Journal of Microbiological Methods 103 (2014) 131-137

Contents lists available at ScienceDirect Sy

@,

a\f\"ijéﬁh' I-,Lvé:‘l

. . . I\A\ﬁiﬁgf 0
Journal of Microbiological Methods ;/ |
journal homepage: www.elsevier.com/locate/jmicmeth !? J

Evaluation of viability-qPCR detection system on viable and dead
Salmonella serovar Enteritidis

@ CrossMark

Elodie Barbau-Piednoir "<, Jacques Mahillon ?, Julie Pillyser °, Wim Coucke ¢,
Nancy H. Roosens ™!, Nadine Botteldoorn *!

2 Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Y Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health, Brussels, Belgium

¢ Scientific Service Foodborne Pathogens, Scientific Institute of Public Health, Brussels, Belgium

4 Quality of Medical Laboratories, Scientific Institute of Public Health, Brussels, Belgium

ARTICLE INFO ABSTRACT

Article history:

Received 28 March 2014

Received in revised form 2 June 2014
Accepted 2 June 2014

Available online 11 June 2014

The propidium monoazide (PMA) coupled with PCR (viability PCR) is used in foodborne pathogen detection
in order to detect only viable bacteria. Originally presented to fully remove the signal of dead bacteria, the
limits of the viability PCR rapidly came out in the literature. In this study, the use of PMA in a viability-qPCR
(v-qPCR) was assessed on viable and dead cells of Salmonella enterica subsp. enterica serovar Enteritidis. The
PMA treatment protocol was modified (dark incubation duration, concentration of PMA) to evaluate if a
complete negative signal of dead Salmonella was possible. However, none of these modifications was

gfgggﬁn monoazide found to improve the removal of the remaining qPCR signal observed in the presence of dead bacteria.
Real-time PCR The present research also underlines that PMA may unexpectedly decrease the qPCR signal observed on living S.
SYBR®Green Enteritidis at low concentration. Finally, the use of S. Enteritidis cells killed by processes altering or not the cell-
Detection wall/membrane gives us a clue to answering the question about the non-total extinction of the signal of dead
Salmonella cells sample in the v-qPCR assay. Indeed, the data strongly indicate that the remaining qPCR signal observed in
non-culturable cells does not only depend on the cell-wall/membrane integrity of the bacteria. According to
these results, the authors suggest that for a rapid and reliable foodborne bacteria detection system, an enrichment

followed by a qPCR analysis should be preferred to a v-qPCR.
© 2014 Elsevier B.V. All rights reserved.
1. Introduction Molecular methods are progressively recognised as valuable alterna-

Foodborne pathogens are an important concern as illustrated for
Europe in 2012, where 91,034 human cases have been reported,
resulting in 61 deaths (EFSA and ECDC, 2014). To be able to prevent
the occurrence of such outbreaks, foodstuffs are monitored according
to the Regulation EC 2073/2005 in which microbiological criteria are
given for each food category (Commission of EU, 2005). In this regula-
tion, the reference methods used to search for the presence of
foodborne pathogens are mostly culture-based (e.g. ISO, 1996a, 1996b,
2001, 2002, 20064, 2006b). These conventional methods are efficient
and detect only viable bacteria but are time-consuming and labour-
intensive. Hence, they are not suited in case of outbreaks where a
rapid answer is necessary.
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tives since they are fast, sensitive and specific. However, polymerase
chain reaction (PCR) or real-time PCR (qPCR) amplify DNA from both
dead and viable bacteria as DNA remains stable after the death of bacte-
ria (Li et al., 2013; Masters et al., 1994; Wolffs et al., 2005). Two tech-
niques can potentially be used to detect only viable bacteria. The first
one is based on the detection of mRNA by the use of reverse-transcrip-
tase (RT) (q)PCR (Gonzalez-Escalona et al., 2009; McIngvale et al., 2002;
Yaron and Matthews, 2002). However, this detection technique
requires expression of the targeted gene(s), which can vary under
conditions of stress. Furthermore, RNA is very sensitive to degrada-
tion in complex matrices such as food. Overall the use of RT-(q)PCR
technology is more adapted for gene expression studies than as a de-
tection system for foodborne pathogens (for a recent review, see
(Postollec et al., 2011)). The second available technique relates to
the viability PCR (v-PCR) or viability qPCR (v-qPCR) that is based
on DNA detection of cells with intact cell/wall membranes. In v-(q)
PCR, before (q)PCR amplification, a viability discrimination step is
performed. In this step two known molecules can be used: ethidium
monoazide (EMA) and propidium monoazide (PMA), derivatives
from ethidium bromide and propidium iodide, respectively. EMA


http://crossmark.crossref.org/dialog/?doi=10.1016/j.mimet.2014.06.003&domain=pdf
http://dx.doi.org/10.1016/j.mimet.2014.06.003
mailto:nadine.botteldoorn@wiv-isp.be
http://dx.doi.org/10.1016/j.mimet.2014.06.003
http://www.sciencedirect.com/science/journal/01677012

132 E. Barbau-Piednoir et al. / Journal of Microbiological Methods 103 (2014) 131-137

and PMA intercalate DNA every 4-5 nucleotides (Waring, 1965).
They are positively charged molecules thus they are excluded by in-
tact, negatively charged, bacterial cell-walls but can enter bacteria
with damaged cell-wall/membranes (Nocker et al., 2006). EMA
was firstly reported to be useful to quantify viable bacteria by v-
PCR (Nocker and Camper, 2006; Rudi et al., 2005) but can penetrate
and be toxic for viable bacteria (Nocker et al., 2006; Pan and Breidt,
2007). Afterwards, PMA was used as a non-toxic alternative
(Nocker et al., 2006; Pan and Breidt, 2007) able of covalent cross-
linkage with DNA under light exposure (Coffman et al., 1982). The
precise mode of action of PMA remains unclear: the DNA charge
changes (Nocker and Camper, 2006) and/or the DNA is cleaved
(Soejimaetal., 2007), leading to reduced ability to extract or ampli-
fy DNA, respectively. Since PMA is not able to penetrate bacteria
with intact cell-wall/membranes, only the DNA from bacteria
with compromised cell-wall/membranes is bound and is thus not
amplified by (q)PCR (Nocker et al., 2006; Shapiro, 2003).

The definition of “bacterial viability” is still a subject of contro-
versy. The most usual one is: when a sample is plated out on an ap-
propriate solid medium, dead bacteria are unable to produce colony
forming unit (CFU) whereas a viable bacteria is able to form CFU
(Trevors, 2012). In this definition, the cell wall/membrane integrity
of the different states is not taken into account. Another approach,
based on culturability, metabolic activity and membrane integrity
has been described (Nocker and Camper, 2009). In this model,
four different states are postulated. The “living” bacteria are de-
fined as culturable, metabolically active and with an intact cell-
wall/membrane. The “viable but non-culturable” (VBNC) bacteria
are defined as metabolically active, with an intact cell-wall/
membrane but non-culturable. The “ghost” bacteria have an intact
cell-wall/membrane but are metabolically inactive and non-
culturable. Finally the “membrane compromised” cells have a com-
promised cell-wall/membrane, are non-culturable and have no
metabolic activity.

The use of PMA was recently coupled with PCR (Banihashemi et al,,
2012; Cawthorn and Witthuhn, 2008; Yang et al., 2012) or qPCR (Dinu
and Bach, 2013; Elizaquivel et al., 2012a,2012b; Josefsen et al., 2010;
Kim and Ko, 2012; Liang et al., 2011; Mamlouk et al., 2012; Singh
et al.,, 2013; Soejima et al., 2012; van Frankenhuyzen et al.,, 2011) in
order to detect only viable bacteria. PMA was originally reported to
fully remove the signal of dead bacteria in v-PCR (Nocker et al., 2006)
and v-qPCR analysis (Josefsen et al,, 2010), but later several drawbacks
of the technique were reported. Indeed, PMA treatment does not always
lead to complete removal of the qPCR signal of dead bacteria (see re-
view in (Fittipaldi et al., 2010)). In particular, recent studies have
showed that PMA treatment does not fully remove the signal from
dead bacteria if i) the amplicon size of the qPCR assay is short (Li and
Chen, 2013; Luo et al., 2010; Martin et al., 2013; Schnetzinger et al.,
2013), ii) the target bacteria is at high concentration (Elizaquivel et al.,
2012c; Li and Chen, 2013; Pacholewicz et al., 2013; Zhu et al., 2012),
iii) the concentration of Mg?™ in the PCR reaction is not adapted
(Nocker et al., 2006), or iv) the fat content of food sample is high
(Yang et al., 2011), and may also vary according to the “killing” treat-
ment (Kobayashi et al., 2010; Liang and Keeley, 2012; Nocker et al.,
2007; Yang et al., 2011).

In this study, optimisation of the PMA protocol (by variation of
dark incubation and duration and PMA concentration) was first
assessed to achieve full extinction of the dead bacteria qPCR signal.
Afterwards, to evaluate the dynamic range of the v-qPCR assay,
different amounts of living and isopropanol-killed Salmonella
Enteritidis were tested. Finally, for a better understanding of the
mode of action of PMA, cells of S. Enteritidis killed by different
processes affecting or not the cell-wall/membrane integrity were
simultaneously analysed with v-qPCR, culture-based and micro-
scopic observation. The general applicability of v-qPCR for a S.
Enteritidis detection system is also discussed.

2. Material and methods
2.1. Bacteria strain and growth conditions

Salmonella enterica Enteritidis (H,V1,6,32 from Belgian Salmonella
NRC) was used as model bacteria for Gram-negative foodborne patho-
gens. One single typical colony was inoculated in 10 ml of sterile Brain
Heart Infusion (BHI) broth, vortexed and incubated at 37 °C for about
16 h. Ten microliters of this overnight (ON) culture was inoculated
into a new 10 ml sterile BHI broth and incubated without shaking for
3.5to 4 h at 37 °Cto get a culture at an exponential growth phase (OD
600 nm between 0.3 and 0.6).

2.2. Enumeration of S. Enteritidis

The initial concentration of S. Enteritidis was determined by
performing a tenfold serial dilution, 100 pl of the dilutions —4 to —7
was plated on Nutrient Agar (NA) and incubated at 37 °C overnight.
Plates with less than 300 CFU were retained for enumeration and calcula-
tion of the initial bacterial counts expressed as colony forming units/ml
(CFU/ml).

2.3. Death control

The killing process used on viable S. Enteritidis was evaluated by
enumerating the growing cells by streaking 100 p of the treated sample
on NA plate followed by 24 h of incubation at 37 °C.

24. PMA treatment

One hundred microliters of tested sample was transferred ina 1.5 ml
Eppendorf tube. In a dark room (PMA is sensitive to light), 75 uM or
150 uM of PMA 20 mM (Biotium: BTIU40019) was added to each tube.
Tubes were incubated in a dark room under rotating agitation for 5 or
60 min. At the dark incubation step, PMA penetrates the permeable
cell-wall/membranes and gets access to the DNA of cell-wall/
membrane compromised bacteria. Tubes were transferred to the
PhAST blue lamp (GenIUL) to undergo the LED-light exposure for
15 min. The light treatment covalently binds PMA to DNA. Free PMA
was removed by harvesting the bacteria 10 min at 6000 xg. The pellet
was re-suspended in 100 pl of DNAse/RNAse free water (Acros, Geel,
Belgium).

2.5. Processes used to kill the S. Enteritidis cultures

The killing processes were chosen for their possible occurrence in
food product (heat and freezing) or for the membrane status of the
cell after treatment (isopropanol and kanamycin). All killing processes
were applied to a culture at the exponential growth phase (between
108 and 10® CFU/ml).

- Isopropanol 70% was added to aliquots of S. Enteritidis culture and
the bacterial suspension was incubated for 10 min. Isopropanol
was removed by harvesting the S. Enteritidis 10 min at 6000 xg
prior to re-suspension in the initial volume of BHL

- Heat: 400 or 500 pl of S. Enteritidis culture was heated for 15 min at
99 °Cin a thermoblock (dry bath).

- Kanamycin: 5 ml of S. Enteritidis culture (sensitive to kanamycin)
was supplemented with kanamycin at 1 mg/ml and incubated for
16-18 hat 37 °C.

- Freezing: 500 pl of S. Enteritidis culture was immersed into liquid ni-
trogen for 15 min and transfered to —20 °C for 16-18 h. Note that
freezing is a stress process that leads to a portion of dead S.
Enteritidis.
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2.6. DNA extraction

DNA extraction was performed by heat-lysis for 15 min at 99 °Cin
a thermoblock. Cell debris was removed by centrifugation 10 min at
6000 xg. The supernatant (containing the DNA) was collected in a new
Eppendorf tube.

2.7. Real-time PCR assays

The qPCR assays were performed on an iCycler iQ™5 Real-TIME PCR
Detection System (BioRad) with iCycler iQ™ PCR plates, 96 wells
(BioRad) closed with the PCR Sealers Microseal B films (BioRad). The re-
action was performed in a final volume of 25 pl containing 5 pl of tem-
plate, 1X SYBR®Green PCR Mastermix (Diagenode), and 250 nM of
each primer (safC-10 Salmonella spp. detection qPCR assay (72 bp)
(Barbau-Piednoir et al., 2013)). The following thermal programme
was applied: a single cycle of DNA polymerase activation for 10 min at
95 °C followed by 40 amplification cycles of 15 s at 95 °C (denaturing
step) and 1 min at 60 °C (annealing-extension step). Subsequently,
melting temperature analysis of the amplification products was per-
formed by gradually increasing the temperature from 60 °C to 95 °C
over 20 min (£ 0.6 °C/20s). Positive control using gDNA of S. Enteritidis
at 10* copies and negative control using DNAse and RNase free water
(Acros, Geel, Belgium) were included in each qPCR reaction.

2.8. Data analysis

2.8.1. SYBR®Green qPCR assay

For the interpretation of SYBR®Green qPCR assays, two criteria were
taken into consideration: the quantification cycle (Cq) value, and the
melting temperature of the amplicon (Tm). The Cq-value represents
the cycle at which the PCR amplification reaches the threshold level of
the reaction (Bustin, 2000). To be considered as positive, a signal gener-
ated in SYBR®Green qPCR analysis should display an (exponential) am-
plification above the threshold level associated with the specific Tm-
value of the amplicon.

2.8.2. PMA effect

To evaluate the effect of PMA treatment on a sample, the ACq was
calculated. The ACq of a sample is the difference between the Cq-
value obtained with PMA treated sample and the Cq-value obtained
with not treated Sample: Acq = (Cqsample w/ PMA — cqsample w/o PMA)-

2.8.3. Statistical analysis

The data were analysed with Splus 8.0 for Linux. A linear mixed
model was set up with conditions as fixed factors and date of analysis
and aliquot number as nested random factors. Predefined contrasts be-
tween conditions were calculated and their corresponding P-values
were corrected for simultaneous hypothesis testing according to the
Sidak correction. Differences with P values < 0.05 were considered sta-
tistically different.

2.9. Live/Dead® BacLight™ Bacterial Viability kit analysis

In order to discriminate by microscopy bacteria with compromised
cell-wall/membranes (dead) from those with non-compromised cell-
wall/membranes (viable) the LIVE/DEAD® BacLight™ Bacterial Viability
kit (L7007 form Molecular probes) was used according to the
manufacturer's recommendations. This kit provides a two-colour fluores-
cence assay: Syto®9 green-fluorescent nucleic acid stain (480/500 nm)
and propidium iodine (PI) red-fluorescent nucleic acid stain (490/
635 nm). Syto®9 stains all bacteria in a population whereas PI penetrates
only cell-wall/membrane compromised bacteria and causes a reduction
in SYTO®9 stain fluorescence when both are present. This kit displays
an appropriate mixture of SYTO®9 and PI stains leading to green

fluorescence with intact cell-wall/membranes (live) bacteria and red-
fluorescence for bacteria with damaged cell-wall/membrane (dead).

A 100 pl aliquot of each tested sample was transferred into a sterile
1.5 ml Eppendorf and the pellet was harvested by centrifugation
10 min at 6000 x g. The pellet was re-suspended in 100 pl of physiologic
water and stained with 0.3 pl of (v/v) mixture of components A and B
(L7007 LIVE/DEAD® BacLight™ Bacterial Viability kit). Samples were
mixed thoroughly and incubated at room temperature for 15 min in the
dark. One-hundred microliter of agarose 2% in physiological water was
added to each sample (final concentration 1% agarose). Seventy-five mi-
croliters was trapped between a slide and a 18 mm square cover slip.
Confocal fluorescence microscopy (CFM) images were taken using an
LSM710 Microscope (Zeiss) with a 40x oil immersion objective and 1x
zoom. Fluorescent images of SYTO®9 and PI stained bacteria were
acquired at 488 and 543 nm, respectively. The count of dead (red) and
live (green) bacteria was performed using the Imaris Software.

3. Results and discussion
3.1. Optimisation of the PMA protocol

To obtain full extinction of the dead bacteria qPCR signal using v-qPCR,
optimization of the PMA protocol was sought by varying the dark incuba-
tion duration and PMA concentration.

3.1.1. Effect of increased dark incubation time on qPCR signal reduction

To investigate whether duration of the PMA incubation in the dark
has an effect on the extinction of the dead S. Enteritidis qPCR signal, 5
and 60 min dark incubation times were compared. Two concentrations
of PMA, 0 and 75 pM, were used in both conditions, with S. Enteritidis
suspensions at a concentration of ca. 8.7 log CFU/ml (4.7 x 108 and
6.4 x 108 CFU/ml for the two independent analyses). Samples were
analysed in triplicate in each independent analysis (n = 6) and qPCR
was performed in duplicate on each sample. The qPCR positive and
negative controls gave the expected positive and negative results,
respectively. For the dead samples, one of the most common killing
processes, isopropanol 70%, was used to eliminate the bacteria. Death
was checked on plate and around 37 CFU/ml (first repetition) and
0 CFU/ml (second repetition) of S. Enteritidis were recovered after
isopropanol treatment.

As shown in Fig. 1A, no effect of PMA treatment was observed on
living S. Enteritidis for both dark incubation times since their average
signal reductions (ACq) were not significantly different. Also, as ex-
pected, PMA treatment induced a significant reduction of the qPCR
signal (P = 0.0001) on isopropanol-killed S. Enteritidis. However,
no significant difference was observed between 5 and 60 min of
dark incubation (P = 0.85). The average Cq reduction was ca. 4 for
both incubation periods. Therefore, increasing the incubation time
from 5 to 60 min had no significant effect on the ACq of dead S.
Enteritidis treated by PMA and thus cannot be used to improve the
protocol.

3.1.2. Effect of PMA concentration on qPCR signal reduction

To investigate whether PMA concentration has an effect on the re-
duction of the qPCR signal associated with dead S. Enteritidis, 0, 75
and 150 uM PMA were compared (5 min dark incubation was used for
all PMA concentrations). A dynamic range of S. Enteritidis culture of
tenfold dilution from 7.9 to 3.9 log CFU/ml (7.6 x 107 CFU/ml to 7.6 x
10® CFU/ml) were used. Killing was performed by isopropanol 70%.
The efficiency of the killing procedure was verified for each S. Enteritidis
dilution by the absence of growth on nutrient agar. The Cg-value of the
dead samples not treated with PMA (0 uM), treated with 75 and 150 uM
was compared (Fig. 1B). The qPCR positive and negative controls gave
the expected positive and negative results, respectively.

As expected, a higher Cq-value was observed with the PMA treat-
ments (ACq = ca. 7) than with no PMA treatment (0 uM). Yet, for all
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Fig. 1. Effect of dark incubation time and PMA concentration on viable and dead cultures of
S. Enteritidis. A. Boxplot of different PMA incubation periods (5 and 60 min) on viable
(n = 6) and dead (n = 6) bacteria at 8.7 log CFU/ml. Delta Cq: qPCR signal reduction
between samples treated and not treated with PMA 75 plM, different letters denote values
significantly different at P < 0.05. B. Effect of three PMA concentrations (0, 75 and
150 uM) on five different suspensions of dead cells: 7.9, 6.9, 5.9, 4.9 and 3.9 CFU/ml
(n=1).

the tested dilutions, the Cq-values obtained with 75 and 150 pM of PMA
were not significantly different. Interestingly, these observations indi-
cate that the increase in PMA concentration does not further reduce
the qPCR signal of dead S. Enteritidis samples.

3.2. PMA effect on different S. Enteritidis concentrations

To assess whether the amount of bacteria in a sample may have an
impact on the reduction of the v-qPCR signal of dead bacteria, four S.
Enteritidis concentrations were used: 3.7, 4.8, 6.8 and 8.8 log CFU/ml.
Each sample was tested in triplicate and qPCR was performed in dupli-
cate on each replicate. The qPCR positive and negative controls gave the
expected positive and negative results, respectively. Living and 70%
isopropanol-killed S. Enteritidis were tested. The efficiency of the killing
procedure was verified by the absence of colony on plate for all tested
concentrations of S. Enteritidis. The Cg-values obtained with each type
of sample were recorded (Fig. 2).

This experiment gave three distinct results. Firstly, the Cq-values
obtained with living and dead samples not treated with PMA present
an unexpected significant shift between 1 and 4 Cq for the four tested
concentrations of cells. This illustrates that the death itself already induces
a reduction of the qPCR signal which is probably due to the loss of DNA
occurring at the harvesting cell step, from dead cells with highly dam-
aged membrane/cell wall. Secondly, for dead S. Enteritidis, as expected,
the Cq-values observed with PMA treated samples were significantly
higher than with non PMA treated samples for all the studied concen-
trations (Fig. 2: 8.8D, 6.8D, 4.8D and 3.7D). The shift observed was sig-
nificantly higher for 8.8 log CFU/ml with a ACq ca. 4.5 whereas it was
the same for the 3 other concentrations with a ACq between 2.7 and
3.9. These results confirm the effect of PMA on dead sample but also
demonstrate again that PMA is not able to completely remove the signal
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Fig. 2. Effect of PMA on the Cq-values of different concentrations of viable and dead S.
Enteritidis (n = 3). W: without PMA, P: with PMA 75 M, V:viable, D: dead. The numbers
8.8, 6.8, 4.8 and 3.7 indicate the cell concentration in log CFU/ml. Different letters denote
values significantly different at P < 0.05.

of dead cells at all studied concentrations. Thirdly, as previously shown,
on living samples (8.8A and 6.8A) at high concentration (8.8 and
6.8 log CFU/ml), PMA treatment has no effect on the signal reduction
since no significant differences were observed between Cq-values ob-
tained on living cells (Fig. 2: 8.8A and 6.8A) treated or not with PMA.
On the contrary, at lower concentrations (3.7 and 4.8 log CFU/ml),
PMA has a significant effect on viable cells. Indeed, the Cq-values obtain-
ed with living samples treated with PMA are significantly higher, with a
shift between 1 and 2.6 Cq, than the non treated living samples (Fig. 2:
4.8A and 3.7A). This reduction of the signal of living cells at low concen-
tration may lead to underestimation of viable bacteria and, in the worst
case scenario, may lead to false negative results with very low amount of
viable bacteria. This reduction of viable cells signal was previously ob-
served on Legionella spp. (Yanez et al., 2011) and on Escherichia coli (Liu
and Mustapha, 2014).

3.3. Effect of different killing processes to the v-qPCR response

To better understand why PMA treatment does not completely
remove the qPCR signal of dead S. Enteritidis (between 7.9 and
11 log CFU/ml), four distinct killing or stress processes (heat,
isopropanol, antibiotic or freezing) were analysed using three dif-
ferent viability evaluation protocols: i) samples were plated on nu-
trient agar (conventional microbiological technique), ii) samples
were analysed with v-qPCR (molecular technique) with 75 uM
PMA and 60 min dark incubation, and iii) samples were dyed with
the Live/Dead® BacLight™ Bacterial Viability kit and observed mi-
croscopically (microscopic technique). The four distinct killing or
stress processes were chosen to act differently on the cell-wall/
membrane integrity. Alcohols (such as isopropanol) dehydrate
bacteria, disrupt cell-wall/membranes and cause coagulation of
proteins. Heat denatures the proteins of the cell-wall and mem-
brane, the phospholipids become more fluid, leading to disruption
of the integrity of the cell-wall and membrane. Freezing forms ice
crystals inside the bacteria that can rupture the cell-wall/membrane.
Isopropanol, heat and freeze-killed samples should induce a high per-
centage of dead bacteria with disrupted cell-wall/membranes. Kanamy-
cin has a different mode of action. By interacting with the 30S subunit of
ribosomes, it induces mistranslation and indirectly inhibits protein syn-
thesis (Misumi and Tanaka, 1980). Kanamycin-treated samples should
therefore contain a high rate of dead bacteria with intact cell-wall/
membrane (ghost cells: Nocker and Camper, 2009).
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Fig. 3. Boxplot of the effect of PMA 75 uM on qPCR signal reduction of S. Enteritidis cells
treated with isopropanol, heat, kanamycin or a freezing treatment (n = 9). *Not 100%
dead; different letters denote values significantly different at P < 0.05.

Compared to the control experiment using viable bacteria, the
v-qPCR, displayed significant reduction of the signal (between 2.5
to 4.5 Cq) on bacteria samples (n = 9) killed by the four different
processes (Fig. 3). Unexpectedly however, no significant difference
in the Cq signal reduction was recorded between the different kill-
ing processes (Fig. 3). The qPCR positive and negative controls gave
the expected positive and negative results respectively.

To further investigate these data in relation to cell-wall/
membrane integrity, v-qPCR results were compared with plate
counts and Live/Dead kit microscopic observations (Table 1). Plate
count assesses the “culturability” of the bacteria whereas Live/Dead
kit discriminates bacteria on the basis of their cell-wall/membrane
integrity. The first interesting observation was that even if no
culturable bacteria were observed, bacteria with intact cell-wall/
membrane remained visible (e.g. isopropanol, kanamycin and heat
treatments). Heat and isopropanol treated samples included bacteria
presenting an intact cell-wall/membrane (5 and 13%) whereas no
culturable bacteria were observed on plate (Table 1). For freezing,
2% of the cells had an intact membrane and between 0.5 and 1.7%
were culturable. These intact cell-wall/membrane cells amongst
non-culturable cells may explain the remaining qPCR signal of dead
cells, as previously reported (Kralik et al., 2010; Lovdal et al., 2011;
Pan and Breidt, 2007). Contrary to heat and isopropanol treatments
and as expected, for kanamycin treated samples, a high percentage
of bacteria with intact cell-wall/membranes (80%) was observed
whereas none of the bacteria in the kanamycin treated sample
were culturable. According to the PMA mode of action, this must
have a drastic effect on the v-qPCR signal reduction: in such samples,
no or very low extinction of the signal (ACq) should have been ob-
served. However, this was not the case since the kanamycin treated
samples ACq were not significantly different from the other killing
processes (Table 1 and Fig. 3). These observations demonstrated

Table 1

that the v-qPCR results do not strictly correlate with the physical sta-
tus of the bacterial cell-wall/membrane.

4. Conclusion

As the rapid detection of foodborne pathogens remains a challenge,
the improvement of the currently available and internationally accept-
ed methods is needed. The ISO/TS 13136 for the detection of Shiga
toxin-producing E. coli (ISO, 2012) was the first reference method
using qPCR instead of culture-based method as a screening system.
This opened the way for internationally accepted qPCR detection sys-
tems in foodborne pathogen detection. However, there is still room to
speed up the detection method by replacing the enrichment step
which takes around 18 h. The use of PMA treatment instead of enrich-
ment before qPCR analysis, called v-qPCR, was proposed as a potential
alternative.

The aim of this study was first to optimise the v-qPCR protocol to ob-
tain full extinction of the dead bacteria signal and secondly to study the
results of v-qPCR on S. Enteritidis cells when different killing and stress
conditions are applied.

The present study confirms previous observations where v-qPCR
was shown as inefficient to completely remove qPCR signal of dead My-
cobacterium avium, Listeria innocua and Listeria monocytogenes (Kralik
et al,, 2010; Lovdal et al., 2011; Pan and Breidt, 2007). Indeed, in this
study, from 3.7 to 8.8 log CFU/ml of dead S. enterica, full extinction of
the v-qPCR signal was never reached, only a reduction of the signal be-
tween 2 to 7 Cq was observed in the different experiments reported in
this study. Neither longer dark incubation nor higher concentration of
PMA resulted in a significant improvement of the signal reduction.
Other studies describe possibilities of improvements of the v-qPCR by
further disrupting of the cell-wall/membranes of dead S. enterica,
L. monocytogenes and E. coli before PMA treatment (Nkuipou-Kenfack
et al., 2013; Wang et al., 2014a, 2014b; Yang et al,, 2011, 2014). In
these papers, even if the reduction of the signal is better, a signal is
still observed with dead bacteria. This may lead to overestimation of
the presence of viable bacteria in a sample and a false positive signal
with dead bacteria. This is not a major issue for detection purposes
since detected bacteria should always be confirmed by isolation of the
bacteria.

Our research also underlines that the PMA may reduce the signal of
viable bacteria at low concentration and confirms other recent studies
(Liu and Mustapha, 2014; Yanez et al.,, 2011). This represents a risk of
false negative results if the reduced signal falls below the LOD of the
gPCR assay. These false negatives are not acceptable in a foodborne
pathogen detection system where zero tolerance is the rule, as is the
case for S. Enteritidis (Commission of EU, 2005, 2013).

The last experiment performed on S. Enteritidis killed by processes
altering or not the cell-wall/membrane gave some clues to the question
about the non-total extinction of dead sample signal in v-qPCR assay. In-
deed, a portion of the non-culturable bacteria (expected to be dead) has
an intact membrane/cell-wall. Since PMA is able to penetrate only bac-
teria with compromised cell-walls/membranes, in v-qPCR assay, dead
bacteria with intact membrane/cell-wall should give a signal similar to

Comparison of different assays used to evaluate the percentage of dead S. Enteritidis in a sample.

Microscopic observation Plate count v-PCR
Treatment Alive Dead Total Percentage of cells with  Percentage of CFU/ml Percentage of Percentage of non ACq-PMA

cells cells count intact membrane membrane-compromised “culturable” cells “culturable” cells

(green) (red) cells
No (living cells) 101 15 116 87 13 8.1- 107 Theoretically 100% Theoretically 0% 0.9 + 04
Isopropanol 38 252 290 13 87 <3 0 100 23402
Kanamycin 290 74 364 80 20 <3 0 100 31+07
Heat 19 355 374 5 95 <3 0 100 45+03
Freezing 17 904 921 2 98 405 - 10°t01.35 - 10°° 0510 1.7 98.31099.5" 25406

* None countable (bacterial lawn): approximated from other freezing experiments.
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that of viable bacteria. However, the kanamycin-treated samples raised
incoherence about the mode of action of the v-qPCR. Indeed, these types
of inactivated samples displayed a high percentage of non-culturable
bacteria with intact cell-wall/membrane although they unexpectedly
gave one of the best ACq in v-qPCR. These results strikingly illustrate
that the v-qPCR results are not only based on the bacterial cell-wall/
membrane integrity.

To conclude, according to the results of this study and of a recent re-
view (Fittipaldi et al., 2012), for a qPCR foodborne pathogen detection
system, it is not recommended to replace the enrichment step by a
PMA treatment, in its current form. At this stage of current knowledge
on foodborne pathogenic bacteria detection systems, the use of enrich-
ment before qPCR analysis followed by confirmation of positive results
with culture-based methods continues to remain as the most appropri-
ate approach.
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