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ABSTRACT Preharvest food safety refers to the concept of
reducing the rates of contamination of unprocessed foods
with food-borne disease pathogens in order to reduce human
exposure and disease. This article addresses the search for
effective preharvest food safety practices for application to live
cattle to reduce both contamination of foods of bovine origin
and environmental contamination resulting from cattle.
Although this research has resulted in several practices that
significantly decrease contamination by Escherichia coli O157,
the effects are limited in magnitude and unlikely to affect the
incidence of human disease without much wider application and
considerably higher efficacy than is presently apparent. Infection
of cattle with E. coli O157 is transient and seasonally variable,
likely resulting from a complex web of exposures. It is likely that
better identification of the true maintenance reservoir of this
agent and related Shiga toxin-producing E. coli is required to
develop more effective control measures for these important
food- and waterborne disease agents.

INTRODUCTION
Upton Sinclair’s novel, The Jungle, which described
horrific conditions in historical Chicago meat packing
plants, engendered numerous reforms and regulations
of the industry, including the Pure Food and Drug
Act and the Meat Inspection Act of 1906, which in
turn led to vast improvements in the sanitary conditions
under which meat and meat products were handled.
The massive and highly publicized 1993 outbreak of
Escherichia coli O157 associated with Jack in the Box
had a similar broad impact for the microbiological

safety of food, including the classification of this path-
ogen as an “adulterant” in ground beef, and led to the
implementation of the formal Pathogen Reduction and
Hazard Analysis and Critical Control Point Program for
this bacterium and other food-borne agents in meat
processing plants. These changes were credited with
significant reduction in the incidence of human infection
with E. coli O157 in the United States over the subse-
quent several years; however, this trend did not contin-
ue, and in recent years the incidence of disease due to
E. coli O157 has remained stubbornly stable. Incidence
of disease caused by non-O157 Shiga toxin-producing
E. coli (STEC) has paradoxically steadily increased,
although this trend is undoubtedly due in part to in-
creased use of more efficient diagnostic procedures.

The continued occurrence of disease outbreaks from
E. coli O157 and other pathogenic STEC strains linked
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to ground beef indicates the limitations of postprocessing
interventions to completely eliminate risk of human ex-
posure through contaminated meat and meat products.
New evidence of disease linked to other sources, in-
cluding contaminated produce, water, and other envi-
ronmental exposures including direct animal contacts,
indicates that this group of pathogens has a more com-
plex ecology than may have been previously recognized.
This article addresses some of the data supporting this
complexity to explain why human disease incidence is
not declining, discusses the implications of the different
genetic lineages of E. coli O157 on sources and severity
of human infection, and reviews the benefits and limi-
tations of control measures directed toward reducing
the prevalence and shedding level of E. coli O157 and
other pathogenic STEC strains by cattle, otherwise
known as preharvest food safety in cattle production.

Twenty Years after the “Jack in the Box”
Outbreak, Why Is E. coli O157 still a Problem?
Why has the incidence of human infection with E. coli
O157 and other STEC pathogens remained stubbornly
steady despite the implementation of stringent regula-
tions and large investments in improved equipment and
processing methods in meat packaging plants? One im-
portant factor is seasonal variation, or the marked in-
crease in the numbers of cattle shedding E. coli O157 in
their feces accompanied by increased contamination of
hair coats (hides) during summer months. This seasonal
variation results in increased contamination pressure,
potentially overwhelming the control measures that are
otherwise effective in preventing meat contamination
during the rest of the year. The effects of higher con-
tamination of cattle that overwhelm the control mea-
sures could be mitigated, at least in part, by adding a
final decontamination step such as gamma irradiation
for meat products of beef origin. However, in the ab-
sence of such a highly effective decontamination step,
further reductions in meat-borne exposures to E. coli
O157 may require interventions that reduce the degree
of contamination of cattle sent to slaughter. Over the
years, it has become clear that apart from ground beef,
there are numerous vehicles for E. coli O157 that can
result in human exposure, including fresh produce,
drinking and recreational water, direct contacts with
animals, and other environmental sources and reser-
voirs. This complex ecology of E. coli O157 likely con-
tributes to seasonal infection pressure on cattle as well,
and needs to be addressed in order to develop highly
effective methods to reduce cattle infections with E. coli
O157 and other pathogenic STEC strains.

How Do Foods of Bovine Origin Become
Contaminated with E. coli O157?
There is a strong correlation between E. coliO157 prev-
alence in the feces and on the hair coats of cattle entering
slaughter plants and carcass contamination during pro-
cessing (1). Recent studies have begun to characterize the
level of pathogen reduction in cattle feces that may be
necessary to significantly reduce the hide and carcass
contamination during processing.Woerner et al. showed
that fecal pen prevalence exceeding 20% was associated
with hide contamination prevalence of 80% or more (2).
Similarly, Arthur et al. determined that slaughter cattle
from feedlot pens with more than 20% positive fecal
pats had both higher hide contamination rates (25.5%)
and higher carcass contamination at pre-evisceration
(14.3%), post-evisceration (2.9%), and post–final in-
tervention (0.7%) stages (3). Comparative figures for
slaughter cattle from feedlot pens with <20% positive
fecal pat samples were lower hide contamination (5%)
and carcass contamination 6.3%, 0% and 0% at pre-
evisceration, post-evisceration, and post–final interven-
tion stages, respectively (3). Overall, these data suggest
that 20% fecal pat prevalence may be a functional
threshold or marker for predicting groups of feedlot
cattle having increased risk of hide or carcass contami-
nation. Management practices that consistently result in
fecal pat prevalence of less than 20% may therefore be
required to accomplish further progress in preharvest
food safety.

Can Live Cattle Be Managed to Reduce
or Prevent E. coli O157 Infection?
Heavily contaminated cattle entering meat processing
plants can apparently overwhelm the best sanitary
procedures in practice; therefore, preharvest interven-
tions in cattle rearing, management and husbandry,
transport, and lairage that can effectively reduce the
frequency of cattle infection with E. coli O157 offer
the potential to reduce human exposures. In the last
2 decades, the development of preharvest interventions
has remained a major focus of the food safety research
in the United States. The early emphasis of preharvest
food safety research was based on the hypothesis that
the emergence of E. coli O157 disease in humans re-
sulted from relatively recent changes in cattle manage-
ment practices that favored this pathogen. Examples of
such management practices included increased grain
components in cattle feeds (4, 5), the use of antimicro-
bial drugs and other growth-promoting feed additives
(6–11), increased intensity of cattle production, rearing
larger herds and increased confinement (12–16), and
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the adoption of new methods of manure handling and
disposal on farms(17–19). Unfortunately, however, each
of these attractive hypotheses has since either been re-
futed or shown to have only minor influence on cattle
infection with E. coli O157, as described in several
comprehensive recent reviews (20–23). The hypothesis
that E. coli O157 infection of cattle results from high-
grain diets and that feeding hay to the cattle would
eliminate the problem merits particular note; while it
has not been supported by subsequent research (5, 24),
it is still frequently cited as if true in the news media
responses to each new E. coli O157 disease outbreak,
demonstrating a clear disconnect between scientific data
and the popular support for an idea.

Unfortunately, with the exception of cattle vaccina-
tion against E. coli O157, the efforts to identify cattle
management practices that consistently result in signifi-
cant reductions in the frequency of cattle infection with
E. coli O157 have largely failed (reviewed in references
20–23).

VACCINATION OF CATTLE AGAINST
E. coli O157: A RAY OF LIGHT
Although certain interventions [for example, probiotics
(20, 22)] show some promise for preharvest food safety
against E. coli O157, vaccines have been the most ef-
fective interventions documented to date. Currently,
two commercial vaccines against E. coli O157 in cattle
have been developed and are available in at least some
locations: a type III secretion system (T3SS) protein-
based (Bioniche Life Sciences Inc., Belleville, Ontario,
Canada) and a siderophore receptor and porin (SRP)
protein-based (Epitopix, LLC, Wilmar, Minnesota)
vaccine.

Cattle Vaccine Mechanisms
These vaccines target different mechanisms to induce
immunity against E. coli O157 in cattle; T3SS proteins
play important roles in bacterial adherence to the bovine
intestinal epithelium, whereas SRP proteins are impor-
tant for iron acquisition and survival of bacteria within
the host. The products of T3SS genes such as eae and tir
(intimin and Tir), encoded within the locus of enterocyte
effacement (LEE), play key roles in the colonization of
bovine intestines by E. coli O157 (25–30). Transloca-
tion of Tir and other effector proteins into host cells
requires the T3SS-secreted EspA protein, which forms
filaments connecting the bacteria to the host cell surface,
as well as EspB and EspD, which are thought to form a
membrane pore [reviewed by Frankel et al. (31) and

Caron et al. (32)]. The T3SS protein-based vaccine
strategy results in induction of mucosal antibodies ca-
pable of blocking adherence and subsequent coloniza-
tion of the bovine intestinal mucosa by E. coli O157.
Under low-iron conditions, bacteria produce a high-
affinity iron transport system (e.g., SRP proteins) to
bring the required nutrient inside the bacterial cell (33).
The SRP protein-based vaccine results in induction of
antibodies that bind to SRP located on the outer mem-
brane of the bacterial cell, subsequently blocking iron
transport into the cell, compromising the bacterial cell
iron acquisition. Blocking iron transport by anti-SRP
antibodies renders the bacteria at a selective disadvan-
tage in a mixed microbial environment, resulting in re-
duced colonization. These approaches were recognized
over a decade ago, resulting in a number of subsequent
vaccine trials using purified T3SS or SRP protein-based
vaccines. Although vaccines targeting T3SS proteins and
SRP function via two entirely different mechanisms, re-
cent meta-analysis studies suggest that both vaccines are
efficacious at reducing the proportion of culture-positive
animals (34–37).

Efficacy of Vaccination
Although the effectiveness of current vaccines in terms
of reduced carcass contamination and ultimately re-
duced human illnesses is unknown, if 20% fecal prev-
alence is considered as a functional threshold marker
for significantly reduced hide and carcass contamina-
tion, then the current vaccine efficacy would have to ef-
fectively reduce pen prevalence to <20%. Ideally, the
precise efficacy of each vaccine can be calculated; how-
ever, significant variation in the efficacy of current vac-
cines is reported in different trials, and recent meta-
analyses of multiple vaccine studies suggest that the
efficacy of current vaccines is largely uncertain (36, 37).
Consequently, Vogstad et al. simulated the uncertainty
about vaccine efficacy using a log-normal distribution
and estimated that the mean efficacy of current T3SS
protein-based vaccine is approximately 58% (36). Using
this vaccine efficacy, the authors developed a stochastic
simulation model to compare distributions of E. coli
O157 fecal shedding prevalence between cattle vacci-
nated with T3SS protein vaccine and nonvaccinated
cattle.

The model outputs included distributions of fecal
pen prevalence of E. coli O157 among vaccinated and
nonvaccinated summer-fed cattle and nonvaccinated
winter-fed cattle. One of the outcomes of this model was
a reduction in the percentage of high-prevalence pens
among immunized cattle fed in the summer. In this
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model, approximately 58% of pens of nonvaccinated,
summer-fed cattle showed fecal prevalence of >20%.
In contrast, when summer-fed cattle were vaccinated
with the T3SS protein-based vaccine, the percentage
of pens with >20% fecal prevalence was reduced to
approximately 30%. These results suggest that vacci-
nation as an intervention in cattle prior to slaughter may
roughly halve the number of pens with fecal prevalence
of >20%, a significant improvement but still leaving
30% of pens with fecal prevalence >20%. As already
discussed in this article, according to Arthur et al.
(3) and Woener et al. (2), pens with >20% fecal preva-
lence contribute significantly to hide and carcass con-
tamination. In turn, hide and carcass contamination
can compromise apparent vaccine efficacy due to cross-
contamination of hides during transport to harvest (38)
or cross-contamination of carcasses during processing
(39). On the basis of a postulated threshold effect in-
volving vaccine-induced reductions in shedding density
(reductions in the numbers of animals with fecal shed-
ding exceeding 103 CFU/g E. coli O157, also known
as super-shedders), Matthews et al. recently proposed
that cattle vaccination would in fact produce substan-
tially greater reductions in human disease caused by
E. coli O157 than predicted based solely on effects on
cattle shedding prevalence (40). Overall, it is still ques-
tionable whether the current vaccines would provide
sufficient efficacy to accomplish the goal of controlling
or reducing postharvest E. coli O157 contamination of
cattle-derived food products.

Is It Practical to Vaccinate Cattle?
Recently, Withee et al. (41) combined quantitative risk
assessment and marginal economic analysis to estimate
the cost-benefit ratio of the “hypothetical O157:H7
vaccine” to prevent human food-borne illness. These
authors determined that vaccinating the entire U.S. herd
would be an effective intervention for preventing E. coli
O157 illness in humans; however, the true efficiency of
vaccination will primarily depend on three factors:
(i) overall efficacy of the vaccine, (ii) herd coverage of
immunity, and (iii) the cost of vaccine per unit. For ex-
ample, the authors estimated that if the vaccine efficacy
and coverage for herd immunity were assumed at 100%
and the vaccine cost was assumed to be $3.00 per unit,
then vaccination will optimally prevent approximately
21,000 human illnesses each year (41), or one-third to
one-fifth of the annual burden of disease as estimated by
the CDC (42, 43). This level of control would require
vaccinating 22 million cattle intended for slaughter each
year at a total cost of $66 million. In this scenario, the

total benefits expected to accrue as a result of preventing
21,000 human illnesses would be $131 million (21,000
forgone cases times $6,256 per case). In contrast, if the
vaccine efficacy was assumed at 50% (close to the esti-
mated efficacy of current vaccines) and required herd
coverage for immunity was assumed at 100%, then a
$4.00 per unit cost of vaccination will optimally produce
approximately 5,000 forgone illnesses (41). Therefore,
even the moderate efficacy of current vaccines is pre-
dicted to prevent several thousand food-borne illnesses
each year; however, there is still clearly significant room
for the improvement of the efficacy of current vaccines
and vaccination strategies.

Possible Future Directions for
Vaccine Development
Given that two current vaccines provide protection by
completely unrelated mechanisms, it is possible that
simultaneous vaccination with both currently available
products could have synergistic effects and result in
significantly improved efficacy; however, no published
studies in the literature address this possibility. Alter-
natively, new vaccines may be developed with improved
efficacy. Dziva et al. (27) showed that in addition to
the genes encoded on LEE-T3SS, E. coli O157 colo-
nization in cattle is mediated by numerous other cell
surface structures, including fimbriae, outer membrane
proteins, O antigens, and other bacterial proteins. These
authors have identified a novel fimbrial locus (z2199–
z2206; ecs2114–ecs2107/locus 8) required for intestinal
colonization in calves, and demonstrated that a deletion
mutant is rapidly outcompeted by the parent strain in
coinfection studies (27). For another example, Torres
et al. (44) described two chromosomal operons (lpf1 and
lpf2) in E. coli O157 closely related to the long polar
fimbrial (lpf) operon of Salmonella enterica serovar
Typhimurium that have been associated with the ap-
pearance of long fimbriae that enhance colonization
in animal models (reviewed in reference 45). Finally,
in studies that used bovine terminal rectal primary epi-
thelial cells and bovine intestinal tissue explants, the
H7 flagellum acted as an adhesin to bovine intestinal
epithelium and contributed to initiation of intestinal
colonization (46, 47). A following study showed that
immunization of cattle with H7 flagellin reduced colo-
nization rates and delayed peak bacterial shedding fol-
lowing subsequent oral challenge with E. coli O157
(48). Based on these data, incorporation of one or more
of these antigens, perhaps in combination with antigens
used in the currently available vaccines, may further
enhance vaccine efficacy.
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CATTLE INFECTION WITH E. coli O157
AS AN ECOLOGICAL PROBLEM
As microbiological methods were developed to effi-
ciently detect E. coli O157 and other pathogenic STEC
strains in cattle feces and environmental samples, and
as more epidemiological studies in cattle herds were
completed, several observations with profound impli-
cations for preharvest food safety were made. These
included (i) the ubiquitous presence of E. coli O157
and other pathogenic STEC strains on cattle farms
during the summer (49) but its relative absence during
the winter, (ii) the similarity in prevalence of infection
among cattle raised under drastically different manage-
ment conditions ranging from dispersed distribution
of animals on pastures to housing in a highly concen-
trated fashion in feedlots, (iii) the transient nature of
STEC colonization of individual animals, typically last-
ing one to a few weeks, (iv) the sporadic occurrence of
herd outbreaks of high prevalence E. coli O157 fecal
shedding that present all the hallmarks of food- or
waterborne transmission, and (v) the detection of
E. coliO157 fecal shedding in a very wide range of other
mammalian and avian species. Basically, these obser-
vations are inconsistent with the widely held idea that
cattle are the central sustaining reservoir for E. coli
O157 and instead support the idea that cattle are just
one more mammalian host periodically infected with
this agent following oral exposures, albeit a host with
particular significance for human exposure due to its
use for producing human foods. The following sections
of this article explore what is known of the ecology of
this agent.

“Reservoirs” of E. coli O157 on Cattle Farms
The study of reservoirs is complex, and a variety of res-
ervoir models exist for different pathogens. Much work
has gone into identifying the reservoir for E. coli O157
to formulate strategies for controlling this pathogen on
farms in pursuit of preharvest food safety. The clearest
type of reservoir is a biological reservoir, a site or host
where the agent can always be found and serves as a
source of the infection for target populations. Complex
reservoirs may include maintenance host populations
that persistently harbor the infectious agent, as well as
nonmaintenance (incidental or amplifying) host popu-
lations that do not harbor the microorganism indefi-
nitely, but aid in the dissemination and amplification
of the pathogen. Haydon et al. explain that the number
of maintenance host populations is generally limited,
whereas the number of nonmaintenance host popu-
lations may be unlimited (50). These definitions may be

useful in considering the role(s) such populations may
play in the seasonal occurrence of E. coliO157 on farms
and in understanding how these populations may serve
as targets for preharvest control of these bacteria.

Cattle as Reservoirs
Many human outbreaks with E. coli O157 have been
associated with the consumption of contaminated foods
of bovine origin or with direct contact with cattle or
farms where infected cattle are raised (51, 52). Cattle
are the sole animal host known to demonstrate site-
specific intestinal colonization with this agent, at the
recto-anal junction (RAJ). RAJ colonization among
cattle has been observed on several dairy and beef farms
without resulting in a detectable illness in these animals
(53). Nearly all cattle herds, including both beef and
dairy types, may be colonized. As discussed previously
in this article, fecal shedding is associated with hide
contamination, which has been demonstrated as a main
source of meat contamination at slaughter (1, 54);
thus research has been directed to the identification of
preslaughter interventions that can decrease RAJ col-
onization and fecal shedding of these bacteria. Vacci-
nation (discussed above) of cattle may be promising to
accomplish this goal; however, identifying ways to re-
duce or eliminate the source of cattle infection is equally
important.

While cattle are likely an important part of the res-
ervoir for E. coli O157 on farms, several pieces of evi-
dence have raised questions on whether cattle are truly
a maintenance population for this pathogen. First, cat-
tle typically shed E. coli O157 only transiently during
summer months, and levels and prevalence of cattle
shedding cease or decrease drastically during winter
months (55, 56). Second, a single strain of E. coli O157
frequently predominates on individual farms over pe-
riods of multiple years, despite essentially disappearing
from cattle populations each winter. This tendency is
particularly interesting on large feedlots that go through
multiple animal population turnovers annually, with
incoming cattle originating from many diverse sources
(57). These data suggest that farms may contain other
noncattle maintenance hosts (reservoirs) of E. coliO157
and also cast doubt on whether the cattle themselves
make up the true maintenance host population. Re-
cently, it has been experimentally demonstrated that
the seasonal differences in E. coli O157 shedding by
cattle are not due to intrinsic factors within the animals.
Cattle given identical challenge doses of E. coli O157
shed the agent in similar amounts and for similar du-
rations, regardless of the season of exposure (58); this
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is the outcome predicted of an amplifying host popula-
tion, where the source is the key factor in duration and
level of bacterial colonization in cattle. If cattle are
simply an amplifying host population, it seems clear that
identification of the true maintenance reservoir(s) of
E. coli O157 is critical to the development of truly pre-
ventive systems for management of E. coli O157 on
cattle farms.

Survivability of E. coliO157 in the Environment
E. coli O157 is surprisingly persistent in environmental
sites, documented to survive in ovine manure for 21
months (19). The environments (bedding materials and
water) of experimentally infected steers maintain de-
tectable viable E. coli O157 for at least 14 weeks after
inoculation of the cattle (59). Interestingly, in this study,
E. coli O157 was cultured from the bedding and water
even during weeks when it was not possible to recover
E. coli O157 from cattle fecal samples (59). In a longi-
tudinal, year-long study of naturally occurring E. coli
O157 infection of cattle on two feedlots in southern
Alberta, E. coli O157 was cultured from only 0.8% of
the fecal pats, but 12% of the water troughs sampled
were found positive. E. coli O157 was also cultured
from 1.7% of feed bunk feed samples but not from fresh
total mixed rations (60). Culture-positive water troughs
occurred seasonally: 35% of water troughs sampled
during the summer on one feedlot were culture-positive
for E. coli O157, compared to 0% sampled during the
winter (60). This seasonal variation clearly parallels the
seasonality of cattle infection on farms and also raises
the question of whether the water contamination is the
source of, or results from, the cattle infection.

Water as a Reservoir
As described above, water is one of the most commonly
contaminated materials on cattle farms. In culture-
positive water troughs E. coli O157 is consistently
detected more frequently in sediments than in the water
column (59, 61). Water trough sediment consists of
feed and fecal material admixed with numerous bacte-
ria and protozoa, with rare metazoan species (nema-
todes and rotifers). Viable E. coli O157 in the sediment
layers of water troughs can persist for greater than
245 days (61). One hypothesis is that ambient temper-
ature during the summer is more permissible for growth
of bacteria and, therefore, may result in increased bac-
terial populations in water troughs during the summer
compared to the winter season (62). While increased
ambient temperature likely plays a role in proliferation
of bacteria, there may be other factors that influence

seasonal variation and overall survival of these bacteria
in water troughs. For example, mean coliform counts
were significantly higher in water troughs that were
cleaned at least every 2 months compared to those that
were cleaned less frequently (63). Additionally, use of
chlorinated or hyperchlorinated water in trough micro-
cosms failed to eliminate E. coli O157 (61). These data
suggest that there are likely additional factors other
than ambient temperature that contribute to the survival
and proliferation of E. coli O157 in water troughs.

Role of Protozoa
While the relationship between E. coli O157 and pro-
tozoa has not yet been clarified, LeJeune et al. demon-
strated a significant increase in the quantity of free-living
protozoa within water trough sediment in the winter
compared to the summer (63). Other studies have
demonstrated grazing of bacteria by protozoa collected
from soil, lakes, and streams. While many bactivorous
protozoa will feed on any available food, preferential
grazing for bacteria also occurs. For example, E. coli
O157 containing Stx2a-encoding bacteriophage are
relatively resistant to grazing by Tetrahymena sp. (64,
65). Survival of E. coli O157 within the food vacuoles
and excretory vacuoles of protozoa isolated from dairy
lagoon wastewater suggests that protozoa may be vehi-
cles for dissemination of the bacterium to crops (66).
Many free-living protozoa form cysts under stressful
conditions such as temperature or salinity changes and
food deprivation, and these cysts can persist in the en-
vironment for decades. While several bacterial genera
including Legionella, Mycobacterium, and Listeria spp.
have been shown to survive within such protozoan cysts
(67–70), research is needed to determine whether this
may also be true for E. coli O157.

Role of Environmental Invertebrates
Apart from protozoa, invertebrate organisms such as
nematodes and rotifers that have the potential for har-
boring E. coliO157 also inhabit water troughs and soils
on cattle farms. Research has shown that E. coli O157
can amplify and persist for 5 days or more within one
such free-living nematode, Caenorhabditis elegans (71).
The association of C. elegans with Salmonella spp. has
been more thoroughly investigated; when C. elegans is
exposed to Salmonella serovar Newport, these bacteria
can be detected in nematode progeny for at least the
subsequent two generations (71). Another bactivorous,
free-living nematode, Diploscapter spp., has been dem-
onstrated to migrate rapidly toward colonies of E. coli
O157 and to shed viable bacterial cells for at least a
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day after exposure (72). Free-living nematodes protect
themselves in scarcity of food or harsh environmen-
tal conditions by forming arrested-development larvae
(dauer) stages, however, it has not yet been determined
whether dauer stages can harbor food-borne pathogens
and subsequently act as a source of contamination or as
a reservoir for these pathogens.

Role of Flies
Many different families of flies are present on cattle
farms. Flies mostly multiply during the spring and are in
constant contact with cattle and feed during summer and
early autumn months. Many flies lay their eggs in cattle
feces, which hatch into larvae (maggots) that feed on
manure before maturing into pupae within a week (73).
Pupae contain a hard durable shell that allows them to
survive under harsh conditions; most flies survive in this
stage over the winter (74, 75). Adult flies that emerge
from pupae typically survive for only a few weeks. Be-
cause of flies’ close interactions with cattle on farms,
some investigators have studied flies as a component of
the reservoir of E. coli O157. These bacteria can be
cultured from adult houseflies found in feed bunks and
cattle feed storage sheds during summer months (76). In
an E. coli O157 outbreak at a nursery school in Japan,
the strains of E. coli O157 isolated from patients
matched those detected in houseflies collected from
within the school (77), and the possibility that the flies
were acting as mechanical vectors able to disseminate
bacteria to food and eating utensils was considered.
Subsequent research suggested that flies may be more
than just mechanical vectors. After oral infection of
adult houseflies with E. coli O157, bacteria were iden-
tified in the alimentary canals of 30% of these flies up to
3 days postinfection. Orally infected flies with actively
proliferating E. coli O157 on their mouthparts demon-
strate cellular lesions similar to the attaching and effac-
ing lesions seen in the colonized RAJ of cattle (78).

Role of Birds
E. coli O157 has been cultured from wild birds on cat-
tle farms in many investigations. Birds, much like flies,
may be seen as a general nuisance on farms and may
act to contaminate cattle feeds and water sources, as
well as disseminate bacteria within and between farms.
A surveillance study determined that 3% of European
starlings and 4% of the cattle study population were
culture-positive for E. coli O157. In addition, these
birds frequently visited the same farms on daily feeding
forays but returned nightly to share a communal roost
with birds that visited other farms, providing a potential

method for pathogen dissemination (79). Poultry are
readily experimentally colonized with E. coliO157 (80),
but contamination of poultry products is very rare and
human infection with E. coli O157 resulting from con-
taminated poultry has rarely been documented.

Role of Mammals
E. coli O157 fecal shedding has been detected in many
different domestic animal species, including dogs, cats,
horses, and sheep. Colonization of the ovine RAJ has
been demonstrated but seems to occur less efficiently
(81). Colonization in wildlife including feral swine, deer,
raccoons, opossums, and rats has also been reported.
Deer have been frequently documented to shed E. coli
O157, and human infections have been traced to con-
taminated venison (82, 83). Swine are readily experi-
mentally colonized with E. coliO157, but the prevalence
of natural infection is very low (84, 85). In contrast, feral
swine have been demonstrated to shed E. coliO157 and
were suggested to play a role in dissemination of this
agent to fresh produce that resulted in a large human
outbreak of disease (86).

The Need for a Better Understanding of the
Ecology and Reservoir Structure of E. coliO157
As mentioned previously, the reservoir for E. coli O157
is very complex. Based on Haydon et al.’s descriptions
of complex reservoirs (50), there is likely one or more
maintenance host populations that could include role(s)
for organisms such as protozoa, invertebrates, or flies on
cattle farms. Presence of a maintenance host population
outside cattle is suggested by the fact that although swine
and poultry, like cattle, are readily colonized with E. coli
O157 in experimental settings, contamination of pork or
poultry meats with this agent is relatively rare (87, 88).
One possible explanation for this low prevalence may be
that swine and poultry are typically reared in confine-
ment in the United States, which may shield them from
exposure to environmental sources of E. coli O157 in-
fection. If so, this suggests that management systems
to reduce cattle exposure to environmental sources of
E. coli O157 may be required to reduce their prevalence
of infection.

It is also possible that the bacteria can survive without
hosts in soil or water environments during the winter,
amplifying each spring (as ambient temperatures in-
crease) to levels that are infectious to cattle. Several
vertebrates, including birds, cattle, and other mammals,
likely act at least as nonmaintenance host populations
that aid in dissemination and amplification of these
bacteria, especially during the summer months. More
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research leading to a better understanding of the com-
plex reservoirs of E. coli O157 may lead to improved
targeting of these bacteria and improved preharvest
control on cattle farms along with better strategies to
reduce environmental and non-beef-product-related ex-
posures contributing to human infection.

E. coli O157 GENOTYPES, HUMAN DISEASE,
AND PREHARVEST FOOD SAFETY
Various genotyping methods including multilocus en-
zyme electrophoresis (89, 90), octamer-based genome
scanning (91, 92), whole-genome PCR scanning (93),
pulsed-field gel electrophoresis(94), Shiga toxin-associated
bacteriophage insertion, typing (95), lineage-specific poly-
morphism assay, (96), comparative genomic hybridiza-
tion, (97, 98), optical mapping (99), and single nucleotide
polymorphism typing (100, 101) have been used to de-
cipher the population structure of E. coli O157 (102).
These studies revealed that bacteriophages play an im-
portant role in establishing the genetic diversity among
E. coli O157 isolates and that certain specific genetic
lineages of E. coliO157 are associated with most human
disease. These strongly disease-associated genotypes
have been termed clinical genotypes whereas other line-
ages, less frequently isolated from humans with illness
compatible with E. coli O157 infection, have been
termed bovine-biased genotypes (91, 92, 96, 103–107).
In general, the various genotyping methods are con-
cordant in their identification of clinical genotypes of
E. coli O157 (108, 109). Populations of E. coli O157 in
different geographical regions differ significantly in the
relative frequency of particular genotypes in different
countries, and generally clinical genotypes are more
frequent in cattle populations in countries with higher
incidences of hemolytic-uremic syndrome, a severe form
of illness associated with E. coli O157 infection (110–
115). On the other hand, at least some genotypes iso-
lated from clinical illness in humans are not represented
in cattle, indicating the presence of non-cattle-associated
reservoirs or sources of human infection (101).

Given the similar prevalence of cattle infection with
clinical and bovine-biased lineages in the United States, it
seems likely that people in this country are similarly ex-
posed to both clinical and bovine-biased genotypes of
E. coli O157 via ground beef, other cattle-origin meats,
and cattle environments. Therefore, the preponderance
of human disease associated with clinical genotypes in
the United States may simply be the result of relatively
higher virulence of clinical genotype strains. This possi-
bility has two important implications for preharvest food

safety: First, the virulence differences among E. coli
O157 genotypes suggest the possibility or likelihood that
these genotypes may respond differently to preharvest
food safety interventions due to other intrinsic biological
differences associated with their genotypes, and second,
that in evaluating the efficacy of preharvest food safety
interventions it is important to demonstrate specific re-
ductions of clinical genotypes, rather than assuming that
any prevalence or shedding reductions include clinical
genotypes. Recent studies have shown that different
lineages of E. coli O157 may differ in their ability to
persist on cattle farms through various seasons, cattle
diets, and animal husbandry practices. Vanaja et al.
(116) demonstrated that certain cattle-associated geno-
types expressed gene repertoires expected to improve
their resistance to adverse environmental conditions in
comparison to genotypes more commonly associated
with clinical disease. Some genotypes of E. coliO157 are
more resistant to stress factors such as heat and starva-
tion compared to other genotypes (117). It is similarly
possible that different lineages of E. coli O157 may re-
spond differently to preharvest control measures such as
vaccines, probiotics, bacteriophage treatments, or ani-
mal husbandry interventions. Therefore, further studies
are required to (i) specifically target bacterial genetic
factors that are responsible for the differential response
of different lineages ofE. coliO157 to various preharvest
control measures, and (ii) to confirm that any preharvest
control measures put into practice are effective against
clinical genotypes. These studies will aid in identifying
tools to improve the current preharvest food safety
measures or formulate new better ways to reduce prev-
alence and shedding of E. coliO157 on cattle farms with
consistent and reliable results.

CONCLUSION
Preharvest food safety for E. coli O157 is the term used
for management systems that reduce the prevalence
and/or magnitude of shedding of this agent by cattle
populations to reduce the risk of contamination of cat-
tle-derived food products and subsequent human ex-
posures. Decades of research have provided a better
understanding of the epidemiology and ecology of
E. coli O157 on cattle farms, but only limited progress
on preharvest food safety goals has been made. Al-
though several interventions (certain feed ingredients,
probiotics, and vaccines) have been identified with sta-
tistically significant impacts on cattle shedding of E. coli
O157, the impact of these potential interventions re-
mains insufficient due to their limited efficacy, practical
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difficulties with their implementation, or inconsistency
in their results, leading to limited uptakes by producers.
To date, the promise of the preharvest food safety ap-
proach to reducing human infection with E. coli O157
has not been fulfilled. A more holistic approach, with
complex ecology and genetics of this bacterium in mind,
is needed toward identifying true maintenance host
populations and developing strategies to control E. coli
O157 and other pathogenic STEC strains in these main-
tenance host populations.
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