007 The Authors



the observed or predicted data). This normalization is

built on the assumption that the variability is larger for

larger values of the observed variable. If this would be the

case [which can be proven experimentally, see, e.g. Alber

and Schaffner (1992) and Zwietering et al. (1994)] then

the use of these statistics entails the necessity of using also

a relevant cost function [e.g. weighted sum of squared

errors (WSSE)] during parameter identification. In other

words, if such variability increase would be a reality, then

this phenomenon should also be taken into account dur-

ing parameter estimation, and not only during the evalua-

tion of the model.

Previous studies in which microbial predictions were

developed based on isothermal inactivation kinetics have

shown a lacking on the prediction capability of the imple-

mented microbial inactivation models under dynamic

conditions (Hassani et al. 2005, 2006; Valdramidis et al.

2006). Cheroutre-Vialette and Lebert (2000) argue about

the use of differential equations describing variable condi-

tions when the inactivation parameters are transposed

from static conditions to evaluate variable conditions.

The representation of these physiological changes because

of a (slowly) increasing temperature by the use of an

add-in building block in a differential equation can work

as a correcting factor for improving the modelling accu-

racy. This factor represents the acquired (or induced)

microbial thermotolerance. It can be attributed to differ-

ent causes among which is the heat shock protein pro-

duction. For example, the stress-adaptive responses of

E. coli O157:H7 in a model beef gravy system were associ-

ated to an increase in the levels of hsps proteins, e.g.

GroEL, DnaK [see Juneja and Novak 2003, for a general

review on synthesis of heat shock proteins, or for some

representative examples see Juneja et al. (1998) and

Tsuchido et al. (1992)]. Nevertheless, some studies argue

that other factors such as plasma membrane phospholipid

denaturation could be involved in this phenomenon

(Morozov et al. 1997; Guyot et al. 2005).

From these, it can be concluded that any microbial

response resulting in physiological adaptations should be

considered mathematically. Consequently, reliable quantifi-

cation of the safety risks and of the processing impacts

avoiding any fail-dangerous or overly conservative (fail-

safe) heat-processing designs can be achieved. In further

research, the presented methodology will be validated

(concerning the performance of microbial predictions) on

several experimental data generated in dynamic conditions.
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