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Role of Shiga/Vero

Toxins in Pathogenesis

ABSTRACT Shiga toxin (Stx) is the primary cause of severe host
responses including renal and central nervous system disease

in Shiga toxin-producing Escherichia coli (STEC) infections. The
interaction of Stx with different eukaryotic cell types is described.
Host responses to Stx and bacterial lipopolysaccharide are
compared as related to the features of the STEC-associated
hemolytic-uremic syndrome (HUS). Data derived from animal
models of HUS and central nervous system disease in vivo and
eukaryotic cells in vitro are evaluated in relation to HUS disease
of humans.

ACTIVITIES OF Stx AND LPS
IN RENAL DISEASE

Shiga Toxin Actions

It is generally accepted that all actions of Shiga toxin
(Stx) depend on its interaction with the receptor, glob-
otriaosylceramide (Gbs), on eukaryotic cells. Although
alternative receptors for Stx have been postulated, no
definitive data have been forthcoming in support. Stx
holotoxin is internalized by receptor-mediated endocy-
tosis, retrograde transported via the Golgi apparatus
and processed through in the endoplasmic reticulum,
and released into the cytoplasm where it enzymatically
inactivates ribosomes and inhibits protein synthesis
(Fig. 1). However, it is important to note that, in ad-
dition to Stx holotoxin, the B-subunit alone can inter-
act with Gbs in a physiologically meaningful manner
where it activates signal transduction pathways in
target cells (Fig. 1) (1). An additional but unexplained
anomaly is the interaction of Stx with eukaryotic cells
in a Gbs-independent manner that leads to induction
of cytokines by these cells (2). As shown in Fig. 1, in-
tracellular responses to Stx are diverse, including inhi-
bition of protein synthesis, activation of cellular stress
responses, and induction of cytokines and chemokines.
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It is likely that these different schemes take place in
cell-specific activities during Shiga toxin-producing
Escherichia coli (STEC) infections in humans, culmi-
nating in typical hemolytic-uremic syndrome (HUS).
As depicted, it is clear that in some cases Stx can result
in activation of p38 mitogen-activated protein kinase
as well as apoptotic and necrotic cell death (Fig. 1).
The topic of HUS renal disease has been reviewed
recently (3-5).

Cell Types Responsive to Stx

The high number of Stx-sensitive cell types makes more
difficult identification of more important events re-
sponsible for HUS. Renal microvascular endothelial
cells are generally accepted to be the primary target
of Stxs in HUS. Data in support of this concept come
from many sources, most notably autopsy kidney pa-
thology samples showing swollen and detached endo-
thelial cells accompanied by thrombi (6). Such human
renal microvascular endothelial cells were also shown
to be very sensitive to Stx in vitro (7). However, other
cells that make up the human renal glomerulus are
also sensitive to Stx, including podocytes and mesangial
cells (8, 9). In addition, extraglomerular epithelial cell
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FIGURE 1 Schema: Shiga toxin interaction with eukaryotic cells. doi:10.1128/microbiolspec

.EHEC-0005-2013.f1

types of the human kidney have been postulated to be
targets of Stx, including proximal tubule and collecting
duct cells (8, 10, 11). Cell types in the blood circula-
tion that may be key to development of HUS and that
are sensitive to Stx include platelets, neutrophils, and
monocytes (12-16).

In summary, most, if not all, of the cell types men-
tioned may well have a role in STEC-related kidney
disease and typical HUS. The relative importance
and role of these cell types in STEC HUS remain to
be determined. For example, it is not clear which of
the renal cell types are actually responsible for renal
failure in STEC HUS, although apoptosis of tubules
appears to be a common feature (8, 17). The relative
contributions in HUS disease of renal microvascular
coagulation and thrombosis (i.e., endothelial cells),
imbalance of fluid and electrolytes (i.e., nephron
tubules), and altered filtration barrier function (i.e.,
endothelial and podocyte cells) have yet to be eluci-
dated for typical HUS. If in vitro cell culture studies
are pertinent to HUS in patients, the sensitivity (50%
lethal dose) of human renal cells to Stx2 (endothelial,
0.1 pM > podocyte, 0.5 pM >> proximal tubule,
10 pM) suggests the renal filtration barrier is at con-
siderable risk (8).

Inflammatory Cells, Chemokines,

and Renal Thrombosis

A primary feature in the renal pathology of STEC
HUS is microvascular coagulation and thrombosis. In
humans and in a murine model of HUS, the interaction
of Stx and lipopolysaccharide (LPS) with circulating
cells and resident renal cells appears to have a causal
role in microvascular thrombosis (18, 19). In a series of
studies of the Stx/LLPS murine model of HUS, a pathway
leading to fibrin deposition was revealed (Fig. 2). LPS
activation of cells such as endothelial and renal tubule
cells elicited chemokines (monocyte chemotactic protein
1 [MCP-1], macrophage inflammatory protein 1 [MIP-
1] alpha, RANTES) known as chemoattractants for
monocyte/macrophage cells and coactivators of plate-
lets. In this response, Stx enhances the effects of but
does not replace LPS. The response was associated with
renal fibrin deposition (12, 20). In the murine model,
simultaneous neutralization of these three chemokines
inhibited LPS/Stx-induced monocyte accumulation and
fibrin deposition in the kidneys (20). Further, adminis-
tration of adenosine A2a receptor agonists to Stx/LPS
mice also reduced monocyte and fibrin accumulation in
the kidneys. As shown in Fig. 3, adenosine A2a receptor
agonists act as anti-inflammatory agents in monocytes,
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platelets, and endothelial cells (21). Taken together,
these studies indicate that both LPS and Stx are required
for maximal renal fibrin deposition and that platelets
may be required. Because mice deficient in MCP-1 have
sharply reduced platelet deposition after exposure to
Stx/LPS, we have suggested that this chemokine serves
as a coactivator of platelets in typical HUS (Keepers TR,
unpublished data). The primary activators of platelet
activation are thrombin or adenosine diphosphate. Our
renal gene array analysis of the LPS response in mice
indicated that LPS strongly elicited fibrinogen mRNA,
the precursor of fibrin (Obrig T, unpublished data). In
addition, it is noteworthy that selective elimination of
monocytes from mice prior to the above studies had no
effect on the ability of Stx/LPS to elicit renal fibrin de-
position, suggesting the chemokines are being generated
from other cell types such as renal tubules (20). Im-
portant conclusions from the murine HUS model are
that LPS, not Stx, is the initial primary elicitor of renal
coagulation and thrombosis, but Stx, not LPS, is the
lethal agent of STEC.

In the murine Stx/LPS model of HUS, monocyte mi-
gration into the kidneys was restricted to the extra-
glomerular space in contrast to polymorphonuclear
leukocytes (PMN), which, in addition, migrated into
the glomeruli. The latter may be important in humans
because neutrophilia has been implicated as a primary
risk factor for HUS disease and increased neutrophil
migration into the kidneys was a key observation in
HUS renal biopsies (22, 23). In the murine model of
HUS, the neutrophil chemotactic factors chemokine li-
gand 1 (CXCL1) keratinocyte-derived chemokine (KC)

Role of Shiga/Vero Toxins in Pathogenesis
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FIGURE 2 Proposed pathways of Stx and LPS actions in
mice. Data derived from a Stx/LPS murine model of HUS
indicate that LPS is the primary elicitor of fibrin depo-
sition in kidneys. This pathway requires chemokines and
platelets but is not responsible for renal failure. Stx is
responsible for renal failure in this murine model in a
process that involves nonendothelial renal cell types.
doi:10.1128/microbiolspec.EHEC-0005-2013.f2

and CXCL2 (MIP-2) were induced in the kidneys by
LPS (15). The induction was at the transcriptional level
and was enhanced by Stx2. Administration of neutral-
izing antibodies for these neutrophil chemotactic factors
prevented the movement of neutrophils into the kidneys.
It was also demonstrated that vascular cell adhesion
molecule 1 (VCAM-1) was induced in the kidneys si-
multaneously with CXCL-1 and CXCL-2 in response to
Stx2/LPS in mice (Fig. 4). VCAM-1 is known to assist
movement of neutrophils across the endothelium and
appeared to exhibit this function for neutrophils in the
Stx2/LPS murine model of HUS. However, the relative
importance of renal neutrophils in Stx-induced renal
failure has yet to be determined in mice and humans.

Renal Gene Array Analysis of Murine
Responses to Stx2 and LPS

Much information is now available regarding the bio-
logical effects of Stx2 and LPS on kidneys in the murine
HUS model. The following is a synopsis of the more
pertinent gene microarray data obtained from temporal
studies of the murine renal responses to Stx2, LPS,
or Stx2/LPS (19). On the basis of the total of both up-
and downregulated genes, five times more renal genes
responded to LPS than to Stx2 over the 72-h time course.
Response to LPS was mostly early, whereas Stx2 re-
sponses occurred later in the 72-h time course. These
results are more meaningful when viewed in the larger
picture of HUS where renal failure occurs later in the
time course in both mice and humans. It should be em-
phasized that Stx2, rather than LPS, is the lethal factor
in the murine HUS model. The gene array data revealed
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FIGURE 3 Anti-inflammatory actions of adenosine in HUS. Data derived from an Stx/LPS
murine model of HUS suggest adenosine A2a receptor agonist, i.e., adenosine, effectively
blocks the actions of LPS (enhanced by Stx2) at the level of different renal cell types to
prevent platelet activation and coagulation. doi:10.1128/microbiolspec.EHEC-0005-2013.f3

different roles for LPS and Stx2 in the renal physiological
responses. LPS responses were mostly inflammatory,
stress related, or cell defensive in nature. In contrast, Stx2
responses were related to cell repair and involved cell
proliferation and differentiation or cell cycle control
genes. An interesting finding was that renal genes down-
regulated by Stx2 included membrane transporters,
which appeared to signal a protective survival mode and
slowing of cell metabolism.

The renal genes most upregulated by Stx2 or LPS
are depicted in Fig. 5. As expected from the inflammatory
responses described above, LPS induced a number of
chemokine genes that code for chemotactic factors
for monocytes and neutrophils. These tend to be “im-
mediate” response genes, which attract monocytes and
neutrophils into the kidneys and set the stage for a broad
inflammatory response in the kidneys. Such LPS “im-
mediate” response genes are mentioned in the literature
in descriptions of typical HUS, i.e., MCP-1, MIP-2alpha,
and the murine interleukin-8 mimic, KC. It was also
observed that interferon-gamma-inducible protein-10

(IP-10) (CXCL10) was induced by LPS and by Stx2,
albeit in early and late parts of the HUS disease time
course, respectively. Related to renal coagulation and
thrombosis in HUS, LPS induced a set of fibrinogen genes
“late” in the time course of the murine model of HUS
concomitant with the appearance of fibrin deposition
and coagulation in the renal microvasculature of HUS
(Fig. 5). These data agree with our observation that LPS
is responsible, in part, for fibrin deposition in the Stx2/
LPS murine model of HUS (19). Amyloid protein, which
has been reported to be a Stx-sensitizing factor in HUS, is
induced at the mRNA level by LPS in mice, as shown in
Fig. 5, as a renal “late” gene product (24). More recently,
complement has been identified as a factor that may
contribute to renal failure in atypical HUS.

Products of some of the genes shown in Fig. 5 have
been examined by investigators as potential biomarkers
for diagnostic purposes. For example, IP-10 has been
identified as a urine biomarker for other kidney diseases
such as lupus nephritis (25, 26). Lipocalin 2 (neutrophil
gelatinase-associated lipocalin), an LPS-induced “early”
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FIGURE 4 Neutrophil-endothelial cell interactions in HUS. In
the Stx2/LPS murine model of HUS, analysis of renal gene
activation and neutrophilinfiltration into kidneys demonstrates
a concomitant increase in PMNs and VCAM-1 expression,
suggesting a mechanism of PMN-endothelial association. 4,
Neutrophils in the glomeruli; B, VCAM-1 in the glomeruli.
doi:10.1128/microbiolspec.EHEC-0005-2013.f4

gene (Fig. 5), is a common urine biomarker for numer-
ous renal diseases, including STEC-HUS (27).

How Valid Is the Murine Model of HUS for
Translation to the Human Disease?

A large volume of data exists for mouse models of Stx-
HUS (28). The two common experimental approaches
for these murine models are either oral infection with
STEC or injection with purified Stx plus or minus LPS
(17, 19, 29, 30). In virtually all cases these are lethality
models within 4 to 12 days after exposure to the agents
and are accompanied by renal damage. Where exam-
ined, these murine models usually exhibit the three
hallmarks of HUS: thrombocytopenia, hemolytic ane-
mia, and renal failure. However, every animal model
has its limitations, and for the murine models of HUS,
the renal microvascular endothelial cells do not express
Gb; and are resistant to Stx action. This is important if
one believes that the primary target of Stx is the renal
microvascular endothelium. Indeed, human renal en-
dothelial cells in vitro are very sensitive to Stx, and the
pathology of human kidneys in HUS describes swollen
and detached glomerular endothelial cells. But it is
surprising why such human glomerular endothelium is

Role of Shiga/Vero Toxins in Pathogenesis

not killed by Stx in HUS kidneys. This suggests either a
more indirect action of Stx in human HUS or dominant
survival activities are activated within the endothe-
lium after exposure to Stx. An alternative explanation is
that the primary target of Stx in human kidneys is not
the endothelium, but rather glomerular podocytes and
extraglomerular tubules along the nephron. Support for
this exists for HUS in mice and humans where urine
specific gravity changes, chemokines are increased in the
urine, and biomarkers of damaged podocytes and tubule
cells are detected.

Mouse models have been helpful in separating the
actions of Stx and LPS in HUS. In general, and as de-
scribed above, LPS is the primary inducer of cytokines
and chemokines where Stx enhances the activity of LPS.
The complexity of inflammation in HUS is critical but
has yet to be fully delineated in murine models and in
human HUS. The murine model mirrors typical HUS of
humans as resting platelets are resistant to Stx and re-
quire preactivation with LPS (19). However, it is most
important to reiterate that Stx, not LPS, is responsible
for the renal failure in typical HUS. In conclusion, the
murine responses to Stx and LPS include most of the
features of STEC-HUS in humans.

ACTIVITIES OF Stx IN CNS DISEASE
CNS Symptoms of Animal Models

In either an oral inoculation of STEC model or purified
Stx injection animal model, the most common and most
frequently reported central nervous system (CNS) im-
pairment is paralysis of extremities. Most frequently, the
hind legs are affected first, followed by the forelegs.
Other symptoms include anorexia, lethargy, ataxic gait,
recumbency (the affected animals lose strength to hold
their body in an upright position), convulsions, seizure,
coma, and death.

STEC oral administration animal models are sum-
marized in Table 1. The oral inoculation models of
STEC that describe CNS symptoms are limited to pig
and mouse. Pigs develop “edema disease” with Stx2e-
producing E. coli and present CNS symptoms (Table 2).
Experimentally, the edema disease-like state is repro-
ducible with Stx2-producing E. coli that has been iso-
lated from human patients. CNS symptoms are only seen
in Stx2 (both Stx2 and Stx2e) producers, but not in non-
Stx2 producers. This indicates a strong association of
Stx2 with CNS impairment.

LPS is an outer membrane component of gram-
negative bacteria and a strong inflammation inducer.
The involvement of LPS in STEC-associated CNS
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symptoms was tested by using LPS nonresponder mouse
C3H/HeJ (29). C3H/He] did present CNS symptoms
when given Stx2-producing E. coli but not when Stx-
nonproducer was inoculated. This again suggests a
strong involvement of Stx in CNS symptoms. The dif-
ference between LPS-responder mouse (C3H/HeN) and
C3H/He]J in CNS symptoms was that C3H/HeN showed
a progressive time course of CNS symptoms whereas
C3H/He] showed a “biphasic” response in that they
developed milder CNS symptoms and recovered once,
but then progressed to a severe form of CNS impair-
ment. This suggests that even though Stx2 may be the
central cause of CNS symptoms, addition of LPS re-
sponse may contribute to the progress of the disease.
To further study the action of Stx2 in CNS disease,
different animals were tested with purified Stx2. Stx2
injection animal models with CNS complications are
summarized in Table 3. Also, LPS involvement or con-
tribution to Stx2-associated CNS disease was tested in
some reports. The reproducible results of hind-leg paral-
ysis and high frequency of convulsions and seizures
with purified Stx confirm the central role of the toxin in
STEC-associated CNS disease. Human STEC patients
present CNS symptoms that range from eye involvement
(diplopia, hallucinations, and cortical blindness), behav-
ioral changes (hyperactivity, distractibility, irritability,
and altered sensorium), posturing/coordination difficul-
ties (poor fine-motor coordination, hemiplegia, ataxia,
and clumsiness), to severe symptoms such as seizures,
dysregulation of breathing, and alteration in conscious-
ness such as coma. Within these varieties of symptoms,
ataxia or hemiparesis resembles Stx-associated animal

GADD-458
TNF-RF 12a
ATF3
IFRD1
CXCL10
GDF15

Myd116

FIGURE 5 Renal gene activation in the Stx/LPS
murine model. Shown are the nine most up-
regulated genes in the temporal response of
mice to either LPS or Stx2. Gene microarrays
were employed to analyze kidney gene acti-
vation over a 72-h response of C57BL/6 mice
to 300 ug/kg of LPS or 100 ng/kg of Stx2.
doi:10.1128/microbiolspec.EHEC-0005-2013.f5

CNS symptoms. Also, it is notable that in human patients,
seizures are a frequent observation. This resemblance
between patients and animal models of STEC/Stx suggests
there is a great possibility that analyzing these animal
models may give some clues to define the mechanisms of
CNS impairment in Stx-associated disease.

CNS Histopathology of Animal Models

In animal models with STEC oral inoculation that de-
scribe CNS symptoms, most exhibit defective capillaries
(pig [31-34], mouse [35, 36]). Those capillary lesions are
mostly related to endothelial cell weakening that appears
as hemorrhage, with leaked red blood cells in paren-
chyma. Noncapillary components in the parenchyma
such as neurons and myelin defects were seen in some
mouse STEC models (35, 37, 38), but not others (36). In
purified Stx2 injection models, similar lesions involving
capillary/endothelial cells were found in pig (39, 40),
rabbit (41-43), and mouse (44, 45). In contrast, other
models did not have these lesions but rather lesions re-
lated to neuronal degeneration (baboon [46], rabbit [43,
47,48], rat [49, 50], mouse [51]) or myelin degeneration
(baboon [46], rabbit [52], rat [49]). Also, some reports
showed normal appearance of neurons (rabbit [47],
striatal neurons; mouse [53] lumbar spinal cord
neurons). As all models exhibit similar CNS symptoms
such as hind-leg paralysis, the difference in histopatho-
logical lesions may be due to involvement of different
parts of CNS, different time points in the disease, or
species-specific sensitivities. The mechanism of inducing
CNS symptoms may be weakening of endothelial cells/
capillary composition-caused neurotoxicity or direct
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TABLE 1 STEC oral administration model with CNS descriptions

Ref. Animal

31 Pig

32 Pig

32 Pig

33 Pig

33 Pig

34 Pig

35 ICR mouse

29 C3H/HeN
mouse

29 C3H/HeN
mouse

29  C3H/Hed
mouse

29  C3H/Hed
mouse

36 C57BL/6
mouse

37 IQl mouse

55  C57BL/6
mouse

38 QI mouse

56 ICR mouse

E. coli strain
RCH/86 (Stx2+)

86-24 (Stx2+)

87-23 Stx (=)

S1191 (Stx2e+)
M112 (Stx2e+)

Strain 123 (non-
pathogenic E. coli)

sakai

E32511/HSC
(Stx2c+)

86-24, 86BL or
134 (Stx2+)

87-23, 87BL
(Stx2-)

86-24, 86BL or
134 (Stx2+)
87-23, 87BL
(Stx2-)

N-9 (Stx1+/Stx2+)

EDL931
(Stx1+/Stx2+)
Smr N-9
(Stx1+/Stx2+)

0O157:H7 strain 6
(Stx1+/Stx2+)
E32511/HSC
(Stx2c+)

CNS?
Yes

Yes

No

Yes

Yes

ND

Yes
Yes
Yes
(biphasic)
No

ND

Yes

Yes

Histopathology®<<

HE: CL cap, small inf, small
hrrg, fib in sub and cap

Gross: MO and CL hrrg and
necPAS: MO, CL, and Sc,
cap swl nec, peri deposits

No lesion

EM: myo and cap nec not
apop, Mono apop
No lesion

LFB: mye deg, hrrg,

pyk and prolif cap, peri ede
EM: cap ede in CR ctx,
mye degHE: hrrg and

ede in CR ctx only in CNS
symptom (+) mice

ND

ND
ND
ND

HE: infilt, hrrg, cap with
fib in CR ctxLFB:

No deg mye in hippo
HE: ede, fib in cap,

neu deg, cap prolif

ND

HE: CR ctx and CL neu nec
and slight loss of Purkinje

ND

Role of Shiga/Vero Toxins in Pathogenesis

IHC®/TUNEL®<"
ND

ND

ND

TUNEL + myo
in MO (5/11 pigs)
ND

ND

Immuno EM-DAB?:
Stx2+ in CR ctx pyr
and deg mye

ND
ND
ND
ND

Anti-Stx + hippo

ND

TUNEL + hippo
neu during CNS
symptom (+)

ND

GFAP™ 1, AQP41,
casp31"neu cer Sc

ventral and MO dorsal

Model notes

Gnotobiotic
(cesarean section
derived)

Suckling (colos-
trum provided)
Suckling (colos-
trum provided)
3-w-o

3-w-o

Neonatal

Sm, MMC"

Fasted
Fasted
Fasted
Fasted

PCM

Gnotobiotic

PCM

Gnotobiotic

Sm, MMC

Other assays
NA

NA
NA
NA

Tracer (i.v.)
detected in cap
and deg mye

NA

NA

NA

NA

NA

Brain TNFa
increased
Serum Stx 1,
TNFa 1, IL10
1TLC-anti-

PkMab* brain +
ND

ISH!' Gb3
synthase

“Detailed CNS symptoms are summarized in Table 2.
tHistopathology analysis keys are Gross, gross observation in nonstained tissue; HE, hematoxylin-esosin stain that stains cytoplasm in pink and nucleus blue, light
microscopic findings (LM); PAS, periodic acid-Schiff stain that detects polysaccharides, glycoproteins, and glycolipid, LM; LFB, Luxol fast blue stain that stains myelin in blue,
LM; EM, electron microscopic findings; ND, not described; NA, not applicable.
<CNS regions and cell type abbreviations are CR, cerebrum; ctx, cortex; hippo, hippocampus; str, striatum; CL, cerebellum; MO, medulla oblongata; Sc, spinal cord; cer
cervical; tho, thoracic; lum, lumbaris; sub, subarachinoid space; BS, brain stem is used where midbrain, pons, or medulla oblongata is not specified. Histopathologic feature
abbreviations are cap, endothelial cells or capillaries; inf, infarction; hrrg, hemorrhage; fib, fibrin deposition; nec, necrosis; swl, swelling; peri, perivascular; myo, myocytes;
apop, apoptotic; mono, monocytes; mye, myelin; deg, degeneration; pyk, pyknotic nuclei; prolif, proliferation/hyperplasia; ede, edema; pyr, pyramidal neuron; inflt, infiltration
of blood cells to parenchymaj; neu, neuron; Purkinje, Purkinje cells are large neurons in CL.
dHistopathologic feature abbreviations are cap, endothelial cells or capillaries; inf, infarction; hrrg, hemorrhage; fib, fibrin deposition; nec, necrosis; swl, swelling; peri,
perivascular; myo, myocytes; apop, apoptotic; mono, monocytes; mye, myelin; deg, degeneration; pyk, pyknotic nuclei; prolif, proliferation/hyperplasia; ede, edema; pyr,
pyramidal neuron; inflt, infiltration of blood cells to parenchyma; neu, neuron; Purkinje, Purkinje cells are large neurons in CL.
<[HC, immunohistochemistry, immunodetection of the target in the tissue sections.
fTUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling detects DNA fragmentation that is a hallmark of apoptosis.
dmmuno-EM-DAB, immunodetection of the target with 3,3'-diaminobenzidine deposition by electron microscopy.
»Sm, streptomycin; MMC, mitomycin C.
iSmr, MMCr.
/PCM, protein calorie malnutrition.
KTLC-anti-PkMab (thin layer chromatography with anti-Pk monoclonal antibody detectin).
ISH, in situ hybridization.
mGFAP, glial fibrillary acidic protein, an astrocyte marker; an increase of GFAP suggests astrogliosis.
"[HC for activated (cleaved) caspase-3.
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effect of Stx in neuronal toxicity. The observation of
lamellipodia-like processes of glial origin interrupting
synaptic connections at the lumbar spinal cord inter-
neuron to motor neuron may explain the resulting hind
leg paralysis (mouse [53]). A similar observation is
reported in a rat model of striatum neurons (51).

CNS Molecular Physiology of Animal Model
Molecular marker analysis in STEC or Stx animal
models suggests possible mechanisms for Stx-associated
CNS impairment.

The apoptotic nature of Stx-associated lesions has
been described. Terminal deoxynucleotidyltransferase-
mediated dUTP-biotin nick end labeling (TUNEL) stain
detects fragmented DNA and therefore is often used as an
apoptotic assay. Capillaries (pig [33], rabbit [43, 54]),
neurons (mouse [55], rabbit [43]), and glial cells (rabbit
[43]) have been detected as TUNEL positive. Activated
caspase-3 targeted immunohistochemistry has been used
for another marker of apoptotic cells. Neurons (mouse
[56]) and capillaries (rabbit [54]) have been detected
positive. Another pro-apoptotic marker, bax, was found
increased in rat neurons (57). Along with electron mi-
croscopy observation (rat [49]), some neurons and cap-
illary cells (endothelial cells and pericytes) undergo
apoptosis, but some appear as necrotic (rabbit [33]).
Careful and detailed information of which area of the
CNS and what types of cells in that area present apoptotic
features may help elucidate these conflicting results.

Aquaporin 4 (AQP4) is mostly expressed in astrocyte
foot processes that have a direct contact with capillaries
in the CNS. The reduction of AQP4 suggests that there is
alteration in astrocytic foot process, which is important
to strengthen the blood-brain barrier (BBB). AQP4 ex-
pression decreased in Stx2-injected rat (50) and STEC-
infected mouse (56), while astrocytic activation marker
glial fibrillary acidic protein increased. This suggests
Stx-associated astrocyte activation may participate in
weakening the BBB.

An increase in tumor necrosis factor alpha in STEC-
inoculated mouse (37) and Stx2-injected rabbit (43)
brain along with serum tumor necrosis factor alpha
increase in STEC-inoculated rabbit (55) suggests Stx-
associated inflammation in the CNS.

Ca”* imaging and electrophysiological study are useful
tools to assess direct physiological action of Stx in fresh
brain slices. Our group showed Stx2-associated neuronal
glutamate release in mouse brain slice (cerebral cortex)
indirectly by recording intracellular Ca** in astrocyte
(53). Recently, it is shown that Stx2 induces depolariza-
tion of neurons in the thalamic area of female rat (58).

Receptor Gbz Expression in Animal Central and
Peripheral Nervous Systems (CNS, PNS)

Shiga toxin receptor localization in the animal nervous
system has been described for different species. There are
three ways to localize Shiga toxin receptor. First is to
perform anti-Stx immunodetection in tissues of STEC-
infected or Stx-injected animals (rabbit [42, 47, 52], rat
[49, 59], mouse [35, 36]). Second is to incubate a naive
tissue section with Stx followed by anti-Stx immuno-
detection (pig [60]). Third is to recognize Gbs as an Stx
receptor with anti-Gb; immunodetection in tissues.
Detecting anti-Gb; immunoreaction in the naive tissue
provides a basal expression level and cell types that
would be influenced by Stx initially in the course of
disease. These include neurons in the mouse spinal
cord (53) and other regions of CNS (61). In the Stx-
administered tissue, it may or may not indicate the
spontaneous Stx receptor expression but certainly in-
dicates cell types responsive to Stx. The cell types that
are positive in either of the analyses above often include

63], mouse [45, 64]), neurons (rat [49, 57, 59], mouse
[35, 45, 53, 61]), and glial cells (rat [49, 57, 59], mouse
[45, 61]). Miyatake and colleagues compared the pe-
ripheral nervous system (dorsal root ganglion) of dif-
ferent species with the same method and found that
human and rabbit expressed Stx receptor in endothelial
cells and neurons, whereas rat and mouse expression
was restricted to neurons (62, 63). Our group reported
that throughout the mouse CNS, the only nonneuronal
cell type to exhibit anti-Gb; immunoreactivity was the
third ventricle ependymal cell (61). Studies have sug-
gested, in the naive state, humans and rabbits express
Stx receptor in their vessels as well as neurons, and
rodents appear to express Gbs mainly in neurons.
However, it was shown that Stx receptors in the rat CNS
are induced by Stx administration (57). Among different
species, the receptor expression patterns in different
regions of CNS, the cell types, and the amount expressed
may be different, but all models present with common
CNS impairment such as hind-leg paralysis. This may be
interpreted as expression of Stx receptor in endothelial
cells is not necessary for toxin to be able to internalize
into the CNS parenchyma to have an effect.

In 2006, Okuda et al. (64) reported a 4galt knockout
mouse that lacks Gbj synthase (alpha 1,4-galacto-
syltransferase) and therefore produces no Gbs. In this
mouse, originally Gbs-positive vessels lost their anti-Gbs
immunoreactivity and became Stx resistant. Gbz syn-
thase probe has been applied for an in situ hybridization
in the mouse (56) and rat (58) CNS. While metabolic
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TABLE 2 Observed CNS symptoms in animal models®

Ref. Animal Model ANOX LTHG HL para FL para ATX RCM? CV/TR SZR Coma Death Other
46  Baboon Stxl ND< ND ND ND ND ND ND ND ND Yes
67  Baboon Stxl Yes ND ND ND ND ND ND 3/6 (50%) VYes Yes
31 Pig STEC Yes Yes Yes ND Yes Yes Yes Yes Yes Yes
71 Pig STEC ND ND ND ND Yes Yes ND ND ND Yes Diarrhea,
then CNS+
32  Pig STEC ND ND Yes Yes ND Yes Yes ND ND Yes Paddling
39 Pig Stx2eiv.  Yes ND ND ND Yes ND Yes ND Yes Yes Paddling, extensor
rigidity, dyspnea
40  Pig Sup ND ND ND ND Yes Yes Yes ND Yes Yes Paddling,
Stx2e i.v. extensor rigidity
33 Pig STEC ND ND ND ND Yes Yes ND ND ND ND
(1/11) (1/11)
41 Rabbit Stx1 Yes Yes Yes ND Yes ND ND ND ND Yes
42  Rabbit  Stxliwv. Yes Yes Yes Yes ND Yes No ND ND Yes Ruffled fur,
rapid respiration
52 Rabbit Stx2 iv. ND ND Yes Yes Yes ND Yes ND ND Yes Opisthotonic
(50%) (50%) (33%) (50%) (50%)  posture
47 Rabbit Stx2 Yes Yes Yes Yes ND Yes ND ND ND Yes
i.v.and i.t.
68  Rabbit Stx2 i.v. Yes ND Yes Yes ND ND ND ND ND Yes
54  Rabbit  Stx2i.v. Yes ND Yes Yes ND ND ND ND ND Yes Dyspnea
43 Rabbit  Stx2i.v. Yes ND Yes ND Yes ND ND ND ND Yes
(83.3%) (83.3%)
48  Rabbit  Stx2i.v. ND ND Yes ND ND ND Yes ND ND ND
(25%) (25%)
57 Rat Stx2i.cv.  ND Yes Yes ND ND ND ND Yes ND Yes Crawling
35 Mouse STEC ND Yes Yes Yes ND ND ND ND ND Death Deformity of
backbone,
loss of pain
29 Mouse STEC ND ND Yes Yes Yes ND Yes ND Yes Yes Jerky rhythmic
motion
36 Mouse STEC Yes Yes Yes ND ND ND (Yes)? ND ND Yes Ruffled fur, jerky
rhythmic motion
37  Mouse STEC Yes Yes Yes ND ND ND ND ND ND Yes
44  Mouse  Stx2i.v. ND ND Yes ND ND ND ND ND ND Yes
44  Mouse  Stx2 ND ND ND ND ND ND Yes Yes ND Yes
+LPS i.v.
38 Mouse STEC Yes Yes Yes ND ND ND Yes ND ND Yes Ruffled fur
53 Mouse  Stx2i.p. ND Yes Yes ND Yes ND Yes Yes ND Yes Retain sense (pain)
56 Mouse STEC ND ND Yes ND ND ND Yes ND ND Yes Spinal deformity

aAbbreviations for CNS symptoms are ANOX, anorexia; LTHG, lethargy; HL para, hind-leg paralysis; FL para, foreleg paralysis; ATX, ataxic gait; RCM, recumbency,
difficulty holding body upright by itself; CV/TR, convulsions/tremors; SZR, seizure. Injection route abbreviations: i.c.v., intracerebroventricular; i.p., intraperitoneal; i.t.,
intrathecal; i.v., intravenous.

tLateral, sternal, or dorsal recumbency; the animal is lying down with leaning on its side, abdomen, or back, having difficulty holding its body upright.

< ND, not described.

4Shivering.

Discussion about How Stx
Enters CNS of Animals

pathway enzymes such as Gbj synthase, a glycosyl-
transferase, add the terminal galactose to complete Gbs,

other glycosyltransferases in the pathway are unique in
each step of glycolipid synthesis, and there are catabolic
pathway enzymes as well (see Fig. 6). All these enzymes
participate in determining the amount of Gbs in the cell.
Measuring these Gbs-associated enzymes may provide
more insight into Stx receptor regulation.

Purified Stx peripheral injection (intraperitoneal [i.p.] or
intravenous [i.v.]) is able to induce CNS impairment
similar to that of STEC oral infection, suggesting that
there is a direct effect of Stx on CNS parenchymal cells.
The rat model of intraventricular purified Stx2 injection
in which purified Stx2 is inoculated directly into CNS
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EC 2.4.1.228 EC 24.1.79
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FIGURE 6 Metabolic and catabolic pathway enzymes for Gbs synthesis. A part of Gbs
synthesis pathway is shown. From lactosylceramide (LacCer) to Gbs, alpha 1, 4-
galactosyltransferase (EC 2.4.1.228) adds a galactose to LacCer to produce Gbs. Likewise,
UDP-GalNAc: beta 1,3-galactosaminyltransferase (EC 2.4.1.79) works on Gbs to make Gbg,.
In the catabolic pathway, beta-hexosaminidase (EC 3.2.1.52) degrades Gb,4 to Gbs, and
alpha-galactosidase (EC 3.2.1.22) makes LacCer from Gbs. doi:10.1128/microbiolspec

.EHEC-0005-2013.f6

parenchyma also induces similar CNS symptoms such
as lethargy, hind-leg weakness, or paralysis (57). These
results suggest that Stx released from STEC internalizes
into the blood and then transfers to CNS parenchyma
and asserts its toxicity.

The route and CNS region of Stx permeabilization are
of great interest to explain which part of the CNS is most
likely influenced by Stx. Stx injected by i.v. has been
detected in cerebrospinal fluid (CSF) (rabbit [47, 65]).
This suggests there is translocation of Stx from blood to
CSF. A reduction of AQP1 in choroid plexus in rat with
Stx (i.p.) suggests that there is weakening of the blood-
CSF barrier in this location that may allow Stx to enter
CSF from the blood. The ependymal cells lining at the
third ventricle are a border between CSF and CNS pa-
renchyma. Our group showed in mouse CNS that
ependymal cells at the third ventricle are expressing Gbs
in a naive state (61). The tracer horseradish peroxidase
that is injected intrathecally into CSF crossed and en-
tered ependymal cells and parenchyma (rabbit [52]), and
magnetic resonance imaging showed the third ventricle
area with a bright signal that is an indication of leakiness
into the fluid in this area. Taken together, it is reasonable
to think that Stx uses blood-CSF barrier penetration as
one of the routes into CNS parenchyma. On the other
hand, Stx injected i.p. was detected in the perivascular
area in rat (49), and BBB weakening was suggested by
the reduction of AQP4 (rat [50], mouse [56], and by

tracer horseradish peroxidase (i.v.) detection in paren-
chyma (mouse [35]). These results suggest that Stx can
also use the BBB crossing route to enter the CNS. An
important fact to note is that purified Stx by itself,
without any other bacterial component, can enter CNS
and assert its toxicity regardless of differences in recep-
tor-expressing cell types among different species.
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