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Feasibility of Detecting Aflatoxin B1
on Inoculated Maize Kernels Surface using
Vis/NIR Hyperspectral Imaging
Wei Wang, Gerald W. Heitschmidt, William R. Windham, Peggy Feldner, Xinzhi Ni, and Xuan Chu

Abstract: The feasibility of using a visible/near-infrared hyperspectral imaging system with a wavelength range between
400 and 1000 nm to detect and differentiate different levels of aflatoxin B1 (AFB1) artificially titrated on maize kernel
surface was examined. To reduce the color effects of maize kernels, image analysis was limited to a subset of original
spectra (600 to 1000 nm). Residual staining from the AFB1 on the kernels surface was selected as regions of interest
for analysis. Principal components analysis (PCA) was applied to reduce the dimensionality of hyperspectral image data,
and then a stepwise factorial discriminant analysis (FDA) was performed on latent PCA variables. The results indicated
that discriminant factors F2 can be used to separate control samples from all of the other groups of kernels with AFB1

inoculated, whereas the discriminant factors F1 can be used to identify maize kernels with levels of AFB1 as low as 10
ppb. An overall classification accuracy of 98% was achieved. Finally, the peaks of β coefficients of the discrimination
factors F1 and F2 were analyzed and several key wavelengths identified for differentiating maize kernels with and without
AFB1, as well as those with differing levels of AFB1 inoculation. Results indicated that Vis/NIR hyperspectral imaging
technology combined with the PCA–FDA was a practical method to detect and differentiate different levels of AFB1

artificially inoculated on the maize kernels surface. However, indicated the potential to detect and differentiate naturally
occurring toxins in maize kernel.

Keywords: aflatoxin B1 (AFB1), factorial discriminant analysis (FDA), hyperspectral imaging, maize, principal components
analysis (PCA)

Practical Application: This work can lay a foundation for future development of practical grain sorting equipment just
after harvest, and for further research on detection of field maize kernels with natural aflatoxin infection.

Introduction
Maize is one of the major food and cash crops grown world-

wide. However, maize kernels are subject to infection by a variety
of toxigenic fungi (Abbas and others 2006). The fungi Aspergillus
parasiticus and Aspergillus flavus produce toxic and carcinogenic
secondary metabolites called aflatoxins (Wright and others 2000).
The Intl. Agency for Research on Cancer (IARC) has classified
aflatoxin B1 (AFB1), AFB2, AFG1, and AFG2 as group 1 carcino-
gens (IARC 2002; Manetta 2011). Among this group of toxins,
AFB1 was found to be one of the most potent environmental car-
cinogens. The intake of AFB1 over a long period of time, even at
very low concentration, may be highly dangerous (Piermarini and
others 2009). Consequently, aflatoxin has long been monitored by
the United States Food and Drug Administration (USFDA), and
a level of 20 ppb has been set as the limit for maize contamination
with aflatoxin (Abbas and others 2006). The early detection of
toxigenic fungi directly on maize kernels can be useful to prevent
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the intake of these contaminated materials into the food chain
(Del Fiore and others 2010).

Conventional analytical method used to detect and quantify
the toxicity in grain and feeds include thin layer chromatography
(Samarajeewa and others 1991), gas chromatography, and high
performance liquid chromatography (HPLC; McDanell and others
1988; Herzallah 2009). There are also some other methodologies
including immunosorbent assay (Waśkiewicz and others 2012),
molecular identification techniques (Borman and others 2008),
and fluorescence (Fernández-Ibañez and others 2009; Gorran and
others 2013). Although these methods have many merits such as
accuracy, selectivity, very low limit of detection or rapidity, most
of these methods are generally expensive, difficult, and introduce
unfriendly chemicals (Christensen and others 2008). For detection
of mycotoxins at grain processing plants, an objective, rapid, and
nondestructive method is needed (Fernández-Ibañez and others
2009).

In the past few decades, studies have been focused largely
on near infrared (NIR) spectroscopy, a nondestructive, simple,
rapid, and inexpensive methods for the screening of fungal
contamination and toxins on cereals. For example, Dowell
and others (1999) used NIR spectroscopy to predict Fusarium
head blight (FHB) disease, vomitoxin, and ergosterol in single
wheat kernels. Wang and others (2004) classified fungal-damaged
soybean seeds, Berardo and others (2005) detected kernel rots
and mycotoxins in maize. Pearson and others (2001) used
transmittance and reflectance spectroscopy for detecting aflatoxin

C© 2014 Institute of Food Technologists R©
M116 Journal of Food Science � Vol. 80, Nr. 1, 2015 doi: 10.1111/1750-3841.12728

Further reproduction without permission is prohibited



M:
Fo

od
Mi

cro
bio

log
y

&
Sa

fet
y

Detection of AFB1 on maize kernels surface . . .

in single corn kernels. Delwiche and Gaines (2005) also developed
2-wavelength models in the visible (Vis), NIR, and the hybrid
region for sorting of fusarium-damaged wheat, achieving at least
86% classification accuracy. Tripathi and Mishra (2009) indicated
that the most significant bands related to fungal infection were
around 870 to 1200 nm corresponding to NH in most amino
acids and aromatic rings. Peiris and others (2009) concluded that
differences in peak height attributed to changes in the levels of
grain food reserves such as starches, proteins, and lipids and other
structural compounds, and positions shifts may arise from other
NIR active compounds, such as deoxynivalenol.

Conventional NIR spectroscopic techniques provide an average
spectrum of the targeted sample without any spatial information.
When measuring bulk-samples, results do not indicate whether
the average toxin values resulted from a single highly infected ker-
nel, a few modestly infected kernels, or several kernels infected
at a low level (Dowell and others 1999). For this reason, de-
tection with a point-source instrument can become problematic
(Polder and others 2005). However, hyperspectral imaging allows
characterization of both the spectral (spectroscopic component)
and spatial properties (imaging component) of a given sample
because each pixel in a hyperspectral image contains the full spec-
tral response across a range of wavelengths, typically, UV-Visible,
Vis/NIR, SWIR, or thermal IR (Del Fiore and others 2010).
Thus, hyperspectral imaging technology is an ideal information
tool to detect the presence of fungi or mycotoxins and deter-
mine their distribution on maize samples. Singh and others (2010,
2012) and Shahin and Symons (2011) used hyperspectral imaging
method to detect midge-damaged wheat kernels. Delwiche and
Kim (2000) showed the application of the hyperspectral reflectance
imaging to separate healthy wheat kernels from those damaged
by FHB. Williams and others (2012) presented a hyperspectral
imaging method for detection of Fusarium in maize kernels. In
addition, Polder and others (2005) found the NIR range is much
more suitable than the visible range to detect FHB in whole wheat
kernels.

Pearson and others (2001) suggested that AFB1 typically
localized at the kernel embryo and can leave little indication of
its presence on the kernel surface, therefore it was improbable to

detect AFB1 directly by NIR spectroscopy. Dowell and others
(2002) concluded that fumonisin present at the ppm level do
not absorb detectable amounts of NIR energy. However, other
chemical and optical properties of whole kernels caused by fungi
or mycotoxin may be detected with Vis or NIR spectroscopy.
Berardo and others (2005) reported that the mold infection
and metabolites produced in maize grain and flour by Fusarium
verticilloides could be quantified using NIR spectroscopy. In
addition, Fernández-Ibañez and others (2009) found that when
compared with other conventional methods of screening raw
maize kernels, NIR spectroscopy proved to be a rapid, low-cost,
and effective method to detect aflatoxin presence at 20 ppb.

Given the contrary findings based on naturally occurring fungal
metabolites, it was determined that a controlled experiment was
needed wherein maize kernels would be inoculated with AFB1 at
various concentrations and compared with a control group that
was free of any AFB1.

Therefore, the aim of this work is to determine the feasibility
of using Vis/NIR hyperspectral imaging technology to detect
various concentrations of AFB1 directly applied to the surfaces
of maize kernels. Specifically, the objectives of this study were
to: (1) measure the spectral response of maize kernels with pure
AFB1 artificially inoculated on the surface and determine any
key wavelengths, (2) establish a model to discriminate between
clean and contaminated kernels, and discriminate between kernels
artificially inoculated with different levels of AFB1, and (3) explain
the key wavelengths used to differentiate clean maize kernels from
those with AFB1 on their surfaces.

Materials and Methods

Sample preparation
A total of 150 Pioneer 3394 maize kernels with roughly the same

size, appearance, shape, and weight were used as the samples in this
study. All of the kernels belonged to the same pedigree, harvested
in 2010, and were kindly provided by the Toxicology and My-
cotoxin Research Unit, Russell Research Center, USDA, ARS.
Kernels were originally stored in a good condition, and only those
healthy, ripe, and shiny ones were selected as the samples. Further-
more, before the experiment, several kernels of the same batch

Figure 1–Color photograph and spectral image of maize samples inoculated with 500 ppb AFB1. (A) Color photographs and (B) selection of ROIs on
hyperspectral image.
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were randomly selected for testing using HPLC to make sure there
were no preexisting natural toxins. By diluting Aspergillus flavus
aflatoxin (Sigma-Aldrich, 3050 Spruce St., St. Louis, Mo., U.S.A.)
with methanol, which was also used to kill any residual mold spores
in AFB1, and according to the average kernel weight 0.33 g, 4 con-
centrations of stock solutions, that is 10, 20, 100, and 500 ppb,
were prepared. For the detailed procedure please refer to Wang and
others (2014). Once the solutions were prepared, the kernels were
divided into 5 groups. The 1st group consisted of 30 kernels that
served as the control group. The control group was treated with
methanol alone, whereas the other 4 groups, consisting of 30 ker-
nels each, were inoculated with 10, 20, 100, and 500 ppb AFB1 so-
lutions, respectively, using a pipette. After inoculation, each group
was placed in a chemical hood for approximately 90 min to fa-
cilitate drying. Before imaging, kernels from a given group (30 at
a time) were placed on a Teflon R© sample holder containing 30
shallow, elliptically shaped wells arranged in 6 rows × 5 columns
(Figure 1A). As a safety measure, the Teflon holder was placed

inside of a special transparent sealed box before imaging (Wang and
others 2014).

Hyperspectral Image acquisition and preprocessing
A Vis/NIR hyperspectral imaging system with a wavelength

range of 400 to 1000 nm was used for this study. The system in-
cluded a sCMOS PCO.EDGE camera (PCO-TECH, Romulus,
MI, U.S.A.), spectrograph (V10M, Specim, Oulu, Finland), front
lens (Distagon T 25 mm f/2.8, Zeiss, Oberkochen, Germany). In-
direct lighting was provided by 2 softboxes with 500 W Tungsten–
Halogen lamps positioned at approximately 45° angles above and
lateral to the samples (SilverDome R© nxt: small, Photoflex, Wat-
sonville, Calif., U.S.A.). The hyperspectral imaging system was
spectrally calibrated using a series of pencil style calibration lamps
and lasers (Wang and others 2014). A 75% Spectralon R© reflectance
panel was imaged and used for image calibration (SRT-75-050,
Labsphere, North Sutton, N.H., U.S.A.).

Figure 2–The original average spectra of the 5 groups of maize kernels.

Figure 3–The average subset spectra (600 to 1000 nm) of the 5 groups of maize kernels with SNV corrected.
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HyperVisual R© software was used for image acquisition and
some preprocessing of the imagery (PhiLumina, Gulfport, Miss.,
U.S.A.). During image acquisition, the samples remained motion-
less whereas the software controlled the scanning process. Hyper-
Visual was used to spectrally subset the imagery to 400 to 1000
nm and to calibrate it to percent reflectance. Noise inherent to
these images was then removed using ENVIs (Exelis Visual Infor-
mation Solutions, Boulder, Co., U.S.A.) minimum noise fraction
(MNF)/inverse MNF processing flow (Wang and others 2014).

Regions of interest (ROIs)
To limit the analysis to those areas on the kernels where

AFB1 was applied, ROIs were created where the methanol or
methanol/aflatoxin dilutions had left a visible dry, white stain on
the kernel surfaces. Elliptical ROIs of AFB1-inoculated maize
kernels were hand-digitized using ENVI software. A 50-pixel
minimum ROI size was targeted for all kernels, however when
this was not possible, ROIs contained as many pixels as possible
(Figure 1B). The process of ROI creation was the same for
both the control and inoculated groups (Wang and others 2014).
The mean reflectance from within each ROI was calculated and
then transformed to log(1/reflectance) to represent absorption.
Saisir software (Version 07/01/2009, France), a free package for
chemometrics with MATLAB (The MathWorks, Natick, MA,
USA), was used to develop prediction models in this work.

The PCA–stepwise factorial discriminant analysis (FDA)
method

The main goal of PCA in this work was to reduce the spec-
tral dimensionality of the hyperspectral imagery, which typi-
cally contains highly correlated information in neighboring bands
(Williams and Norris 1987). Minimizing data dimensionality was
a necessary 1st step for the discriminant technique that followed
(Castellano and others 2007; Karoui and others 2011; Wang and
others 2014).

In general, discriminant techniques attempt to predict the fit
of a statistical unit to a priori classes based on assumed values
for p predictors, which are usually numerical (Lauro and oth-
ers 2007). The FDA technique assesses new synthetic variables
called “discriminant factors,” which are linear combinations of
selected PCs that allow separation of the center of gravity of the
considered groups (Hammami and others 2010).

The stepwise FDA, with the optimization of variable selection
as outlined in Roger and others (2002), was adopted in this paper.
Instead of selecting the best linear combination using the whole
set of variables, as the FDA usually does, the stepwise FDA in
this paper was used to predict to which of the 5 groups (con-
trol, 10, 20, 100, and 500 ppb group) individual maize kernels
belonged (Lin and others 2012; Ivorra and others 2013; Vitale
and others 2013). For each group, the 1st two thirds of the 30
samples were attributed to the calibration set and the rest to the
validation set. Therefore, in total, the calibration set included 100
samples and the validation set consisted of 50 samples. For each
individual sample, its distance from the various centers of grav-
ity of each group was calculated, then the individual sample was
assigned to the group with the nearest gravity center (Wang and
others 2014).

Results and Discussion

The original spectra and its spectral subset
The original average spectra of the total 150 samples (including

all of the maize kernels attributed to calibration and validation
set) with the wavelength range between 400 and 1000 nm were
plotted in Figure 2. Of the spectra, the prominent changes
between different samples appeared mostly within the range
between 400 and 600 nm. However, as Fernández-Ibañez and
others (2009) indicated, spectral differences in the 400 to 600
nm region are associated with color changes in fungal infected
cereal grains. Del Fiore and others (2010) also explained that
higher apparent absorbance log(1/R) values in the 500 to 600
nm spectral range were caused by the presence of a large amount
of carotenoids on the kernels’ epicarp. For this reason, it was
determined to omit the spectral information caused mainly by
color variations in the kernels. Thus, the spectral analysis for this
study was limited to the 600 to 1000 nm spectral range.

Furthermore, to get rid of the scattering effects caused by dif-
ferent surface roughness and kernel shape, standard normal variate
correction (SNV) was applied to the data. The mean spectra (600
to 1000 nm) with SNV corrected of the 5 groups of maize kernels
are shown in Figure 3. Some significant differences in absorption
between the 5 groups of maize kernels are evident at wavelengths
670.2, 735.2, and 977.2 nm.

Figure 4–Distribution of validation kernels in the coordinate space constituted by the 1st 3 discriminant factors.
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Table 1–Confusion matrix of discriminant results for validation
kernels.

Predicted concentration (ppb)

Actual concentration (ppb) 0 10 20 100 500

0 10 0 0 0 0
10 0 10 0 0 0
20 0 0 10 0 0
100 0 0 0 10 0
500 0 0 0 1 9

PCA of maize kernels with AFB1 inoculated
Results from the PCA analysis indicate the 1st 3 PCs scores

(PC1, PC2, PC3) contained 79.4%, 12.9%, and 4.4% of the vari-
ance, respectively. Based on these 3 components, the control sam-
ples could generally be separated from the contaminated ones.
However, it was not possible to delineate one contaminated sam-
ple group from another based on the amount of aflatoxin applied.
This was true even when considering extreme concentration dif-
ferences, such as 10 ppb versus 500 ppb. This was unexpected
since PCA is generally not considered to be an effective statistical
test between or among groups as it makes no prior assumption
about the data structure (Serranti and others 2013).

FDA classification results
A stepwise FDA was performed on the 1st 20 PCs, and the

maximum number of PCs permitted to enter the FDA model was
set to 11 in order to avoid the loss of useful information as much
as possible. Based on the results, except that 4 PCs (PC15, PC16,
PC18, and PC19) representing 0.0% of the variance of the model
were cancelled, the rest 7 PCs, that is, PC2, PC5, PC4, PC3,
PC9, PC8, and PC6 representing 12.9%, 0.8%, 1.1%, 4.4%, 0.1%,
0.1%, and 0.7% of the variance of the model respectively, were
introduced in that order. It is obvious that all the 7 PCs intro-
duced were within the top 10 PCs. Even so, PC1 was omitted
by the FDA classification model even though it typically contains
the most variance, perhaps because it was heavily influenced by
scattering effects due to kernel shape rather than chemical com-
position (Manley and others 2012) .

After FDA was applied to the PCA scores, the distribution of
validation kernels was plotted using the 1st 3 discriminant factors

F1, F2, and F3 (Figure 4). As shown in Figure 4, not only could the
control samples be separated from the AFB1-innoculated ones, but
also samples with different concentrations of AFB1 could be clearly
discriminated from each other. The confusion matrix shown in
Table 1 revealed that the classification accuracy was 100% for
the control samples. Although for the inoculated ones, only one
sample was misclassified: a 500 ppb kernel was mistaken as 100 ppb
kernel. This lone misclassification was likely due to the spectral
similarity between the 2 higher concentrations of toxins (100 and
500 ppb). Thus, an overall classification accuracy of 98% was
achieved.

Discussion
Good classification results could also be achieved using fewer

factors than the 1st 3. For example, Figure 4 indicated that us-
ing just the 1st 2 discriminant factors, F1 and F2, would pro-
duce essentially the same result as including F3. Indeed, using F2

slone would enable clear delineation of the control kernels from
the AFB1-inoculated kernels.

To identify the chemical attributes of the kernels, weighted β

coefficient curves of the 2 discriminant factors F1 and F2 were
plotted (Figure 5). Based on key wavelengths identified by the β

coefficients, the corresponding chemical compositions were ex-
plained below.

As previously mentioned, discriminant factor F2 could be used
to separate control kernels from all of the other kernel groups (that
is, those inoculated with AFB1). The β coefficient curve of dis-
criminant factor F2 reveals significant peaks at 670.2, 735.2, 873.7,
918.3, 913.3, 977.2, and 985.8 nm. Among the 7 wavelengths, 6
were associated closely with the kernel color and nutrient sub-
stances, such as protein, starch, oil, and cellulose. As indicated by
Xing and others (2010), 670 nm is very close to an absorption
peak for chlorophyll, which is primarily attributed to the residual
pigments within the seed coat. As shown in the table of Foss NIR
system, 873.7 nm corresponds to N–H 3rd overtone of protein,
918.3 nm corresponds to C–H 3rd overtone of starch (or Cellu-
lose), 913.3 nm to CH2 oil, 977.2 and 985.8 nm to O–H 2nd
overtone of water. These 6 wavelength peaks were consistent with
the typical chemical composition of maize. However, 735.2 nm,
which is located in the transition between Vis and NIR, was not
readily associated with any particular constituent. Nevertheless, it

Figure 5–β Coefficient curves of discriminant factors F1 and F2.
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may be an important wavelength for the delineation of maize ker-
nels containing AFB1. Pearson and others (2001) effectively used
the spectral reflectance ratio 735/1005 nm to distinguish highly
contaminated corn kernels (>100 ppb) from those contaminated
below 10 ppb, thus demonstrating the potential of 735.2 nm.

Because the discriminant factor F1 was essential in the differen-
tiation of maize kernels based on their concentrations of AFB1, the
β coefficient peaks of this discriminant factor were also plotted in
Figure 5. It is evident from the plot that wavelengths 606.8, 671.6,
869.4, 917.6, 953.5, and 978.6 nm were significant. As indicated
by Del Fiore and others (2010), the 870 nm demonstrated the
highest loading factor in the 1st PC. Thus, it was considered to be
a significant wavelength and was used as input to classify different
levels of toxigenic fungi on maize. Also, Singh and others (2010,
2012) found 870 nm to be significant, which corresponded to the
CH3 overtone region. Shahin and Symons (2009) reported 917
nm was an important wavelength for detecting mildew damage
on wheat kernels. The wavelength range between 934 and 975
nm has been ascribed to water absorption by Dowell and oth-
ers (1999), suggesting the 935.5 nm peak found in this research
was due to water content. The 606.8 nm may be associated with
chlorophyll b or xanthophylls (Ford 2000), whereas 671.6 nm with
chlorophyll a. Note that both F1 and F2 identified 671.6 nm as a
key wavelength. Finally, the wavelength of 978.6 nm was ascribed
to C–H 3rd and 4th overtone, which was close to the wavelength
of 980 nm indicated as principal absorption band of dry starch
(Williams and Norris 1987).

Conclusion
Using Vis/NIR hyperspectral imaging and a PCA/FDA statis-

tical approach, maize kernels artificially inoculated with different
concentrations of AFB1 could be differentiated from those that
were not inoculated. Moreover, it is possible to discriminate be-
tween different levels of AFB1 on the surface of maize kernels.
Detection of AFB1 artificially inoculated on kernel surfaces was
possible at concentrations as low as 10 ppb. In addition, analysis of
β coefficient curves of the 1st 2 discriminant factors produced by
the FDA enabled the identification of several key wavelengths in
the discriminative model. These results were consistent with the
findings of several previous imaging/spectral studies on this area
and demonstrated the potential for using Vis/NIR hyperspectral
imaging along with a PCA/FDA statistical approach to identify
and delineate the presence and level of AFB1 on maize kernels.

However, this research was designed as a laboratory-based feasi-
bility study using controlled samples in a controlled environment.
To detect naturally occurring AFB1 in maize kernels without any
lab pre-treatment, multiple stages of work is needed to translate
the findings of this work to a practical application. For exam-
ple, in order to more accurately assess the exact concentration of
AFB1, the whole kernel rather than the residual staining of the
AFB1 should be selected as the ROIs to be analyzed. Also, differ-
ent varieties of maize grown in different regions should be tested.
Furthermore, since moisture levels are generally critical to prevent
fungi growth, maize kernels with different gradients of moisture
content should also be tested in order to build a more universal
discriminant model.
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