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ABSTRACT Shiga toxin-producing Escherichia coli (STEC)
strains have been detected in a wide diversity of mammals,
birds, fish, and several insects. Carriage by most animals is
asymptomatic, thus allowing for dissemination of the bacterium
in the environment without detection. Replication of the
organism may occur in the gastrointestinal tract of some
animals, notably ruminants. Carriage may also be passive or
transient, without significant amplification of bacterial numbers
while in the animal host. Animals may be classified as reservoir
species, spillover hosts, or dead-end hosts. This classification is
based on the animal’s ability to (i) transmit STEC to other animal
species and (ii) maintain STEC infection in the absence of
continuous exposure. Animal reservoirs are able to maintain
STEC infections in the absence of continuous STEC exposure
and transmit infection to other species. Spillover hosts, although
capable of transmitting STEC to other animals, are unable to
maintain infection in the absence of repeated exposure. The
large diversity of reservoir and spillover host species and the
survival of the organism in environmental niches result in
complex pathways of transmission that are difficult to interrupt.

Escherichia coli strains that carry Shiga toxin genes are
commonly isolated from the gastrointestinal tract of
a wide variety of animal species (Table 1). Intestinal
carriage of most Shiga toxin-producing E. coli (STEC)
strains by domestic and wild animals has little clinical
relevance to either the animal hosts or humans. Most
animals lack receptors for Shiga toxin, and in humans,
the presence of additional virulence factors, in addition
to the stx gene, is associated with disease outcomes
(1–3). However, animals may harbor STEC strains that
are pathogenic to humans. This article focuses on the
role of animals as reservoirs for infection or as spillover
hosts. Within the animal, these bacteria may be resident
or transient in the gastrointestinal tract. Determining

whether STEC is resident in flora or transient is not
possible during cross-sectional observational epidemio-
logical studies when only one sample is collected from an
animal and there is no serial testing. Even under exper-
imental conditions it is difficult to determine if repeated
isolation from the feces over time is a result of replication
of the organism in the animal or repeated exposure.

Animals capable of maintaining STEC carriage in the
absence of continuous exposure or those that frequently
are reexposed to STEC from environmental sources can
serve as potential sources of interspecies and intraspecies
infection. Cattle are regarded as the natural reservoir of
STEC (1), but other ruminant species such as sheep,
goats, and deer may also act as reservoirs. Animals may
also be categorized as spillover hosts. Similar to reser-
voirs, these animals are susceptible to colonization and
may transmit disease; however, once they are no longer
exposed to a source of STEC, they do not maintain this
colonization. This inability to maintain STEC coloniza-
tion in the absence of exposure is the critical factor that
differentiates these animals from reservoirs. Epidemio-
logical evidence indicates that birds, swine, dogs, and
horses may be spillover hosts. Dead-end hosts, as the
name suggests, are incapable of transmitting STEC
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naturally to other animals. In the absence of evidence
that aquatic species such as finfish and shellfish transmit
the organism to other animals, they may act as dead-end
hosts for STEC, only transmitting STEC when they are
consumed (4–6).

The factors governing the prevalence and number
of bacteria present in the digestive tract of animals are
poorly understood, even for the best-studied species,
bovines. The prevalence andmagnitude of STEC infection

in animals is dependent on a complex interaction of ex-
ternal and internal conditions: the frequency and dose
of exposure, the host’s susceptibility to infection, and
the duration of shedding. Moreover, these factors may
vary considerably among species and even among the
same species as a function of age, immunity, housing, diet,
climate, and sanitation.

ANIMAL SPECIES OF IMPORTANCE
IN THE EPIDEMIOLOGY OF STEC
Cattle
Cattle are recognized as a primary reservoir for STEC
strains, especially the serogroup O157 (1). Like humans,
cattle are exposed to STEC through contaminated food
and water or by exposure to the feces of other animals
shedding the organism. The infectious dose in cattle is
estimated to be as low as 300 CFU (7). STEC coloni-
zation in cattle is usually asymptomatic due to the ab-
sence of vascular receptors for Shiga toxins (8). The
absence of these globotriaosylceramide-3 (Gb3) vascular
receptors, especially in the intestinal vasculature, means
Shiga toxins cannot be endocytosed and transported to
other organs that may be sensitive to Shiga toxins (9).
The terminal part of the large intestine, the recto-anal
junction (RAJ), is the main site of STEC colonization in
cattle (10). The increased production of factors associ-
ated with environmental survival among cattle isolates
of STEC O157, compared to human-origin isolates,
combined with the low infectious dose, may provide a
selection bias for these organisms to recolonize cattle
and maintain the organism in the bovine population
(11). Improper feed storage facilities or poorly designed
feeding troughs can result in feed being contaminated
with the feces of wild or domestic animals.

Livestock drinking water contamination can occur at
its source or at the farm. Surface water and groundwater
sources may be contaminated from effluent runoff from
farms and urban areas. Leaching from pastures may also
result in groundwater contamination (12, 13). At the
farm, improperly designed water troughs can be con-
taminated by animal feces. LeJeune et al. (14) showed
that 1.3% of 473 water troughs sampled in three U.S.
states were positive for STECO157. STEC has also been
demonstrated to persist for more than 4 months in
contaminated water troughs (15).

Other management practices may also affect the in-
cidence of STEC in animal populations. Flushing alley-
ways with water increased the incidence of STEC in
animals compared to other manure removal strategies

TABLE 1 Animal hosts of Shiga toxin-producing E. coli

Common
Name Scientific Name Reference

Cattle Bos taurus 1, 7, 8, 10, 19, 21–23,
27, 29–33

Goats Capra aegagrus hircus 34, 39, 40, 43, 44, 48,
49, 53

Sheep Ovis aries 1, 35, 39, 43–47

Water buffalo Bubalus bubalis 53, 54, 61

White-tailed deer Odocoileus virginianus 62–64, 67–71

Bison Bison bison 74–77

Elk Cervus canadensis 72, 73, 80

Llamas Lama glama 191

Alpaca Lama pacos 83, 192

Yak Bos grunniens 83

Eland Taurotragus oryx 83

Antelope Antilope cervicapra 83

Mountain goat Oreamnos americanus 84

Guanaco Lama guanicoe 79

Horses Equus ferus caballus 85–88, 91

Donkey Equus africanus asinus 84, 89, 90

Domestic swine Sus domesticus 1, 92, 94–96, 101, 102

Feral swine Sus scrofa 103–105

Chicken Gallus gallus domesticus 92, 94, 125, 126

Turkeys Meleagris gallopavo 92, 126

Pigeon Columba livia 111, 116

Starling Sturnus vulgaris 110, 112–114

Geese Branta canadensis 107, 119

Turtle dove Streptopelia turtur 112

Barn swallow Hirundo rustica 112

Dogs Canis lupus familiaris 39, 163, 165

Cats Felis catus 166, 170, 171

Coyote Canis latrans 84

Fox Vulpes vulpes 84

Rabbit Oryctolagus cuniculus 143, 144

Raccoon Procyon lotor 152

Fish and shellfish 129–132

Norway rats Rattus norvegicus 108, 137, 138

Ground hog Marmota monax 84

Patagonian cavy Dolichotis patagonus 83

Frogs 193

Ferretsa Mustela putorius furo 172

Micea Mus spp. 114, 142, 180

aExperimental infections only.
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(16). Animals housed on sawdust were also found to
have a higher incidence of STEC than animals housed on
sand-based bedding (17). Movement of animals to and
from farms also increases the risk of STEC transmission:
Animals carried to animal exhibitions have a greater
likelihood of contracting STEC than animals not carried
to shows (18). These animals, on returning to the farm,
can then shed STEC, thus exposing other animals to
infection or colonization.

In the United States, STEC O157 is found on almost
all cattle farms, with the organism being shed intermit-
tently by most animals (19). STEC is shed mainly
through the feces of colonized animals; however, Shiga
toxin genes have been detected from E. coli strains
isolated from the milk of mastitic cows (20). Although
a rare occurrence, milk from these animals can be a
potential source of STEC infection to nursing calves,
animals fed waste milk, and the human population.
Most milk-borne STEC cases are, however, due to
postmilking contamination and the subsequent con-
sumption of these products without pasteurization.

The prevalence of STEC in cattle populations is highly
variable, with peaking and dropping at unpredictable
times. At any specific time, the global prevalence of
STEC O157 in cattle has been reported to range from
0 to 71% (21), and the herd infection rate has been
reported to be up to 100% in some studies (22). In the
United States, the herd prevalence of STEC may range
between 10 and 20% (23). The global prevalence of
STEC O157 has been reported to range from 0.2 to
48.8% in dairy cattle and 0.2 to 27.8% in beef animals
whereas the global prevalence of non-O157 STEC may
range from 0.4 to 74% in dairy cattle and 2.1 to 70.1%
for beef animals, respectively, as reported in two inde-
pendent studies (24, 25).

Colonized cattle can shed STEC O157 at levels as
high as 1.1 × 105 CFU/g feces (26) and for as long as
10 weeks (27). The average duration of STEC O157
carriage is 30 days; however, in rare cases animals may
be colonized for up to 1 year (28). Animals excreting
greater than 104 CFU/g feces are termed “super-shedding
animals” (29, 30). Longitudinal studies, however, indi-
cate super-shedding represents a phase or stage of colo-
nization of all cattle and can be typically observed in a
small fraction of animals in a population at any given
time (31). Nevertheless, it is not debatable that animals
excreting these high levels of STEC are responsible for
the majority of environmental contamination (30, 32).
Calves tend to shed STEC at the lowest levels before
weaning; however, the highest shedding is exhibited in
the period immediately post weaning (33). The shedding

of STEC also tends to be higher in the warmer months,
with peak prevalence being in summer and early fall with
a drastic decrease in prevalence during thewinter months
(19).

Small Ruminants
Small ruminants, particularly sheep and goats, are im-
portant reservoirs of STEC O157 (34). Considerable
research has focused on the role of sheep in the epide-
miology of STEC infections; however, there is limited
published research on the role of goats (34). Although
cattle have been identified as the major reservoir for
STEC in the United States, small ruminants play a
greater role in the epidemiology of STEC infections in
other countries. For example, sheep have been identified
as the host of significance in Australia (1) and have also
been recognized as an important reservoir of STEC O26
in Norway (35). In addition to STEC serogroups O157
and O26, sheep have been cited as reservoirs for more
than 100 other serotypes of STEC, including O115,
O128, and O130 (34, 35)

Transmission of STEC to small ruminants occurs
through the same pathway as in cattle. The site of STEC
colonization, however, may be different. Unlike cattle,
tropism for RAJ has not been described for all small
ruminants (34). Following exposure to STEC O157, in
some studies few attachment and effacement lesions
were visible on the intestinal mucosa and the entire distal
intestine, including the cecum, colon, and rectum, was
colonized, not only the RAJ (34, 36). However, in ma-
ture sheep given a single oral dose of a human clinical
isolate of STEC O157:H7, analysis of digesta and in-
testinal mucosa showed colonization occurs exclusively
at the RAJ mucosa (37; CJ Hovde, University of Idaho,
personal communication). STEC O157 shedding pat-
terns between rectally and orally inoculated sheep were
found to be similar, thus indicating that STEC O157
may be able to effectively colonize the terminal rectum
(38). However, inefficient attachment of large numbers
of STEC to the RAJ may account for reduced shedding
periods compared to those in cattle.

Similar to cattle, small ruminants tend to be asymp-
tomatic shedders of STEC. This trait was demonstrated
when the screening of “healthy animals” in Berlin
reported that 66.6% of the sheep and 56.1% of the
goats tested were found to be STEC carriers (39). Similar
results were obtained in Spain where 47% of healthy
goats tested positive for shedding STEC (40). The
asymptomatic feature of STEC carriage is possibly also
due to the lack of Shiga toxin vascular receptors in small
ruminants.
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Many direct-contact human infections are attributed
to contact with sheep and goats at petting zoos and open
farms (41, 42). One study investigating the prevalence
of zoonotic agents on small city farms in southern
Germany found that 100% of the sheep and 89.3% of
the goats tested positive for STEC (43). Small ruminants,
especially goats, generally exhibit inquisitive behavior
and thus may have greater contact with humans, in-
creasing the potential for transmission to humans (34).
Human infections have also been linked to the con-
sumption of unpasteurized milk and cheese made from
contaminated goat or sheep milk (40, 44).

Sheep are the primary reservoir for STEC in Australia,
with the serotype of importance being O26; however,
the risk of human infection was deemed insignificant due
to low prevalence rates (1, 45). Although the within-
herd prevalence was low, previous research reported
that 90% of Australian sheep farms had animals testing
positive for STEC (46). In Norway, however, the risk
of human infection from sheep was much more signifi-
cant since almost 50% of the sheep O26 isolates had
multiple-locus variable number tandem repeat analysis
profiles similar to that found in human clinical cases
(35). The importance of sheep in STEC epidemiology
was also demonstrated by Oporto et al. (47), who
reported that greater than 50% of sheep herds in Spain
had animals shedding non-O157 STEC compared to
20.7% in dairy cattle and 46% in beef cattle.

In the United States, Jacob et al. reported that 11.1%
of goat fecal samples collected at slaughter had STEC
O157 and 14.5% had at least one non-O157 STEC se-
rotype (48, 49). The STEC O157 flock prevalence in
Spain was reported to be 8.7% and individual preva-
lence, 7.8% (47). A similarly low STEC O157 preva-
lence of 5.8% was also reported in Scotland (50). Low
STEC O157 prevalences were also reported in the
United Kingdom and Holland, with the prevalence being
0.1% and 4.0%, respectively (51, 52). Lesser developed
countries have also reported the presence of STEC in
their small ruminant population. In Vietnam, 100% of
the goat farms surveyed had animals shedding STEC,
and the within-herd shedding was dramatically higher
than that reported elsewhere, with up to 65% of animals
shedding STEC (53). In Bangladesh, almost 10% of the
small ruminants being slaughtered tested positive for
STECO157 (54). As evidenced by past outbreaks, STEC
in animals from lesser developed countries can poten-
tially be a serious threat to food safety, since in those
countries there may not be strict hygienic slaughter
practices; thus contaminated meat could easily enter the
food chain (55, 56).

The shedding of STEC in small ruminants has been
demonstrated to be age and season dependent. Younger
animals tend to have a lower prevalence of STEC than
older animals do (40, 57–59). A longitudinal study
spanning 6 months in the United States demonstrated a
peak in STEC prevalence during summer (60). This
trend was also observed in Italy, where animals screened
during the warmer months of the year had a higher
prevalence of STEC O157 (58).

Other Ruminants
Water buffalo (Bubalus bubalis)
In addition to cattle, sheep, and goats, other ruminant
species have also been identified as shedders of STEC.
Water buffalo (Bubalus bubalis) has been identified as
an important reservoir of STECO157 in many countries
(61). The water buffalo is reared in many countries be-
cause of its ability to serve a dual purpose, as both a milk
andmeat producer. Buffaloes are also able to thrivemuch
better on poor quality forages than the Bos taurus spe-
cies, thus making them suitable for subsistence farming.
There are large commercial meat and milk water buffalo
herds in Asia and South America, while in Europe water
buffalo is primarily reared for milk production. In
Bangladesh, STEC colonies were isolated from 38% of
the buffaloes sampled before slaughter. Almost half of
these isolates were identified as being O157 (54). Galiero
et al. reported an almost a similar prevalence in Italy,
with 14.5% of the animals shedding O157 (61). In
Vietnam, 27% of the buffaloes screened were found to
be positive for STEC. Serotyping of the isolates, however,
revealed that none of the isolates were O157 (53).

Deer
There are an estimated 30 million white-tailed deer in
the United States (194). The role of white-tailed deer
(Odocoileus virginianus) as a potential reservoir for
STEC was first reported in 1999 when almost 2.4% of
deer sampled tested positive (62). The presence of STEC
O157:H7 in deer feces was later confirmed by Renter
et al. (68), who found the STEC prevalence in Nebraska
white-tailed deer to be 0.25%. Similarly, low STEC
prevalences of 0.2% were reported in hunter-harvested
captive deer in Louisiana (63) and 3.3% in farm-raised
deer in Ohio (64). Other species of deer, including red
deer (Cervus elaphus), fallow deer (Dama dama), and
roe deer (Capreolus capreolus), have also been identified
as capable of shedding STEC serotypes (65, 66). Almost
50% of Pennsylvanian white-tailed deer fecal samples
screened tested positive for stx genes; however, only 8%

4 ASMscience.org/MicrobiolSpectrum

Persad and LeJeune

http://www.ASMscience.org/MicrobiolSpectrum


Downloaded from www.asmscience.org by

IP:  190.151.168.196

On: Sun, 01 Mar 2015 14:37:11

possessed the eae gene, which is necessary for coloni-
zation of the human intestine (67).

Feral deer are known to share pastures with cattle and
can also be found in close proximity to many dairy
farms. The close association between deer and livestock
implies that deer can serve to maintain and disseminate
STEC between and within cattle herds (68, 69).

Human STEC O157 infections were first associated
with venison in 1997 when six persons became ill as a
result of consuming jerky made from venison (70). Since
then, there have been numerous other cases associated
with venison, with one of the most recent published
reports being an outbreak of non-O157 STEC among
high school students that was associated with con-
sumption of venison they had killed and processed. Two
STEC serotypes, O103:H2 and O145:NM, were iso-
lated from the samples analyzed; however, the O145:
NM serotype was found to be Shiga toxin negative (71).

Elk (Cervus canadensis)
Similar to deer, elk have also been associated with nu-
merous food-borne disease outbreaks (72). Gilbreath
et al. (80) reported that over 22% of wild Idaho elk
screened were positive for STEC. A slightly lower prev-
alence (7%) of stx genes was detected in fecal pellets
collected from elk in Colorado (73). In this study none of
the animals were found to shed serogroup O157, but
serogroups O103 and O146 were detected. Interestingly
in both studies, the incidence of STEC in the elk feces
was found to be higher than in mule deer, which shared
the same grazing grounds.

Bison (Bison bison)
Another potentially important animal reservoir of STEC
is the American bison (Bison bison). This potential is
supported by the fact that both cattle and bison share
similar RAJ morphological characteristics (74). In the
United States consumption of bison meat has increased,
thus increasing the risk of transmission from bison to
humans (75). This risk was exemplified in 2010 when a
multistate outbreak of STEC O157:H7 was associated
with bison meat consumption. The prevalence of STEC
O157:H7 in bison has been reported to be as high as
42% (76). STEC O157 has also been isolated from the
carcass of slaughtered bison at a prevalence of 1.13%
(77). Non-O157 STEC serotypes including O45, O103,
O111, O113, O121, and O145 have also been isolated
from bison carcasses; however, none of these isolates
possessed stx genes (78).

STEC O157 and non-O157 STEC strains have been
isolated from other captive and wild nondomesticated

ruminant species. They include llamas, moose, alpacas,
antelopes, and yaks (79–84). These animals can transmit
STEC to humans directly by contact at petting zoos or
indirectly through fecal deposition in water sources,
vegetable fields, or recreational areas or on meat. Fur-
ther research is required to determine the role these
animals may have in the epidemiology of human STEC
infections.

Equine
Published data on the epidemiology of STEC carriage in
horses are limited. There are also no published case
reports describing the clinical features of STEC infection
in horses. The available published data on the preva-
lence of STEC in horses (85–88) and donkeys (84, 89,
90) indicate that they are not major reservoirs of STEC
and may instead be spillover hosts. Only one of 400
horse fecal samples screened in Germany was positive
for STEC. The serotype isolated was O113: H21 (88). A
similarly low prevalence of STEC has also been detected
in the equine population in the United States. Only one
of 242 horse fecal samples from Ohio tested positive for
STEC O157:H7. Interestingly, this case shared housing
accommodations with a goat that also shed STECO157.
The isolates from both animals had indistinguishable
multiple-locus variable number tandem repeat analysis
patterns (87). A similarly low prevalence has been
reported by Hancock et al., who reported that 1% of
horses sampled (n = 90) tested positive for O157:H7
(85). Screening of fecal samples from horses located in
the Sacramento Valley revealed a slightly higher preva-
lence than that recorded in Ohio. Four of 156 samples
(2.6%) tested positive for the Shiga toxin 2 gene (86).
Notably, as was seen in Ohio, all the positive horses
were also housed on farms containing ruminants. De-
spite the low STEC prevalence in horses, there are
reported human clinical cases associated with infection
from horse contact (91), and one must be aware of this
potential source of infection.

Swine
Swine can be colonized with various serotypes of STEC,
including O157; however, the risk of causing human
disease is low (12, 92, 93). The prevalence of STEC
O157:H7 in domestic swine has been reported to range
from 0 up to 10%, with the prevalence in the United
States usually being less than 2% (12, 92, 94, 95). As in
humans, STEC O157:H7 can be highly pathogenic in
pigs (92). Unlike ruminants, pigs possess stx-sensitive
vascular receptors, and edema disease can develop post
intestinal colonization with STEC strains producing
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Stx2e (8, 96). Stx2e is the most frequent subtype of Stx2
found in porcine feces (97). The receptor affinity of
Stx2e is different from Stx1a and Stx2a, since the pri-
mary receptor targets are not Gb3 receptors but rather
globotetraosylceramide (Gb4) receptors (98, 99). Re-
cently weaned pigs are most susceptible to edema dis-
ease, and the clinical signs include subcutaneous and
submucosal edema, ataxia, incoordination, stupor, and
recumbency (98, 100). While morbidity in the herd may
be low, the case fatality rate for edema disease is high,
and surviving pigs may have neurologic deficits.

Though a relatively low prevalence of STEC O157:
H7 has been reported, swine have been shown to harbor
and shed STEC for up to 2 months post infection (101).
Non-O157 STEC serotypes have also been isolated from
pigs; however, many of these isolates lack the virulence
factors required to cause human disease (1). Despite a
low prevalence of pathogenic STEC serotypes, the po-
tential for human infection from swine exists. This risk is
exemplified by a recent Canadian outbreak of STEC
O157:H7 associated with consumption of pork, with
infected persons having the identical STEC O157:H7
isolate to that found in the pork meal served (102)

Feral Swine
Feral swine is another wildlife species that has been
associated with STEC disease in the human popula-
tion. There are approximately 5 million feral swine
in the United States, and they can be found in more
than 35 states (195). These animals are highly adapt-
able to varying environmental conditions and can serve
as a vector for disease between livestock farms and
as a source of contamination of vegetable production
fields.

In the United States, feral swine was first identified as
a reservoir for STEC O157:H7 in 2007 in California
(103). In that study, STEC O157:H7 was isolated from
14.9% of the swine specimens tested, and these isolates
were found to be indistinguishable from STECO157:H7
isolates obtained from an outbreak in the human pop-
ulation associated with the consumption of spinach.
Interestingly, all cattle, feral swine, and environmental
samples from the region where the spinach was culti-
vated had the same STEC isolate O157 (103). STEC was
also detected in feral swine from Sweden, Switzerland,
and Spain. Approximately 9% of the tonsil samples
screened (n = 153) in Switzerland were positive for STEC
O157, but none of the corresponding fecal samples were
positive (104). A similar prevalence of 8% was reported
for Spanish feral swine fecal samples (105). The isolates
were serotyped, and 3.3% of the animals were identified

as shedding STEC O157:H7 and 5.2% of the animals as
shedding non-O157 STEC.

The identification of STEC from feral swine samples
indicates that they can play a role in the epidemiology of
STEC infections. As such, their ability to potentially
contaminate vegetable production fields and serve as
vectors for STEC transmission between livestock must
be recognized, and measures employed to mitigate this
risk

Birds
Birds are capable of harboring many bacterial organisms
in their gastrointestinal tract and are capable of acting as
spillover hosts for STEC. Wild birds were first identified
as a potential source of STEC infection in 1997 (106).
Since then, STEC has been isolated from starlings,
pigeons, sparrows, and other avian species (106, 107).
Many species of wild birds can be found in close prox-
imity to livestock operations and waste disposal landfill
sites. These birds are attracted to farms since they can
easily obtain a food source from animal feed. Nielsen et
al. identified that 2% of the wild bird fecal samples
collected in close proximity to farms contained stx genes
(108). Similar results were also obtained in England
where 1.5% of wild bird samples had the stx1 gene,
7.9% the stx2 gene, and 4.9% the eae gene (109).
Similarly, low prevalence rates of STEC O157:H7 in the
starling (Sturnus vulgaris) population in Ohio and other
wild bird species in Scotland and Japan have also been
reported (110–112). Though the STEC prevalence levels
are reportedly low, the potential of these birds to
transmit STEC to other birds and contaminate the en-
vironment is of serious risk. Studies have shown that
once colonized, a starling may shed STECO157 at levels
greater than 100 CFU/g of feces for up to 13 days post
colonization (113).

The migratory pattern of birds and the fact they can
traverse long distances in a single day mean they can
serve as a mode of transmission of STEC between and
within farms. This was demonstrated by Williams et al.
(114), who reported that starlings and cattle on different
farms had molecularly indistinguishable subtypes of
STEC O157:H7, thus confirming that starlings were
able to transmit STEC to different farms. Bolstering the
role of starlings in STEC epidemiology is the fact that the
number of starlings per milking dairy cow was also
found to be significantly associated with the presence of
STEC O157:H7 in bovine fecal pats (115).

Migratory birds can also interact with peridomestic
birds such as pigeons and thus propagate the transmis-
sion of STEC. Pigeons and finches have been identified as
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two species that can potentially serve as a source of
human infection since these birds inhabit buildings,
parks, and other recreational areas and are in close as-
sociation with the human population (111, 116). Fecal
depositions by these birds in areas frequented by
humans increase the exposure potential to STEC.

Water fowl, including geese and ducks, are identified
as a source of surface water and pasture contamination
(107, 117, 118) and implicated as the source of nu-
merous food-borne pathogens (119–122). One goose is
reportedly capable of producing up to 5 pounds of feces
per day, and this can result in mass contamination,
since these birds are usually found in flocks (123). These
birds are also able to travel large distances per day and
can disperse pathogens over a wide area. Geese are
known to forage within vegetable fields and also inhabit
ponds and other surface water sources used for irriga-
tion (124). The birds can thus contaminate produce
when they defecate within vegetable fields and irrigation
water sources.

STEC carriage has also been reported in domestic
poultry. The prevalence of STEC O157:H7 in domestic
chicken is relatively low, ranging from 0 to 1.5%,
depending on the geographic location sampled (92, 94,
125, 126). Interestingly, the prevalence in turkeys was
higher than that in chickens, with up to 7.5% of fecal
samples testing positive (92, 126). Experimentally col-
onized chickens have been reported to harbor and shed
STEC O157:H7 in their feces for periods in excess of 11
months (127). Pet birds such as canaries (Serinus canaria
domestica) have also been reported to be capable of
harboring and shedding STEC (128).

That both wild and domestic birds are able to harbor,
transmit, and shed STEC is of serious concern since they
potentially are a major risk to human health and disease,
and as such, precautions should be taken to limit human
or animal exposure to the excrement from these birds.

Fish and Shellfish
Fish and shellfish can be exposed to STEC when their
aquatic environment becomes contaminated with mam-
malian fecal matter. These species do not act as reser-
voirs of infection or spillover hosts but rather dead-end
hosts. Fish residing in close proximity or downstream
of animal livestock facilities have also been found to be
contaminated with STEC (129). Shellfish, due to their
filter feeding ability, pose a significant risk to human
infection since they can concentrate and retain patho-
gens (4, 130). Numerous studies have reported the re-
covery of both O157 and non-O157 STEC from the
carcass of fish and shellfish offered for sale (131–135).

The detection of STEC in these carcasses highlights the
potential for human STEC infection through the con-
sumption of undercooked or raw fish and shellfish.

Rodents
Rodents have also been identified as being capable of
harboring STEC within their gastrointestinal flora
(108, 136–138). STEC O157 and non-O157 STEC have
been recovered from Rattus spp. living in urban areas
and on farms (137, 138). Cizek et al. demonstrated that
Norway rats (Rattus novegicus) were capable of shed-
ding STEC O157:H7 for up to 11 days post exposure to
high doses of STEC (109 CFU) and 5 days post exposure
to lower doses of STEC (105 CFU) (139). This shedding
ability indicates that while rats may not be long-term
reservoirs of STEC, they are certainly capable of trans-
mitting STEC between and within farms. This trans-
mission potential was highlighted by Nielsen et al. (108),
who found that STEC recovered from Norwegian rat
fecal pellets was identical to that shed by cattle on the
same farm. Contaminated rat feces may also be capable
of harboring STEC O157:H7 for up to 9 months post
inoculation, thus increasing the risk of transmission to
other animals (139). Although rodents, especially rats,
are not regarded as having a major role in the epidemi-
ology of STEC (69, 85, 140), their potential to harbor
and transmit STEC exists. Unlike for rats, there is little
published information describing the role of mice in the
epidemiology of STEC. Mice have, however, been used
as animal models to study STEC infection in humans
(141, 142).

Rabbits
Rabbits have been identified as potential vehicles for the
transmission of both O157 and non-O157 STEC (143–
145). Rabbits have also been used as a possible animal
model to study STEC infection in humans, since they
demonstrate enteric and renal lesions when challenged
with STEC (146). Globally, consumption of rabbit meat
is increasing; over 1 million tons of rabbit meat are
consumed annually (147), thus increasing the potential
for food-borne infection. Rabbits are also popular at
petting zoos, and more than 6 million rabbits are kept as
pets in United States (148). Similar to dogs and cats,
their close association with humans may lead to the
exchange of microbiota between species and thus STEC
transmission. Wild rabbits are able to traverse long
distances and may inhabit both urban and agricultural
areas and potentially serve as vectors for the transmis-
sion of STEC from farm environments to the human
population (144).
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Raccoons
Raccoons are of particular interest since they can reside
in a wide range of habitats, including agricultural, for-
ested, and urban areas. Raccoons have been identified
as a reservoir for numerous pathogens, including Sal-
monella, Leptospira, and Campylobacter species (149–
151); however, there is only one report of STEC being
isolated from raccoon feces. This animal had been re-
siding within the hay barn of a dairy farm (152) and thus
may be a spillover host. Despite an extensive literature
search, no other reports of STEC raccoon colonization
could be found (153, 154).

Insects
Insects can be important vectors in the transmission
and dissemination of STEC in the environment. STEC
O157:H7 has been recovered from houseflies (Musca
domestica), dump flies (Hydrotaea aenescens), and dung
beetles (Catharsius molossus) residing on animal farms
and at animal fairs (155–158). Houseflies, in addition
to being a mechanical vector, may also be involved in
bioenhanced transmission (159). Kobayabashi et al.
(159) suggested this additional role because STEC
O15H:H7 could be detected within the alimentary tract
of inoculated houseflies for at least 3 days post inocu-
lation. The ability of houseflies to transmit STEC
O157:H7 to animals was demonstrated by Ahmad et al.
(160), who exposed naïve calves to houseflies inoculated
with STEC; within 24 hours, STEC could be recovered
from the feces of all eight calves in the experiment
(160). Houseflies have also been demonstrated to trans-
fer STEC onto the surface of vegetable produce (161).
Houseflies are able to travel greater than 4 miles (162),
and given their ability to transmit STEC, one has to be
cognizant of the role they may play in the epidemiology
of STEC infection.

Pets
Pets, especially dogs and cats, are capable of shedding a
diverse range of STEC serotypes in their feces (163–
166). Interestingly, although both O157 and non-O157
STEC have been recovered from dogs, there are no
published reports indicating that O157 STEC has ever
been recovered from cat feces. Dogs and cats have
historically had close interaction with humans, with
exchange of microbiota resulting in the possible trans-
mission of STEC between species. These animals can be
asymptomatic shedders of STEC, as demonstrated by
Beutin et al. (39), who reported that up to 12% of
healthy dogs shed STEC in their feces. In addition to
household dogs, farm dogs can be a vector for the

transmission of STEC. These dogs move freely among
animals and humans, thus potentiating the spread of
enterohemorrhagic E. coli (167). Dogs have also been
reported to shed non-O157 STEC serotypes in their feces
(163). Human infections due to canine exposure were
also reported; one outbreak in Sweden resulted in 50
cases in humans after they attended a dog show (168).
STEC has also been recovered from the feces of wild
canids (169).

A highly virulent strain of STEC O146:NM has been
isolated from the feces of an asymptomatic cat in
Argentina (170). In Germany, there is also evidence of a
cat and its owner shedding the same STEC O146:NM
serotype (171). In this case, the source of the infection
could not be determined, nor which animal was the in-
dex case.

Animal Models
Animal models have been used to study the in vivo
pathogenesis of STEC. Numerous animal models have
been developed, including mice, rats, chickens, rabbits,
cows, greyhounds, baboons, and macaques (141, 173–
178). Although these models do not fully replicate
all aspects of the STEC infection in humans, they pro-
vide valuable insight into intestinal colonization, STEC
pathogenesis, immune response, and efficacy of possible
treatment regimens (179, 180).

Compared to other animal models, the mouse models
are preferred for in vivo STEC studies because of their
small size, low cost, ease of care and maintenance,
availability of numbers, and varying genetic back-
grounds (<141). There are at least four mouse mo-
dels, including streptomycin-treated, streptomycin and
mitocyin C/ciprofloxacin-treated, intragastric-fed but
not streptomycin-treated, and the malnourished mouse
models (181). The two most popular models are, how-
ever, the streptomycin-treated mouse and axenic mice.
The models have reduced or no gastrointestinal flora
and are also susceptible to STEC or enterohemorrhagic
E. coli colonization (141). The response of mouse
models to STEC exposure is, however, dependent on
the method of infection, the strain of STEC, and the
type of mouse model used (181).

Humans
Although animals are generally regarded as the main
reservoir of STEC, humans can also be STEC reservoirs
and may play a much larger role in the epidemiology of
STEC infections than previously thought (182, 183).
Asymptomatic infections in the human population can
result in dissemination STEC and further propagation of
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outbreaks (182). Given that food contamination is the
source of almost 40% of STEC outbreaks and almost
30% are of unknown origin (184), it is possible that
contamination by asymptomatic humans may the source
of many of these outbreaks.

Human STEC infections can present a wide spectrum
of clinical signs, ranging from symptomatic infections to
severe clinical syndromes such as hemorrhagic colitis and
possibly hemolytic-uremic syndrome and thrombotic
thrombocytopenic purpura in approximately 7% of the
cases. Elderly persons, young children, and immune-
compromised persons are at greatest risk (185).

Food and environmental contamination with STEC
can occur as result of shedding by asymptomatic
workers. Approximately 12% of dairy families in a
Canadian study tested positive for O157 antibodies, and
STEC isolates were recovered from 6% of the fecal
samples, yet none of these positive cases could recall any
clinical signs associated with STEC (186). Similarly,
1.1% of farmworkers in Italy were found to be shedding
STEC O157 asymptomatically in their feces. Contami-
nation of meat carcasses at the abattoir during slaughter
is also a possibility. One study reported that 1.3% of
abattoir workers sampled were actively shedding STEC
in their feces (187). Asymptomatic children can also
shed STEC serotypes for up to 30 days post detection,
whereas adults in the recent German O104:H4 outbreak
shed the organism for up to 13 weeks (182, 188).

Person-to-person or secondary transmission is im-
portant in propagation of outbreaks and can account for
15 to 20% of cases within outbreaks (184, 189). At
particular risk of disease due to secondary transmission
are children (1 to 6 years of age) due to close contact,
their immature immune systems, reduced personal hy-
giene, and prolonged shedding time (184). An analysis
of STEC outbreaks occurring between 1982 and 2006 as
a result of person-to-person transmission showed that
45% of these outbreaks occurred due to transmission at
home, 11% at nurseries, and 10% at recreational water
sources (190).

CONCLUSION
Most warm-blooded animals are capable of acting as
reservoirs (symptomatic and asymptomatic), spillover
hosts, or dead-end hosts of STEC. Animals are exposed
to STEC by direct or indirect contact with the feces of
a shedding animal. Cattle are recognized as the main
reservoir of STEC, however, and other livestock species,
including goats, sheep, bison, horses, pigs, and water
buffalo, have been demonstrated to be capable of

harboring these organisms. Wild birds and animals pose
a unique risk in their ability to travel long distances,
increasing the dissemination of STEC in the environment
and thus potentiating its spread. Domestic pets are also
capable of harboring STEC, and thus serve as a source of
contamination within the household. Given the dem-
onstrated ability of STEC to colonize the gastrointestinal
tract of a wide variety of animals, it is expected that
numerous other unreported species may also be poten-
tial sources of contamination or transmission of STEC.
Recognition of these potential novel animal sources of
transmission and propagation of STEC is essential when
conducting epidemiological investigations and develop-
ing proper risk mitigation strategies. Despite the wide-
spread carriage of STEC by a variety of animal species,
it is important to consider that the presence of the stx
gene alone is not an indication of pathogenicity in the
human host. Assessment of the complement of virulence
factors present in STEC recovered from animal hosts
is therefore important to develop risk models. The un-
derstanding of why certain pathoserotypes or strains of
STEC have a predilection for different animal species
may provide valuable insight in the design of inter-
ventions to control the organism in the live animals that
have impacts on human health.
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