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ABSTRACT Human infection with Shiga toxin-producing
Escherichia coli O157:H7 (STEC O157) is relatively rare, but the
consequences can be serious, especially in the very young and
the elderly. Efforts to control the flow of STEC O157 during beef
processing have meaningfully reduced the incidence of human
STEC O157 infection, particularly prior to 2005. Unfortunately,
despite early progress, the incidence of STEC O157 infection has
not changed meaningfully or statistically in recent years,
suggesting that additional actions, for example, targeting the
cattle reservoir, are necessary to further reduce STEC O157
illness. Ideally, preharvest interventions against STEC O157
should reduce the likelihood that cattle carry the organism,
have practical application within the beef production system,
and add sufficient value to the cattle to offset the cost of the
intervention. A number of STEC O157 antigens are being
investigated as potential vaccine targets. Some vaccine products
have demonstrated efficacy to reduce the prevalence of cattle
carrying STEC O157 by making the gut unfavorable to
colonization. However, in conditions of natural exposure,
efficacy afforded by vaccination depends on how the products
are used to control environmental transmission within groups of
cattle and throughout the production system. Although cattle
vaccines against STECO157 have gained either full or preliminary
regulatory approval in Canada and the United States, widespread
use by cattle feeders is unlikely until there is an economic signal
to indicate that cattle vaccinated against STEC O157 are valued
over other cattle.

INTRODUCTION
Human infection with Shiga toxin-producing Esche-
richia coli O157:H7 (STEC O157) is relatively rare, but
the consequences can be serious, especially in the very
young and the elderly. Outcomes associated with STEC
O157 infection include hemorrhagic colitis, renal fail-
ure, and death (1–5). In 2012, the overall laboratory-
confirmed annual incidence of STEC O157 in the
United States was 1.1 cases per 100,000 population (6).

However, the incidence in children less than 5 years of
age was 4.7 cases per 100,000 population (6).

Infection from STEC O157 occurs directly or indi-
rectly via fecal-oral transmission (7). People are exposed
to STEC O157 through a variety of sources, including
direct contact with human or animal feces and indirect
contact via contaminated food, water, or soil (8). The
primary route of transmission of STEC O157 is con-
taminated food (9, 10); however, large outbreaks have
been associated with contamination of municipal water
supplies (11–14). Important environmental hazards for
human exposure to STEC include daycare facilities,
nursing homes, children playing with a sick friend,
swimming pools, contaminated food and water, and
direct exposure to animal environments such as farms,
petting zoos, or livestock exhibitions (9, 10, 15). Ap-
proximately one-third of human infections are attrib-
uted to consumption of ground or nonintact beef (16).
Some of the earliest and most notorious outbreaks
of STEC O157 infection were associated with the con-
sumption of undercooked ground beef sandwiches,
resulting in the infection being commonly known as
“hamburger disease” (2, 17–19).

STEC has been recovered from many animal species,
but ruminants are particularly prone to colonization
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(20). Of ruminants, cattle populations are widely rec-
ognized as an important reservoir of STEC O157 for
human exposure in the United States (8, 21).

A variety of vehicles, other than food, have been im-
portant in the fecal-oral transmission of STEC strains to
humans, including fomites such as dust (22) and water
(11–14) and vectors such as flies (23–27). Other animals,
besides cattle, have caused important STEC outbreaks in
humans because they served as vehicles for fruit or veg-
etable crop contamination. For example, a large STEC
O157 outbreak in the United States and Canada was
due to consumption of spinach that was contaminated
in the field by feces from feral pigs that had contact with
cattle pastures (28). In Oregon, deer were the source of
feces that contaminated strawberries with STEC O157,
resulting in one death and at least 14 illnesses (29).

Circumstantial evidence supports the contention that
cattle are the primary reservoir for human exposure to
STEC in North America. First, there is strong correlation
between seasonal variability in incidence of human STEC
O157 illness, prevalence of ground beef contamination
with STEC O157, and prevalence of STEC O157 shed-
ding by cattle in feedlots, all greater in summer months
than winter months (30). This relationship may indicate
that STEC O157, originating in or on cattle, contami-
nates ground beef to eventually become the source for
subsequent human infection (30). In addition, there is a
correlation between the prevalence of carriage of STEC
O157 in feces or on hides of live cattle entering the ab-
attoir and subsequent rates of carcass contamination
(31, 32). Finally, since 1998 in the United States, human
incidence of STEC O157 has decreased (6), largely be-
cause of interventions taken in abattoirs to reduce the
flow of STEC O157 from live cattle into the beef supply
(33, 34). The decrease in incidence since 1998 is greater
than the proportion of illnesses attributable to contami-
nated beef, suggesting that decreasing the bacterial flow
from beef prevented secondary cases of person-to-person
STEC O157 infection. Unfortunately, the incidence of
STEC O157 infection has not changed meaningfully or
statistically compared to the average annual incidence
during 2006–2008, suggesting that additional actions,
for example, at the preharvest level, are necessary to
further reduce rates of STEC O157 illness (6).

PREHARVEST ECOLOGY OF STEC O157
Cattle are colonized by STEC O157 primarily at the
terminal rectum (35, 36). Colonization by STEC O157
requires attachment to intestinal epithelium and induces
attaching and effacing lesions. Following STEC O157

infection in cattle of all ages, inflammation and innate
and adaptive immune responses occur (37), supporting
the contention that STEC O157 is a bovine pathogen
(37, 38). However, this latter point remains controver-
sial because infection does not result in clinically ob-
servable signs of illness in adult cattle (39, 40). In any
case, not all cattle shedding STEC in their feces are
currently colonized; some may be shedding ingested
organisms that are simply passing through the intesti-
nal tract (41, 42). The duration of infection in cattle is
variable but short-lived, approximating a month (41,
43–45). In field settings, reinfection is common (44).

Prevalence of STEC O157 carriage by feedlot cattle
varies widely within and across seasons and is affected
by both incidence and duration of shedding (44, 46, 47).
The probability of cattle carrying STEC depends on both
gut and environmental conditions that change over time.
As with all E. coli strains, conditions of the bovine gut
that favor STEC O157 may increase colonization and
duration of shedding. Factors of the environment that
favor STEC O157 survival or opportunities for fecal-
oral transmission increase the incidence of exposure.
This is because pathogenic and commensalE. coli strains
have two principal habitats: a primary habitat in the
lower intestine of warm-blooded animals and a sec-
ondary habitat in water, sediment, and soil (48). The
suitability of the primary habitat is influenced by factors
such as physical characteristics (e.g., pH); the host’s diet,
immune system, and physiological state; and interac-
tions with other microorganisms in the same region.
The suitability of the secondary habitat is also complex
and dependent on physical factors, climatic and meteo-
rological factors, nutrients, and interactions with other
microorganisms within the ecosystem. In contrast to
the primary habitat, which is uniformly warm, approx-
imately 37°C, and nutrient rich, the secondary habitat
may have extremes in temperatures and is typically
nutrient deficient (48). Environmental conditions that
favor survival and fecal-oral transmission have been
associated with greater rates of exposure and shedding
in feedlot cattle (46, 47).

Transmission heterogeneity, or superspreading, is
the phenomenon of a minority of infected individuals
being responsible for transmitting the majority of new
infections (49, 50). At a given point in time, STEC
O157-infected cattle shed the organism at varying con-
centrations in feces (42, 51, 52). Therefore, some cattle
may contribute vastly more STEC organisms into the
environment, and possibly to other cattle, than others.
Cattle that shed STEC at greater than 103 or 104 CFU/g
of feces, or cattle that are culture-positive for prolonged
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periods, have variously been defined by the term super-
shedder (42, 51). It has been proposed that super-
shedding status is indicative of cattle colonized by
STEC rather than cattle experiencing simple pass-
through of organisms (42). Because of the greater
number of organisms being shed, cattle designated as
super-shedders may have an important effect on envi-
ronmental contamination and subsequent transmission
within cattle production settings (53) or in lairage (54).
The relevance of super-shedding to STEC O157 control
is not clear. Super-shedding of STEC O157 in feces does
not appear to be a persistent state, and we do not yet
understand if super-shedding is a characteristic of cer-
tain cattle or merely a stage of infection that cattle
transition through following infection. It has been ob-
served that detection of super-shedding cattle is tempo-
rally correlated with periods of high prevalence, and
super-shedder cattle appear to be a subset of fecal-
culture-positive individuals within the population (42,
55). Super-shedding may not be necessary or sufficient
for STEC O157 transmission, even in closed (all-in,
all-out type) feeding systems (56). Rather than super-
shedding cattle driving transmission of STEC to other
cattle, super-shedding may be an outcome of environ-
mental conditions that favor ingestion of the organism
(47). When those conditions favor new host infections,
then some cattle may become colonized and transiently
shed large numbers of organisms, and because of fa-
vorable conditions for transmission, the duration of
detectable shedding may be prolonged (44).

To reduce the prevalence of STEC O157 carriage by
cattle, efforts have been attempted to make either the
primary or secondary habitat less favorable to STEC
O157 survival or growth (57–59). To date, efforts to
make the cattle environment less hospitable to STEC
O157, for example, by scraping pen surfaces or cleaning
water tanks, have not effectively reduced STEC O157
carriage by cattle (60–62). However, several strategies
for modifying the gut environment, including the use of
vaccines; chemicals, such as sodium chlorate or anti-
biotics; and competing microorganisms, such as some
strains of Lactobacillus, have effectively reduced the
probability of cattle shedding STEC O157 in feces (63–
66).

VACCINATION OF CATTLE
AGAINST STEC O157
The objective of immunizing cattle against STEC O157
is to make the gut unfavorable for colonization, thereby
reducing duration of carriage and minimizing shedding

of the pathogen into the cattle environment (58).
In theory, the benefit of vaccination within discrete
populations (e.g., pens or herds of cattle) is reduced
fecal-oral transmission within cattle environments, less
contamination of cattle hides, and fewer pathogens
carried into the abattoir at harvest. For vaccination
to be useful as a preharvest intervention, the benefits
must not be undone during subsequent management
practices, such as transportation to the abattoir (67)
or during holding in lairage (32, 68, 69). Preharvest
interventions such as vaccination are not likely to be
adopted widely by cattle producers until they are suffi-
ciently valued in the marketplace to offset the cost of
implementation.

Some candidate vaccines against STEC O157 have
been tested in animal challenge studies or under field
conditions of natural exposure. These vaccines either
have undefined antigen targets in the form of bacterial
extracts or are directed against specific antigens that
function to enable bacterial colonization or survival.
Unfortunately, because of serotype specificity, vaccines
targeting STEC O157 may offer poor cross-protection
against other STEC strains (70).

In randomized controlled studies, the strength of
effect of a vaccine is often expressed as vaccine effi-
cacy, a form of attributable fraction that measures the
percentage of cases prevented by vaccination (71).
Vaccine efficacy is calculated as 1 minus relative risk
(72). In this case, relative risk is the probability of
vaccinated cattle to carry STEC O157 divided by the
probability of nonvaccinated cattle to carry the or-
ganism. The odds ratio is the statistical measure of
association often reported from vaccine field studies
because logistic regression is a commonly used method
to analyze the data. Regardless of whether the com-
parison uses odds (i.e., odds ratio) or probability (i.e.,
relative risk), a value of 1 indicates no difference from
the treatment. The further the value is from 1, toward
0 or infinity, the larger the measure of association. If
the study is not a case-control study design, then odds
ratio can be converted to relative risk after adjustment
for marginal probabilities for disease and exposure
(73). In studies with measures of fecal concentration,
the measure of association may be expressed as the
change in concentration due to vaccine treatment,
which is often described as a logarithmic (base 10)
reduction (74) and sometimes reported as a percent-
age (e.g., a decrease from 10,000 CFU/g of feces to
1,000 CFU/g of feces is a decrease of 1 log(10) in CFU/g
of feces and may be expressed as a 90% reduction in
shedding concentration).
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Vaccine Challenge Studies
STECO157 colonizes bovine intestinal epithelial cells by
a type III secreted protein (TTSP) system. Components
of the TTSP system include:

• Intimin, an outer membrane bacterial receptor
• Translocated intimin receptor (Tir), a receptor in-

jected into the host epithelial cell membrane
• EspA, an injection filament for delivering Tir to the

host cell membrane
• EspB/EspD, which form a pore in the host cell

membrane (7, 40, 75, 76)

The H7 flagellin is also believed to function in STEC
O157:H7 colonization (77–79). For some STEC non-
O157 serotypes, the enterohemorrhagicE. coli factor for
adherence (efa-1) is important for colonization of bovine
intestines, and STEC O157 carries a truncated form of
the gene (80).

Vaccines targeting various STEC O15-specific anti-
gens have been tested in animal challenge studies. Sev-
eral studies have demonstrated immune response against
the antigens but variable results regarding protection
against STECO157 infection. Suckling pigs whose dams
were vaccinated with an intimin vaccine were protected
from colonization or microscopic evidence of intesti-
nal damage following oral challenge with 106 CFU of a
Shiga toxin-negative strain of EHEC O157:H7 (81).
Calves vaccinated with EspA developed antigen-specific
antibody titers but failed to be protected against colo-
nization with STEC O157 following challenge (82).
Similarly, subunit vaccines targeting polypeptides of
intimin or efa-1 elicited humoral responses in 2-week-
old calves following intramuscular priming and intra-
nasal booster doses, but the vaccine products failed to
prevent shedding after STEC O157 or STEC O26 chal-
lenge (80). In the same study, a formalin-inactivated
STEC O157 bacterin administered intramuscularly with
subsequent intranasal booster doses also failed to reduce
shedding in challenged calves (80). Two-month-old
calves vaccinated intramuscularly with H7 flagellin had
reduced rates of colonization and delayed peak bacterial
shedding following oral challenge with STEC O157, but
the calves did not show a reduction in total bacterial
shedding (83). However, a vaccine prepared with in-
timin, EspA, and Tir did reduce STEC O157 coloniza-
tion and bacterial counts in calves orally inoculated with
STEC O157 (84). Also, lambs that had been vaccinated
with intimin, EspA, and EspB shed fewer bacteria in
feces than placebo-treated controls did following an oral
challenge with STEC O157 (85). Six- to 8-month-old

calves injected intramuscularly with a vaccine product
containing intimin and EspB proteins developed an an-
tibody response against the proteins and shed fewer
STEC O157 bacteria in the first 13 days post challenge
(86). Calves vaccinated with a bacterial supernatant
with TTSP had reduced probability, magnitude, and
duration of shedding of STECO157 following challenge
(87). In a follow-up study, calves receiving the same
vaccine product were 21% less likely to shed STEC
O157 in the feces and shed at a 1.4 log(10) lower fecal
concentration 3 to 6 days after experimental challenge
with 109 CFU of STEC O157 (74). Calves injected
twice subcutaneously with an inactivated, whole-cell
envelope vaccine (STEC O157 bacterial ghosts) dem-
onstrated an antibody response and shed fewer STEC
O157 post challenge (88). Vaccination of pregnant cows
with intimin, EspA, EspB, and Shiga toxin 2 within 2
months of calving produced elevated serum and colos-
tral antibodies against intimin and EspB and a moderate
increase in EspA antibodies (89). Calves fed the dam’s
colostrum had significantly increased serum immuno-
globulin G titers against intimin and EspB, but not EspA
(89).

Siderophore receptor and porin (SRP) vaccines are
targeted against bacterial cell membrane proteins used
by gram-negative bacteria for iron transport in condi-
tions of low iron supply (90). By limiting its uptake of
iron, STEC O157 is placed at a competitive disadvan-
tage relative to other gut microbiota (91). In a study of
beef calves orally inoculated with STEC O157, the SRP
vaccine reduced fecal prevalence and bacterial concen-
tration to a level that approached statistical significance
(90).

Vaccine Field Studies
The outcomes of experimental challenge studies may not
predict the efficacy of a STEC O157 vaccine as it is used
under field conditions because factors affecting rates of
transmission, sources of pathogens, and dose-loads of
exposure are complex and temporally dynamic in cattle
production settings (44, 46, 47). Only a few STECO157
vaccine products have been evaluated for efficacy in the
conditions of natural STECO157 exposure within cattle
production systems. An uncharacterized bacterial ex-
tract did not reduce STECO157 carriage in feedlot cattle
(92). Another uncharacterized STEC O157 vaccine,
administered to pregnant beef cattle during the last tri-
mester of gestation, significantly increased antibody
titers in the dam and subsequently the calf, but the study
had insufficient power to evaluate efficacy at prevent-
ing shedding of STEC O157 by the calves (93). Calves
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suckling cows that had been vaccinated against SRP
antigens had significantly greater antibody titers against
STEC O157 SRP at branding (i.e., 30 to 60 days of age),
but neither the passively acquired antibodies nor active
immunization significantly prevented STEC O157 shed-
ding by the calves at feedlot entry (94).

Two vaccine products, one targeting TTSP, the other
SRP, have been tested extensively in dry-lot beef feedlots
under conditions typical of the Central Plains regions of
the United States and Canada. These products were the
subject of several systematic reviews and meta-analyses
that found sufficient evidence to conclude that both
vaccines effectively reduce the probability of feedlot
cattle to shed STEC O157 in feces (63, 95). One meta-
analysis of fecal shedding found the overall odds ratios
(and 95% confidence intervals) for detecting STEC
O157 in the feces of vaccinated cattle relative to non-
vaccinated cattle to be 0.38 (0.29–0.51) and 0.42 (0.20–
0.61) for TTSP and SRP vaccines, respectively (63).
Given the overall fecal shedding prevalence of 15%
observed in the TTSP studies (63), the odds ratio of 0.38
converts to a relative risk of 0.42 and vaccine efficacy of
0.58 (96). Another meta-analysis looked at all outcomes
and reported that two doses of TTSP vaccine had odds
ratios of 0.49 (0.40–0.60) for preharvest outcomes and
0.45 (0.34–0.60) for preharvest and at-harvest outcomes
combined (95).

Details from individual studies provide additional
information about the efficacy of STEC O157 vaccine
products, although some details, such as antigen con-
centrations, have not always been reported. Using steers
screened to be negative for STEC O157 carriage before
the study start, researchers found that steers vaccinated
twice with either 2 or 3 ml of SRP vaccine were 14 and
47% less likely than placebo-treated steers to have STEC
O157 detected in either feces or rectoanal mucosa swab
samples, respectively (97). Feedlot cattle receiving a
2-ml, two-dose SRP vaccine regimen did not differ from
controls in STEC O157 carriage over the postvaccina-
tion period except for the last day of the study (91). In
a trial testing a 2-ml, three-dose SRP vaccine regimen
against placebo-treated cattle, the vaccine was 85% ef-
fective in reducing the probability of detecting STEC
O157 in feces and reduced STEC O157 concentration
1.7 logs compared to controls 56 days after the last
dose of vaccine (91). In a vaccine trial conducted in a
commercial feedlot, the SRP vaccine demonstrated 53%
vaccine efficacy in reducing STEC O157 prevalence
and 73% efficacy in reducing the prevalence of high
shedders, defined as cattle shedding >104 CFU/g of feces
(98). In that study, pens of cattle receiving vaccination

had significantly reduced feed efficiency and rate of
gain, which may represent an additional cost of the in-
tervention (98).

Vaccinating feedlot cattle with a TTSP vaccine pro-
duct failed to be efficacious in a large initial vaccine
field trial (99). However, the vaccine product was re-
formulated and efficacy improved (99). Vaccine efficacy
of a three-dose regimen of TTSP vaccine to reduce the
probability of feedlot cattle shedding STEC O157 has
ranged from 43 to 73% in several randomized con-
trolled trials (87, 100–102). In addition, the vaccine was
92% and 98% effective in reducing the probability of
colonization of the terminal rectum when two- (103) or
three-dose (104) regimens, respectively, were used. Two
doses of the same vaccine product significantly reduced
carriage of STECO157 by feedlot cattle (103, 105, 106),
and it appears that two doses of vaccine may be suffi-
cient to induce an effective immune response (95).
However, three doses of vaccine were more effective
than two doses in trials with direct comparisons (100,
107). This vaccine does not appear to affect growth
performance (104, 107) or carcass quality (104, 106,
107).

The duration of immunity after vaccination is un-
known because the evaluation period in feedlot studies
has been relatively short, typically with postvaccination
observation periods of between 60 and 100 days (63,
108, 109). Increasing or decreasing immunity would
be evident as a statistical interaction between vaccine
treatment and time elapsing since vaccination on the
probability of cattle carrying the organism. This inter-
action has not been reported. Even though vaccine effi-
cacy appears to persist sufficiently long enough for cattle
on finishing diets, duration of immunity remains an
important unmet area of investigation for beef and dairy
young-stock and breeding cattle (109).

Cattle are typically managed as groups (e.g., pens or
herds of cattle), which are fed and housed together.
Similarly, cattle management practices such as vaccina-
tion are usually applied to the group, partly for ease of
management and to provide protection to the group
rather than simply the individual. The ability of groups
to resist infection, or to limit the extent of infection
within the group, is termed herd immunity (110). Herd
immunity is a function of individual resistance to infec-
tion and the dynamics of transmission within the group
(110, 111). Individuals lacking immunity may be pro-
tected from infection because of group-level factors; for
example, the majority of individuals with immunity
change the likelihood of exposure to those without
(110).
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The probability of cattle carrying STEC O157 in the
gut or on their hides is affected by group-level factors.
For example, the distribution of fecal prevalence of
STEC O157 within pens of feedlot cattle tends to be
greater or lesser than expected by binomial distribution
around the mean (46), suggesting that, at a given point
in time, cattle within pens behave similarly with respect
to STEC O157 shedding (i.e., most cattle shedding or
most not). Factors explaining the probability of cattle
shedding the agent or having evidence of oral exposure
are associated with characteristics of the pen environ-
ment that either favor survival of the organism (e.g.,
warm or wet) or increase opportunities for ingestion
(e.g., mud or dust), indicating that sometimes the pen
environment favors fecal-oral transmission and some-
times it does not (44, 46, 47, 112). Therefore, it is im-
portant to evaluate group-level effects of vaccinating
cattle against STEC O157. There is evidence that fecal-
oral transmission of STEC O157 is reduced within pens
of vaccinated cattle. Herd immunity was demonstrated
in a longitudinal STEC O157 vaccine study as non-
vaccinated cattle housed with vaccinated cattle were less
likely to shed STEC O157 compared to cattle penned in
the same feedyard where none of the cattle received
vaccine (107). Vaccinated cattle housed together in large
commercial feedyard pens were less likely to have oral
exposure to STEC O157 compared to nonvaccinated
cattle housed together in pens in the same feedyards,
based on culturing ropes hung on feedbunk rails for
cattle to chew (103). Culture of STEC O157 from ropes
is correlated to fecal shedding prevalence (112), and
more directly measures opportunities for oral exposure
(113).

The value of considering the effects of group-level
vaccination when designing a STEC O157 cattle vacci-
nation program was demonstrated by the greater effi-
cacy in reducing hide contamination when all cattle in a
region of a feedyard were vaccinated compared to the
efficacy observed when vaccinated and unvaccinated
cattle were commingled within pens (106). Efficacy
against hide contamination is important because the
hides of cattle are the primary source of STEC O157
carcass contamination (32, 69, 114, 115). It was hy-
pothesized that vaccination of all cattle within a region
of a feedyard, or the entire feedyard, would result in a
greater reduction in the load of organisms deposited by
cattle into the environment and less subsequent con-
tamination of hides than when vaccinated cattle are
commingled in pens of nonvaccinated cattle (106). This
finding illustrates that the goal of a cattle vaccination
program against STEC O157 is to reduce environmental

pathogen load to minimize ingestion of the organism or
hide contamination, and this may be accomplished most
effectively by administering the vaccine to all cattle
within a production system (106).

Whatever efficacy a vaccine may have before harvest,
it can be undone by events occurring during subsequent
stages of the food system, such as cross-contamination
of cattle hides with STECO157 during transportation or
while cattle are in lairage (32, 67, 116). However, the
efficacy of preharvest interventions has persisted into the
abattoir. In a randomized clinical trial to test a STEC
O157 cattle vaccine, there was a significant increase in
the prevalence of hide contamination between the time
immediately before loading at the feedyard versus just
before hide removal in the abattoir. However, vaccina-
tion treatments had equal efficacy for reducing hide
contamination in the feedyard and at the abattoir. The
preservation of vaccine efficacy into the abattoir may
have been the result of efforts to load cattle by treatment
groups into clean trucks for transportation to the abat-
toir (106). Therefore, to preserve vaccine efficacy, it may
be necessary to devise methods for cattle handling so
that preharvest benefits are retained post harvest.

Modeling STEC O157 Vaccine Usefulness
Ultimately, the reasons for vaccinating cattle against
STEC O157 are to (i) benefit public health by preventing
human STEC O157 infection and (ii) reduce costs to the
beef industry due to recalls, lost product value, and lia-
bility. There is value in preventing human illness from
direct contact with cattle or their environments, but this
is a less common source of human illness compared to
infections acquired through contaminated food, includ-
ing beef, milk, and vegetable crops (9, 10). The primary
value of vaccinating live cattle is the benefit to the post-
harvest sectors of the food system and the consumers
of food products. An intervention is not likely to be used
if the costs of the intervention exceed the benefits to
the food industry or public health. Mathematical mo-
dels provide a conceptual framework for understand-
ing pathogen transmission dynamics. Models can help
identify knowledge gaps, give insight into new research
questions, and predict the usefulness of intervention
strategies (117).

From a public health policy perspective, one might
compare the cost of human illness to the cost of a pre-
harvest intervention. If the marginal costs of vaccinating
cattle were equivalent to the marginal benefit to public
health, then as the cost of a vaccine intervention in-
creased, fewer cattle would be vaccinated, and as a result,
fewer human illnesses would be prevented. Similarly, the
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number of cattle that must receive an intervention to
prevent a single human illness increases as the effective-
ness of the product decreases (16). From a beef industry
perspective, preharvest interventions might be valued
on the basis of how cattle carrying STEC O157 into
the abattoir affect subsequent food safety costs. For ex-
ample, because an important source of STEC O157
carcass contamination is the hide (32), and fecal shed-
ding prevalence above 20% has been associated with
higher prevalence levels of hide contamination (118),
postharvest sectors of the beef industry might benefit
from preharvest interventions that supply cattle at har-
vest with less hide contamination and reduced, less var-
iable, fecal shedding prevalence that does not overwhelm
subsequent postharvest interventions.

Quantitative or qualitative models have been used
to investigate the value of vaccinating cattle and other
methods of intervention. Many models predict benefit
to both public health and the beef industry from vacci-
nating cattle against STEC O157. For example, a model
simulating ground beef contamination in Argentina
predicted that vaccinating cattle and online hide wash-
ing would have the greatest impacts on reducing STEC
O157 prevalence and concentration in ground beef pro-
duct and the resulting numbers of human infections,
hemolytic-uremic syndrome, and STECO157-associated
mortalities per ground beef meal (119). A stochastic
simulation model based on U.S. beef production systems
and risk for infection through consumption of ground
beef also concluded that vaccination of cattle would
have a strong impact on decreasing the number of hu-
man STEC O157 illnesses, the number of contaminated
beef production lots, the likelihood of STEC O157 de-
tection by regulatory testing, and the probability of
outbreaks due to ground beef servings from the same
lot (120). A simulation model was used to investi-
gate infection transmission in pastured cattle systems.
The modelers concluded that vaccine efficacy of 60%
would be particularly effective in reducing levels of in-
fection in a herd (121). Stochastic simulation of the
distribution of pen-level fecal shedding prevalence in
U.S. commercial beef feedyards predicted that vaccina-
tion of summer-fed cattle with a 58% effective product
would eliminate pens of highest prevalence, resulting in
a prevalence distribution similar to what is typically
observed in winter-fed cattle. This model showed that a
major effect of vaccination is reduced variability in
shedding prevalence (122). The opinions of experts
were used in a best-worse scaling evaluation to gain
consensus on the effectiveness and practicality of on-
farm methods to reduce human exposure to STECO157

(123). Intervention methods were evaluated for effec-
tiveness and practicality. By this process, vaccination of
cattle was considered the most effective, and hand
washing the most practical, method to reduce human
exposure to STEC (123).

CONCLUSION
Ideally, preharvest interventions against STEC O157
should be

• Efficacious—cattle are less likely to carry the or-
ganism because of the intervention

• Useful—able to be practically applied within the
beef production system

• Economical—add sufficient value to the product
to offset the cost of the intervention

A number of STEC O157 antigens are being investi-
gated as potential vaccine targets. Some vaccine products
have demonstrated efficacy to reduce the prevalence of
cattle carrying STECO157bymaking the gut environment
unfavorable to colonization. However, in conditions of
natural exposure, efficacy afforded by vaccination depends
on how the products are used to control environmental
transmission within groups of cattle or throughout the
production system (106). Preharvest benefits from vacci-
nation may be nullified unless steps are taken to prevent
cross-contamination of cattle or beef product throughout
the food system (68). Although cattle vaccines against
STEC O157 have gained either full or preliminary regu-
latory approval in Canada and the United States, it is not
yet clear if they will be widely adopted by cattle feeders
because there is not yet an economic signal to indicate that
cattle vaccinated against STECO157are valued over other
cattle.
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