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Flavonoids protecting food and beverages
against light
Kevin Huvaere and Leif H Skibsted*

Abstract

Flavonoids, which are ubiquitously present in the plant kingdom, preserve food and beverages at the parts per million
level with minor perturbation of sensory impressions. Additionally, they are safe and possibly contribute positive health
effects. Flavonoids should be further exploited for the protection of food and beverages against light-induced quality dete-
rioration through: (1) direct absorption of photons as inner filters protecting sensitive food components; (2) deactivation of
(triplet-)excited states of sensitisers like chlorophyll and riboflavin; (3) quenching of singlet oxygen from type II photosensiti-
sation; and (iv) scavenging of radicals formed as reaction intermediates in type I photosensitisation. For absorption of light,
combinations of flavonoids, as found in natural co-pigmentation, facilitate dissipation of photon energy to heat thus avert-
ing photodegradation. For protection against singlet oxygen and triplet sensitisers, chemical quenching gradually decreases
efficiency hence the pathway to physical quenching should be optimised through product formulation. The feasibility of these
protection strategies is further supported by kinetic data that are becoming available, allowing for calculation of threshold lev-
els of flavonoids to prevent beer and dairy products from going off. On the other hand, increasing understanding of the interplay
between light and matrix physicochemistry, for example the effect of aprotic microenvironments on phototautomerisation of
compounds like quercetin, opens up for engineering better light-to-heat converting channels in processed food to eventually
prevent quality loss.
© 2014 Society of Chemical Industry
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INTRODUCTION: FOOD AND LIGHT
It is well known that light exposure of foods and beverages trig-
gers photoreactions that adversely affect quality, a phenomenon
generally referred to as the lightstruck problem. Beer, wine,
and dairy products are typically insulted by light as illustrated
by their sensitivity for off-flavour formations (perceivable at
sub-ppm levels),1 – 6 but also meat, fish, vegetable oils, fruit juices
and soft drinks suffer from light-induced quality changes.7 – 9

A few hours of irradiation, as in display cases or in illuminated
cold cabinets, are sufficient for flavours to go off. Beside these
changes, also discolouration, loss of nutrients, and perhaps
even toxic product formation result from light exposure, each of
which can lead to rejection by consumers.10,11 Despite awareness
about the problem, use of transparent packaging is increasing
as it is the more attractive material from a marketing point of
view. Indeed the package must sell what it protects; however, it
remains highly questionable if it still protects what it sells.12,13

Attempts to change transmission properties without affecting
transparency have only been moderately successful and partic-
ularly economical viability was questioned due to higher cost,
recycling issues, and often lack of local supply of such advanced
material.14 Alternatively, retail conditions may be adapted by
selecting appropriate illumination or by simply storing in the
dark, although such routine is less practical and difficult to stan-
dardise. Therefore, it is worth considering a third (and perhaps
most effective) approach to control lightstruck problems. As
a result of detailed mechanistic investigations, insights have
been produced in the underlying chemistry of light-induced
quality changes.8 In many cases, the generation of strongly

oxidising intermediates was identified as crucial step in the
development of off-flavours and other defects. Based on this
knowledge, it was suggested that the presence of antioxidants, as
a built-in protection, possibly mitigates adverse effects associated
with light exposure without compromising on the packaging or
retail level. For use in foods and beverages only antioxidants of
natural origin should be considered as consumers are increasingly
reluctant toward synthetic additives.15 Flavonoids, as found in
most fruits and vegetables,16 are thus particularly suitable com-
pounds as their beneficial effects on food preservation (including
prevention of fat oxidation, protection of vitamins and enzymes,
and inhibition of microbial growth) have been demonstrated
before. Aiming at addition of small amounts in order not to
perturb taste or mouthfeel (few hundreds of ppm), their use is
generally safe and possibly triggers positive health effects.17 – 23

Briefly, the aim of this review is to evaluate the feasibil-
ity of flavonoids protecting foods and beverages against
harmful photochemistry. Flavonoids are herein understood
as the polyphenolic species having a common diphenyl-
propane carbon skeleton (C6—C3—C6),24 with the C3-link
being part of an oxygen-membered 6-ring (hence derivatives
of 2-phenylbenzo-𝛾-pyran) (Fig. 1). Their role as quencher of
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Figure 1. Overview of major flavonoids, as divided into their respective sub-classes. Examples of important sources of the different species are only
indicative, as for reasons of conciseness only aglycon structures (except for rutin) are presented.

excited species, as scavengers of photo-induced radicals or as
inner optical filters is considered, with particular attention for
molecular explanations that support their protective activity. The
usefulness of the strategy is further substantiated by a series of
examples demonstrating the relevance for real food samples.

PROTECTION MECHANISMS
Under sensitised conditions
Foods and beverages in transparent packaging are inevitably
exposed to light during shipping, retailing, and storing. Depend-
ing on the transmission properties of the packaging material, the
active wavelength range covers most of the visible part, together
with UV-A (380–320 nm) and UV-B (320–280 nm) light. Proteins
and peptides, carbohydrates, and lipids are usually transpar-
ent under these conditions, but colouring agents and natural

pigments, including organometal complexes such as chloro-
phylls, bear strongly absorbing chromophores that harvest light
energy with subsequent initiation and acceleration of degrada-
tion reactions.25,26 These so-called sensitised photoreactions are
typical for foods and essentially involve two pathways (Scheme 1).
Direct interaction of the excited sensitiser (i.e. the light-absorbing
species) with food compounds initiates radical processes through
electron transfer or hydrogen abstraction and is known as a type
I photooxidation. This mechanism is favoured under low oxygen
pressure and is for example responsible for lightstruck flavour
formation in beer.27 Under aerobic conditions, excitation energy is
preferably transferred to oxygen to generate singlet oxygen, the
pivotal intermediate in a type II photooxidation. This reaction is
responsible for oxygenation of unsaturated fatty acids in vegetal
oils causing high peroxide values and eventually rancidity, while
attack of amino acid residues in dairy proteins may give rise to
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Scheme 1. Chemistry of type I vs. type II photooxidation mediated by a flavin compound (Fl) as sensitiser. The triplet excited state (3Fl*), resulting from
irradiation followed by intersystem crossing (isc), is the common species in both pathways and is responsible for formation of radicals, reactive oxygen
species, and derived oxygenated compounds.

sulfury and potato-like off-flavours.25 Both photooxidation path-
ways thus go through a common reactive triplet-excited sensitiser
that triggers premature ageing or spoiling of foods and beverages.

Food-related sensitisers
Photosensitivity of foods or beverages is often determined by
sensitisers that are naturally present. Riboflavin, also referred to
as vitamin B2, is a vital co-factor in the respiratory chain of living
organisms and mostly occurs under the form of flavin adenine
dinucleotide (FAD) or the water-soluble flavin mononucleotide
(FMN).28 – 30 Abundance is high in energy drinks (∼12 ppm),
meat (particularly liver, ∼30 ppm), milk (∼1.5 ppm), cheese (∼5
ppm), white wine (∼0.3 ppm) and beer (∼0.2 ppm),31 products
in which their presence was found critical for photodegrada-
tion of proteins, unsaturated lipids, flavour molecules, vitamins
and other nutrients.32 Sensitising activity of flavins is due to the
isoalloxazine moiety, a strongly conjugated chromophore that
accounts for absorption in the blue part of the visible spectrum
(hence the pronounced yellow colour).33 High molar absorptivity
(>104 M−1 cm−1) accounts for a 𝜋𝜋* transition which initially
yields the short-lived (∼5 ns in water) singlet-excited state (1Fl*).34

Efficient intersystem crossing (quantum yield, 𝜑∼ 0.67) gives a
triplet-excited state (3Fl*) that is significantly longer-lived (∼15
ms in water) and thus more damaging for the food matrix. The
species allows singlet oxygen formation (type II mechanism) at
diffusion-controlled rates (k ∼ 109 to 1010 L mol−1 s−1),35,36 while
its strong, one-electron oxidising power (E ∼+1.7 V)37 causes
degradation of food substrates via radical formation (type I
mechanism).34,38

Both types of photooxidations have been reported to occur in
foods containing flavins,39 – 48 while porphyrin derivatives such as
chlorophylls are preferentially involved in type II reactions.30,49

Their presence in dairy products, as influenced by cow feeding
patterns, expands the range of harmful wavelengths to the red
region50 – 52 and accordingly make the efforts to reduce light sen-
sitivity more complex. Sensory analyses of light-exposed milk for
example showed that wavelengths longer than 575 nm induced
significantly more off-flavours than those shorter than 500 nm,
indicating chlorophylls, rather than flavins, are essential mediators
of photoactivity.53

Beside these typical sensitisers, visible and UV-A light is also
absorbed by other sensitising compounds for which photore-
actions have not been investigated in detail. Examples include
melanoidins, curcumin and curcumoid compounds, carotenes,
carmines and carminates, and other natural colourants which may
all be involved in food-related photochemistry.54 – 59

Quenching of excited sensitisers by flavonoids
Chemical quenching of excited flavins: the type I mechanism
Sensitisers such as riboflavin and flavin mononucleotide are
strongly oxidising species once promoted to their triplet state
and ensuing radical formation can initiate a degradation cascade
throughout the food matrix. To prevent this chain of reactions
occurring, flavonoids are sacrificed to deactivate these electron-
ically excited intermediates before damage to sensitive food
compounds has occurred. This quenching process is a typical,
and well studied, example of a type I photooxidation involving
electron or hydrogen transfer to the excited state. The ther-
modynamical driving force is the strong overpotential of the
triplet flavin (E ∼ 1.7 V), which is over 1 V higher than the reduc-
tion potential at physiological pH (E7.4 ∼ 0.3–0.4 V) reported for
quercetin, a flavon-3-ol with strong reducing power.60,61 Quench-
ing rates are almost diffusion-controlled with rate constants in the
order of 109 L mol−1 s−1 (Table 1). In particular, the presence of a
catechol-like B-ring was found decisive and much more important
than the presence of a C2—C3 unsaturation, a C3-hydroxy sub-
stituent, or a C4-carbonyl moiety.62,63 Stabilisation of the incipient
ortho-hydroxy phenoxyl radical, presumably by ensuing forma-
tion of a stable radical anion,64,65 is the driver behind the reducing
capacity. In the absence of catechol moieties, quenching from A-
or B-ring phenols occurs with formation of the thermodynamically
most-favoured radical (mostly on the B-ring).64,66 This mechanism
is still open for debate,67 as well as is the exact mechanistic inter-
pretation of the quenching reaction. Excitation energy transfer is
excluded,68 but hydrogen atom abstraction (HAT) from a phenolic
function next to electron transfer (ET) followed by proton migra-
tion have both been claimed feasible. The net result of both mech-
anisms is identical, but reaction pathways are determined by differ-
ent thermodynamical and kinetic properties. One-step hydrogen
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Table 1. Bimolecular rate constants kq (in L mol−1 s−1), activation
enthalpy ΔH# at pH 7 (in kJ mol−1), and activation entropy ΔS# at pH
7 (in J K−1 mol−1) for the chemical quenching of triplet-excited flavin
mononucleotide and triplet-excited riboflavin* by flavonoids

Flavonoida pH 4 pH 7 ΔH# ΔS#

Naringenin 1.2× 109 1.0× 109 10.5± 3.3 −35± 11
Taxifolin 9.3× 108 1.1× 109 – –
Chrysin 9.8× 108 8.2× 108 12.3± 2.0 −31± 7
Apigenin 1.1× 109 1.1× 109 – –
Luteolin 2.0× 109 2.0× 109 – –
Catechin 1.8× 109 1.6× 109 11.6± 3.6 −29± 12

– 1.4× 109 * – –
EGCGb – 1.7× 109 * – –
Kaempferol 1.5× 109 1.3× 109 – –
Quercetin 1.9× 109 1.9× 109 13.8± 3.3 −20± 11
Rutin 1.4× 109 1.2× 109 – –

– 9.7× 108 * – –

Values were taken from Huvaere et al.65 (except for
*, which were taken from Becker et al.187).
aFor structures, see Fig. 1.
bEGCG: Epigallocatechin gallate

atom abstraction depends on the bond dissociation energy (BDE)
while electron transfer is determined by the substrate’s ionisa-
tion potential (IP). According to free energy changes for electron
transfer and hydrogen atom transfer, ΔGET and ΔGHAT, rutin and
catechin quench flavin intermediates via HAT68 while others claim
an ET mechanism using similar data.69 Based on interpretation of
activation enthalpies (ΔH#; relatively low and in agreement with
electron transfer) and activation entropies (ΔS#; negative hence
in favour of solvent-assisted electron transfer) (Table 1),65 an ET
mechanism seems to fit best with experimental data.70

Chemical quenching of singlet-excited flavin is less relevant
due to the short lifetime (∼5 ns) and highly efficient intersystem
crossing to the longer-lived triplet state.71 Typically quencher
concentrations in the order of 0.25 M would be required to prevent
intersystem crossing,69,72 which is unacceptably high when aiming
at real food applications. Moreover, the quenching of excited
porphyrins and derivatives via type I mechanism is inefficient, as
for example zinc protoporphyrin IX (ZnPP; the red pigment in some
dry-cured hams) in its triplet-excited state, 3ZnPP* (E0 = 0.44–0.48
V vs. NHE),73 was not quenched by flavonoids like quercetin
and catechin.74 Most likely the low over-potential for oxidation
kinetically inhibits electron transfer. For sensitisers located inside
a protein coat, the spatial proximity of amino acid residues may
overrule kinetic inhibition and favour reaction. Quenching of these
reactions is unlikely as the pocket is generally not accessible for
flavonoids.75

Photoprotection mechanism
To understand how flavonoids can efficiently deactivate excited
flavin species and how much is needed to save food sub-
strates from degradation, it is vital to understand kinetics of the
photooxidation process. Considering the rate of quenching, rq, by
a selected flavonoid [Eqn (1)], then effective protection is obtained
only if rq is faster than rI , which is the rate of the direct substrate
photooxidation:

rq = kq

[
3Fl ∗

]
[Flav] (1)

rI = kI

[
3Fl ∗

]
[Sub] (2)

rII = kII

[
3Fl ∗

] [
O2

]
(3)

As discussed above, the rate constant kq for the bimolecu-
lar interaction of flavonoids with triplet-excited flavins is high
(Table 1) which allows fast and efficient quenching at low con-
centrations. Unfortunately, the same is true for type I oxidation
of sensitive substrates [Eqn (2)] as kI amounts to 109 L mol−1

s−1 for particular amino acids and peptides, 5× 108 L mol−1 s−1

for photooxidation of vitamin E, and comparably high values for
other nutrients and flavour molecules.76,77 As a consequence, com-
petitive quenching by flavonoids can only occur at sufficiently
high concentrations, i.e. with [Flav] >> [Sub]. The high whey pro-
tein presence in milk for example ([Sub]∼ 5–6 g L−1) disfavours
such approach, as the amount of flavonoids required would affect
flavour quality (astringency), colloidal behaviour, and oxidative
stability (prooxidant effects). Lipids, on the other hand, are more
readily protected as kI of polyunsaturated fatty acid chains is sig-
nificantly lower (∼105 –106 L mol−1 s−1, depending on the number
of unsaturations).78,79

At higher oxygen concentrations, the flavin-mediated photooxi-
dation mechanism shifts to a type II pathway with singlet oxygen
formation outcompeting the quenching of excited sensitiser by
flavonoids (vide infra). Indeed the rate constant for quenching of
triplet-excited riboflavin by oxygen, kII , is very high (∼109 –1010

L mol−1 s−1)35,36 which, in combination with the high solubility
of oxygen in oils or fatty matrices (∼10 mM), makes conditions
ideal for a type II process [Eqn (3)]. In aqueous solutions oxy-
gen is less soluble (approximately 10-fold lower), but deactivation
by flavonoids (at 1 mM concentration, corresponding to approxi-
mately 250 ppm) is still not sufficient to completely inhibit singlet
oxygen formation.

Spent product
A major disadvantage of the deactivation process is that
flavonoids, as sacrificial compounds, are consumed with genera-
tion of dimeric compounds and other oxidised species (Scheme
2).80,81 If formed in foods exposed to light, these may alter colloidal
stability and affect colour, astringency, and antioxidative capac-
ity. The case was studied in detail for soy isoflavones daidzein
and genistein, which were shown particularly vulnerable dur-
ing exposure of model systems82 or soymilk.83 No reaction was
observed with typical type II sensitisers such as chlorophyll b,82

while obvious dimerisation was observed for type I oxidation
under the influence of flavins.84,85 It can thus be concluded that
the type I deactivation process gradually decreases quencher
concentration, which eventually leaves the matrix unprotected
after longer exposure time.

Quenching of reactive oxygen species
The type II mechanism: singlet oxygen
The type II photoreaction differs from type I as it essentially
involves oxygen, which is excited to the singlet state by energy
transfer from the triplet-excited photosensitiser. Typical examples
of species catalyzing this reaction in foods are riboflavin86 and
chlorophylls and related (metallo)porphyrins,52,87,88 next to other
sensitising compounds for which mechanisms have not been elu-
cidated yet. Once excited, the interaction between triplet sensi-
tiser and oxygen is spin-allowed and very effective as revealed by
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Scheme 2. Examples of spent product from catechin and quercetin formed after chemical quenching of triplet-excited flavin sensitiser (type I
photooxidation).

the high quantum yields (𝜑= 0.51 for riboflavin89 and 𝜑= 0.91 for
zinc protoporphyrin IX90). The lowest-lying excited state, 1O2 (1Δg),
which is∼ 94 kJ mol−1 above ground state energy, is the main oxi-
dant in type II processes. As a highly reactive species with a lifetime
of few microseconds in aqueous matrices91 and 700 μs in apolar
media92 to 86 ms in dry air,93 1O2 is capable of oxidising unsatu-
rated lipids, peptides and proteins, and other electron-rich food
compounds.

The high rates for 1O2 formation complicate deactivation of
sensitiser at relevant flavonoid concentrations (vide supra), while
dedicated type II sensitisers such as porphyrins are not deacti-
vated at all in the presence of flavonoids.74 Thus, under type II
conditions, the prime target for deactivation is 1O2 rather than
the excited sensitiser. Fortunately, flavonoids strongly interact
with 1O2 in both physical and chemical processes. The rate con-
stants for the observed total deactivation, kT, is composed of a
physical and a chemical component (kQ + kr) (Table 2). Generally
the reaction is dominated by the physical pathway, particularly
when the number of phenolic functions increases.94 The pres-
ence of a catechol or pyrogallol rings makes physical quenching
a 10- to 100-fold more efficient. For example, epigallocatechin gal-
late (EGCG), an important green tea flavonoid, is a very efficient
1O2 quencher (kT = kQ ∼ 1.5× 108 M−1 s−1) that is comparable to
strong deactivators like 𝛼-tocopherol (kT ∼ 2.1× 108 M−1 s−1) and
𝛾-tocopherol (kT ∼ 1.4× 108 M−1 s−1) but still is significantly slower
than 𝛽-carotene (kT ∼ 1.6× 1010 M−1 s−1).95 The EGCG quench-
ing is purely physical,96 favouring a high turnover number before
the quencher is lost. If a 2,3-double bond is present, such as in
flavones or flavon-3-ols, chemical deactivation of 1O2 is also feasi-
ble. The difference in quenching between apigenin (kT ∼ 2.8× 107

M−1 s−1) and naringenin (kT ∼ 3.7× 106 M−1 s−1) or the more effi-
cient quenching by quercetin (kT ∼ 4.6× 108 M−1 s−1) and rutin
kT ∼ 1.2× 108 M−1 s−1) as compared to taxifolin kT ∼ 9.4× 106 M−1

s−1) may be ascribed to a chemical interaction.97 For quercetin the
3-hydroxy group stimulates addition of the electrophilic 1O2 by
increasing electron density in the double bond, favouring unsta-
ble hydroperoxide or 1,2-dioxetane formation with subsequent

decomposition (Scheme 3).96 In the absence of C3—OH, the elec-
tron withdrawing effect of the carbonyl group is more important,
which inhibits chemical oxidation and prevents fast depletion of
quencher compound.

Photochemical generation of 1O2 in foods is a major cause of
formation of hydroperoxides, which are pivotal intermediates in
the pathway to oxygenated compounds with unwanted flavour
and possibly toxic effects.11,86 Protein-rich foods are particularly
sensitive toward 1O2 as electron-rich amino acid residues from
tryptophan, tyrosine, histidine, methionine and cysteine react at
significant rates (in the order of 107 L mol−1 s−1, with cysteine
being the most reactive at 5.0× 107 L mol−1 s−1).86 Similar rate
constants are observed for vitamins (vitamin B2 ∼ 6.0× 107 L
mol−1 s−1, vitamin C∼ 1.1× 107 L mol−1 s−1, vitamin D∼ 2.2× 107

L mol−1 s−1, and vitamin E∼ 1.3× 108 L mol−1 s−1), but their low
concentration in foods allows prevention of photooxidation at
subtle quencher amounts. Unsaturated lipids interact slower
(bimolecular rate constants in L mol−1 s−1 of∼ 1.7× 104 for oleic
acid, ∼ 4.2× 104 for linoleic acid, ∼ 6.0× 104 for egg yolk phos-
phatidylcholine, and∼ 0.9× 104 for stearic acid, the latter referring
to a pure physical quenching process)98,99 but their concentra-
tions in food are significantly higher than for vitamins. Moreover,
higher oxygen solubility and longer lifetime of 1O2 in lipophilic
environments should be accounted for. Still, the effective quench-
ing by flavonoids, with larger kQ values of up to four orders of
magnitude, may prevent lipid peroxidation as pivotal precursor
in stale and rancid off-flavour formation. Cholesterol, prevailing
along with lipids in meat, dairy products, and fish, is much more
sensitive to oxidation (6.9× 107 L mol−1 s−1)78 with formation
of possibly toxic oxidation products.100,101 This rate constant is
only slightly below that of rutin, quercetin, and EGCG (1.2× 108

L mol−1 s−1, 4.6× 108 L mol−1 s−1, and 1.5× 108 L mol−1 s−1),95,97

and quenching will thus be effective only if flavonoid concen-
tration exceeds that of cholesterol. For such highly lipophilic
substrates, carotenes, such as lycopene and 𝛽-carotene are
possibly better alternatives for 1O2 deactivation (k ∼ 1.6× 1010

L mol−1 s−1).97
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Table 2. Rate constants kT (in L mol−1 s−1) for total singlet oxygen
quenching by flavonoids; kT consists of a chemical quenching (kr) and
a physical quenching (kQ) component

Flavonoida kT kr
b kQ Reference

Naringenin 5.0× 104 No reaction 5.0× 104 96

3.7× 106 No reaction 3.7× 106 * 97

Eriodictyol 1.4× 106 No reaction 1.4× 106 96

Taxifolin 1.1× 106 No reaction 1.1× 106 96

9.4× 106 No reaction 9.4× 106 * 97

Chrysin 2.4× 106 0.6× 104

[2.3× 10−6]
2.3× 106 96

2.0× 107 NRc NR 97

Apigenin 2.8× 107 NR NR 97

Luteolin 1.3× 106 1.8× 104

[7.5× 10−6]
1.3× 106 96

Catechin 5.8× 106 No reaction 5.8× 106 96

1.1× 107 No reaction 1.1× 107 95

5.1× 107 No reaction 5.1× 107 * 94

Epicatechin 1.3× 107 No reaction 1.3× 107 95

5.5× 107 No reaction 5.5× 107 * 94

EGCd 1.7× 107 No reaction 1.7× 107 95

ECGe 7.8× 107 No reaction 7.8× 107 95

EGCGf 1.5× 108 No reaction 1.5× 108 95

Galanging 1.2× 106 7.4× 105

[1.1× 10−2]
4.6× 105 96

Kaempferol 7.1× 105 4.8× 105

[9.3× 10−3]
2.3× 105 96

NR 2.8× 105 NR 94

Fisetin 3.1× 106 1.1× 106

[1.0× 10−2]
2.0× 106 96

Morinh 3.9× 107 3.0× 107 0.9× 107 * 69

1.3× 108 6.6× 106 1.3× 108 94

Quercetin 3.1× 106 1.1× 106 2.0× 106 * 69

2.4× 106 8.9× 105

[9.7× 10−3]
1.5× 106 96

4.6× 108 NR NR 97

5.7× 107 5.7× 105 NR 94

Rutin 1.6× 106 0.1× 106 1.5× 106 * 69

– 1.1× 105

[4.6× 10−5]
1.5× 106 96

2.4× 107 0.6× 105 2.4× 107 * 94

1.2× 108 NR NR 97

Myricetini 5.1× 108 NR NR 97

NR 7.3× 105 NR 94

Biochanin A 1.9× 108 NR NR 152

Genistein 5.9× 107 NR NR 152

Values of kQ marked with
*were not reported as such but were obtained from kQ = kT − kr.
aFor structures, see Fig. 1.
bQuantum yields are reported between brackets.
cNR: not reported.
dEGC: Epigallocatechin.
eECG: Epicatechin gallate.
fEGCG: Epigallocatechin gallate.
gGalangin: similar structure to that of kaempferol, but lacking the
C4

′—OH (i.e. unsubstituted B-ring).
hMorin: quercetin isomer, but with C2

′—OH instead of C3
′—OH (i.e.

resorcinol B-ring).
iMyricetin: similar structure to that of quercetin, but with additional
C2

′—OH (i.e. pyrogallol B-ring).

Secondary species: superoxide
Superoxide (O2

•−) is a low reactive, negatively charged rad-
ical species that is formed as a side product in type I oxidation
(Scheme 1). The electron or hydrogen transfer eventually produces
a reduced sensitiser species (Fl•−) that readily interacts with resid-
ual oxygen (kO2 ∼ 1.4× 108 L mol−1 s−1) with regeneration of the
sensitiser.35,71,102 Concomitant formation of O2

•− is relatively harm-
less as such,103 but as precursor for the more reactive hydroperoxyl
radical at low pH (<5; pKa of HOO• ∼ 4.6) it causes oxidation of
unsaturated lipids or depletion of endogenous antioxidants
including cysteine residues and tocopherols.104,105 Beside this,
superoxide yields deleterious hydroxyl radicals through dismuta-
tion or by participating in the ferric ion catalysed Haber–Weiss
cycle. With generation of these highly reactive species, the
impact of type I photoreactions spans well beyond a pure
sensitiser–substrate interaction and quenching of the supposedly
harmless O2

•− may significantly increase photostability.
Interaction of flavonoids with O2

•− is slow when compared to
other radical species: k ∼ 102 –107 M−1 s−1 vs. k ∼ 109 M−1 s−1 for the
scavenging of O2

•− and R•, respectively. Fortunately, O2
•− attacks

food substrates even slower (k ∼ s−1), therefore few flavonoids are
required (∼10−6 M) for protection (k = 10−6 M× 107 M−1 s−1 = 10
s−1).106 Among the most effective compounds are myricetin, del-
phinidin, epicatechin gallate, and proanthocyanidins, suggesting
a more efficient quenching in the presence of a catechol or pyro-
gallol group (Table 3).107,108 In the absence of hydroxyl substituents
(e.g. flavone and flavanone) no scavenging activity is observed.109

The interaction is pH-dependent108 and most likely involves elec-
tron transfer with concerted proton transfer as deduced from
the negative activation entropy (ΔS#).64 Alternative mechanisms
include initial proton transfer110 or direct hydrogen abstraction by
the superoxide anion radical.111 Flavon-3-ols such as quercetin and
kaempferol may interact through a different mechanism with atyp-
ical depside formation.69,80

The most efficient rate constants (∼107 L mol−1 s−1 for gallocat-
echins and proanthocyanidins) are still far below those for met-
alloprotein superoxide dismutases (SOD; 1.4× 109 L mol−1 s−1).112

In this respect, a remarkable increase in quenching efficiency was
observed after complex formation between flavonoids and transi-
tion metal ions. For example ferrous and ferric complexes of rutin,
taxifolin, luteolin, and epicatechin were up to 6×more effective
superoxide quenchers, while copper complexes were even more
performant.113 – 115

Direct excitation
Next to the occurrence of sensitised reactions, several food
molecules interact directly with light without intervention of a
sensitiser. Known examples include the degradation of isohumu-
lones in beer,116,117 the rearrangement of carvone affecting aquavit
flavour,118 the isomerisation of trans-anethole in anise-flavoured
drinks,119,120 or the UV-induced lipid and protein degradation in
soft cheese.121,122 The chemistry is considerably different from
sensitised conditions as excitation and ensuing events occur
intramolecularly. As a consequence, reactions are too fast to
be interfered by bimolecular quenching. Preventing excitation
is the only option to protect against damage, for example by
optically filtering hazardous wavelengths that enter the food
matrix. The remarkable properties of flavonoids make them suited
for this role too, particularly since they were discovered as an
essential part of nature’s defence against excessive UV expo-
sure of the photosynthetic apparatus in plants.123 Their strong
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Scheme 3. C2—C3 unsaturated flavonoids such as quercetin are chemically consumed during quenching of singlet oxygen in a type II photooxidation.

Table 3. Rate constants k (in L mol−1 s−1) for quenching of superox-
ide by flavonoids as determined at pH 7 and at pH 10.

Flavonoida pH 7 b pH 10 c

Naringenin – 3.0× 102

Hesperetin – 5.9× 103

Hesperidin – 2.8× 104

Catechin 6.4× 104 * 1.8× 104

7.1× 105 –
Epicatechin 6.8× 104 * –

6.6× 105 –
EGCd 4.1× 105 * –
ECGe 4.3× 105 * –

1.1× 107 –
EGCGf 7.3× 105 * –
Proanthocyanidin oligomer 2.9× 107 –
Galanging – 8.8× 102

Kaempferol 2.0× 104 2.4× 103

Fisetin 7.8× 105 1.3× 104

Morinh 2.9× 103 1.6× 103

Quercetin 1.0× 106 4.7× 104

Rutin 1.5× 106 5.1× 104

Isorhamnetini 7.4× 104 –
Myricetinj 9.0× 106 –
Delphinidin 8.1× 106 –
Malvidin 6.0× 105 –

a For structures, see Fig. 1.
b Values taken from Taubert et al.112 (except for
*, which were taken from Jovanovic and Simic106).
c Values taken from Jovanovic et al.64

d EGC: Epigallocatechin.
e ECG: Epicatechin gallate.
f EGCG: Epigallocatechin gallate.
g Galangin: similar structure to that of kaempferol, but lacking the
C4

′—OH (i.e. unsubstituted B-ring).
h Morin: quercetin isomer, but with C2

′—OH instead of C3
′—OH (i.e.

resorcinol B-ring).
i Isorhamnetin: similar structure to that of quercetin, but with methy-
lated C3

′—OH (i.e. guaiacol B-ring).
j Myricetin: similar structure to that of quercetin, but with additional
C2

′—OH (i.e. pyrogallol B-ring).

absorption in the UV-B and UV-A region is essential for optical
filtering, but it is mainly the ability to convert absorbed photon
energy into harmless heat – rather than triggering photochemical
transformation – that makes flavonoids efficient photoprotectors.

Flavon-3-ols and flavones
Flavon-3-ols such as quercetin and its glycosides are widespread
and their photochemical and photophysical properties are prob-
ably the best studied of all flavonoid species. Similar to flavones,

flavon-3-ols show strong UV absorption due to B–C ring conju-
gation (between 320 and 385 nm, the so-called band I) and the
presence of a hydroxylated A-ring (band II, between 250 and 285
nm).124 Band I corresponds to a S0 → S1 transition (a 𝜋𝜋* tran-
sition with n𝜋* character; 𝜖 ∼ 2.8× 104 L mol−1 cm−1),125 which
for flavone (no substitutions) is followed by intersystem crossing
(isc) to a longer-lived, chemically reactive triplet state (𝜑isc ∼ 0.9;
kisc ∼ 2× 1010 s−1).126 – 128 On the contrary, a very low quantum
yield for intersystem crossing is observed for flavon-3-ols such as
quercetin because the presence of the C3-hydroxyl causes effi-
cient transient tautomerism from the singlet excited state.129 – 131

The mechanism involves ultrafast intramolecular proton transfer
from the C3-hydroxyl to the neighbouring carbonyl,132 followed by
relaxation to the ground state with dissipation of excitation energy
into heat (Scheme 4). This so-called excited-state intramolecular
proton transfer (ESIPT) is driven by electronic rearrangements in
the first singlet excited state, accounting for a pKa decrease for
the C3—OH by almost 10 units while basicity of the C4 carbonyl
is increased by more than 4 units.133 The mechanism works for
flavones too, as the C5—OH neighbouring the carbonyl or the
more distal C7—OH group (which is the most acidic as the pKa

decreases from 7.4 in the ground state to −2.2 in the first excited
singlet state)134 take over the role of proton donor.135 Particu-
larly the C5—OH favours ESIPT over intersystem crossing (due to
a so-called ‘proximity effect’)136 although hydrogen bonding with
the matrix may compromise effectivity.137

The dissipation of photon energy into heat is an appealing strat-
egy to protect against light-induced changes in food systems. The
process is very efficient and provides a way to deflect UV light from
food molecules without sacrificing the optical filter.138 – 140 For
example, the low quantum yield of photodegradation of quercetin
(approximately 10−4)141 in combination with a high molar absorp-
tivity makes inner filtering effective at low concentrations. Still
decomposition sets in after longer exposure time with forma-
tion of 2,4,6-trihydroxybenzoic acid and 3,4-dihydroxybenzoic
acid,142,143 but derived glycosides like rutin are generally bet-
ter resistant to photodegradation.144,145 It is worth noting, how-
ever, that in the presence of metal ions, a condition which is not
unlikely in food matrices, a significantly different photoreactiv-
ity is observed. Rather than dissipating to heat, photon energy
induces ligand (e.g. quercetin or rutin) to metal charge transfer (l to
400–550 nm; 𝜖 ∼ 103 L mol−1 cm−1) with resulting radicals degrad-
ing according to known mechanisms.146 – 149

Isoflavones
Isoflavones, which differ from other flavonoids by the B-ring
attachment at the C3-position, are characterised by three band
maxima (for example, at 340 nm, 280 nm and at 260 nm for
genistein in ethanol).150 Similar as for the 5-hydroxyflavones, radi-
ationless transition, via ESIPT, is very efficient and supports a bet-
ter photostability of genistein and biochanin A when compared
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Scheme 4. Ultra-fast excited state intramolecular proton transfer (ESIPT) with subsequent tautomerisation efficiently dissipates excitation energy in
flavon-3-ols, as exemplified by UV irradiation of quercetin.

to daidzein and formononetin. 150 The latter two, both lacking a
C5—OH (Fig. 1), undergo radical formation151 but quantum yields
strongly depend on pH.152,153 The ESIPT mechanism also affects
sensitising activity, as the low yield of triplet excited states makes
genistein and daidzein unsuitable as singlet oxygen sensitisers.153

Flavanones and flavanonols
Absorption maxima of flavanones appear at considerably shorter
wavelengths than for the corresponding flavones, as shown for
example for naringenin and apigenin (288 nm vs. 337 nm). This dif-
ference is essentially ascribed to the lack of conjugation between
the A and B ring, leaving band II situated between 270 and 295
nm. The absorption range is therefore limited, which makes this
flavonoid class less useful as optical filters.

Flavan-3-ols and proanthocyanidins
Flavan-3-ols and derived proanthocyanidins lack a carbonyl moi-
ety which excludes them from the phenone photochemistry as dis-
cussed for flavones, flavon-3-ols, and isoflavones. Excitation max-
ima are at shorter wavelengths (∼275 nm for catechin in water,
shifting to ∼300 nm for corresponding anions) hence they are
mainly active in the UV-B range.67 Photolysis at 300 nm gives
epimerisation at C2, with thermodynamical preference for the
more stable trans-configuration (Scheme 5).154 The reaction pro-
ceeds via a 𝜋𝜋* singlet state (1–10 ns lifetime) with considerably
higher acidity (pKa ∼ 4) than the S0 state (pKa ∼ 10).155 Deproto-
nation facilitates cleavage of the benzylic C—O bond to give the
intermediate quinone methide,156 which undergoes recyclisation
to finalise the isomerisation process. It is unclear whether green
tea catechins such as EGCG undergo similar rearrangements, but
the shorter lifetime of the excited state (only few picoseconds) and
the low quantum yield for fluorescence perhaps suggest an even
faster process.157 This effective and non-destructive way to sink
UV energy makes flavan-3-ols excellent optical filters, but like fla-
vanones their operating range is limited to UV-B light.

Anthocyanins and anthocyanidins
The core structure of anthocyanins consists of a positively charged
7-hydroxy flavilium ion that is typically glycosated at the C3—OH
and C5—OH positions. Anthocyanidins are the corresponding
aglycons which, together with the anthocyanins, account for
the bright colours among others in blackberries, strawberries,
grapes, blueberries, aubergine and avocado. Ranging from pale
yellow over purple–blue to red, colour and light absorption are
strongly pH-dependent. One of their suggested biological roles is
to protect photosynthetic tissues against excessive light stress by
strongly absorbing blue–green and ultra-violet light.158,159 More-
over, anthocyanins have the capability to deactivate their excited
singlet states back to the ground state almost instantly with trans-
formation of light energy into harmless heat. The mechanism
is pH dependent as under acidic conditions anthocyanins pre-
vail as red-coloured, protonated species with a pKa (asigned to
C7—OH) of approximately 4–5.160 Upon excitation, the excited
singlet state behaves as superphotoacid (pKa ∼ 0) and transfers a
proton to water via sub-nanosecond excited state proton transfer
(ESPT, ∼ 10–20 ps) (Scheme 6).161 The corresponding excited base
returns to its ground state and reclaims the proton from water,
accounting for a total process time of< 200 ps.162,163 This highly
effective deactivation cycle accounts for low quantum yields of
degradation, as for example observed for an elderberry extract
rich in anthocyanins (𝜑∼ 0.4× 10−4 mol einstein−1, 𝜆exc = 440 nm,
pH∼ 3–4).164 The process differs from the intramolecular ESIPT
(as described for carbonyl-bearing flavonoids), the latter which
may lose efficiency by solvent interaction (vide supra). The toler-
ance of water in the dissipation mechanism makes anthocyanins
a preferred candidate for protecting foods and beverage against
light-induced degradation. However, the fact that most flavylium
cations become unstable at the pH of most food matrices (pH> 3)
and add water to form a pale yellow, ineffective hemiacetal is a
serious drawback. To be useful, anthocyanins should be accom-
panied by other phenolic species (such as phenolic acids or other
flavonoids) with which they form a stable complex.165 – 169 This
co-pigmentation, as the phenomenon is referred to, accelerates
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Scheme 5. Photoisomerisation is the main pathway for dissipation of excitation energy in flavan-3-ols. Recyclisation of the pivotal quinone methide
intermediate gives the thermodynamically more stable trans-configuration.

internal conversion to the ground state via ESPT and brings lifetime
of the excited singlet state to a sub-picosecond level.170

PHOTOPROTECTION IN PRACTICE
Examples
The rate at which light exposure shortens shelf life depends on
several factors including light intensity, the light source, exposure
time, the packaging material, and, obviously, the sensitivity of the
matrix. Light penetrates deep into beverages and makes them
highly photosensitive, probably with beer as the best-known
example. Light exposure generates an obnoxious off-flavour
after a complex interplay of light, riboflavin (acting as natural
sensitiser), isohumulones (the hop-derived bitter agents), and
sulfur-containing amino acids, peptides and proteins.45,47,77,171

The radical degradation path results in 3-methylbut-2-ene-1-thiol
(MBT), the benchmark off-flavour that characterises light-exposed
beers. It resembles the foxy odour secreted by skunks hence
the trivial name skunky thiol, although other sulfury com-
pounds have been identified which contribute to lightstruck
perception.172,173 Beer ingredients malt and hops are natural
sources of flavonoids and should therefore offer protection
against the reactive riboflavin triplet according to quenching
mechanisms as described above. Malt naturally contains proan-
thocyanidins, dimers and trimers of catechin and gallocatechin,
while hops are rich in flavon-3-ols and their glycosides, catechins
and proanthocyanidins.174 – 177 However, despite their potential
to deactivate excited sensitisers and protect against MBT for-
mation, most of the naturally present flavonoids are removed
deliberately because of their undesirable tendency to destabilise
colloidal properties and promoting haze formation.178,179 More-
over, astringency, a sensation characterised by dry and puckering
mouthfeel, is mainly ascribed to complexation of proanthocyani-
dins with lubrication proteins in saliva and adversely impacts
beer quality.180 – 182 Catechin monomers and other flavonoids
have less influence on haze formation and can be introduced in a
post-filtering step. Sensory analysis indeed confirmed protection
against light, but relatively high concentrations possibly affect
taste perception.183 From kinetic analyses of phenolic interactions
with triplet-excited flavins, it was shown that ∼0.36 mM (approx-
imately 100 ppm) may effectively quench 90% of the reactive
intermediates.72

Milk is highly photosensitive, with both lipids and proteins
being oxidised under sensitised conditions due to natural pres-
ence of riboflavin and chlorophylls.30,52,184 Formation of carbonyl
compounds such as pentanal, hexanal, heptanal, 2-nonenal,
2,4-nonadienal and 2,4-decadienal all attributed to lipid photoox-
idation, deters freshness of milk and imparts green, metallic and
fatty off-flavours.185 On the other hand, light-induced protein and

amino acid degradation is likely to produce sulfury off-flavours,
including methional, dimethyl disulfide, and dimethyl trisulfide
that give rise to the typical cabbage and ‘burnt feather’ smell.
Methionine is a pivotal precursor and disintegrates via a radical
mechanism (type I),45 as well as through interaction with singlet
oxygen.5 In model systems (aqueous solution at pH 3.5 with
500 ppm methionine and 0.5 ppm riboflavin), epigallocatechin
(EGC) and EGCG, the principal antioxidants from green tea, were
found powerful inhibitors of sulfury volatiles and decreased
formation up to 60% with reference to untreated samples.186

At a concentration of ∼50 ppm, they performed significantly
better than Trolox (a model representing vitamin E), BHA, a major
synthetic food antioxidant, and rutin. The latter is supported
by advanced kinetic measurements, showing that EGCG deac-
tivates excited flavins via electron transfer almost twice as fast
as rutin (k ∼ 1.7× 109 L mol−1 s−1 vs. 1.0× 109 L mol−1 s−1).187

Also, lipid photooxidation in milk, which is very significant with
k ∼ 8.1× 105 L mol−1 s−1,188 is potentially inhibited by the pres-
ence of flavonoids. Both EGC and EGCG were effective against
type II photooxidation of conjugated linoleic acid and performed
significantly better than apple polyphenols (consisting mainly
of procyanidins and quercetin compounds) in an oil-in-water
emulsion model system.189 Green tea extract (at 150–500 ppm)
was better than 𝛼-tocopherol in protecting linoleic acid against
hydroperoxide and conjugated diene formation in model systems,
mainly because the catechins remained stable during longer
exposure.190

Formulating these catechins in real milk samples (at 100 ppm)
corroborated results from model systems and proved epicatechin
(together with chlorogenic acid, the major coffee polyphe-
nol) to be a practically quantitative inhibitor of lipid-derived
aldehydes such as (E,E)-2,4-nonadienal, (E)-2-nonenal, and
(E,E)-2,4-decadienal.185 Despite moderate reduction of methional
formation, epicatechin ranked best in preventing overall
lightstruck character and performed significantly better than
endogeneous antioxidants such as 𝛼-tocopherol. When adminis-
tered as a green tea extract, epicatechin, EGC and EGCG reduced
formation of hydroperoxides, malondialdehyde, and aldehyde
off-flavours and protected nutrients like retinol and tocopherol
in light-exposed milk.191 About 90% reduction of hexanal and
heptanal formation and approximately 50% better preserva-
tion of retinol and 𝛼-tocopherol were obtained with only 25
ppm of extract, which is at least four times more effective than
ascorbic acid.

Due to the presence of similar constituents as found in milk,
photooxidation is likely to affect cheese and butter flavours. Light
penetration is less effective for these solid and semi-solid matrices
and light-induced changes are merely a surface phenomenon.121

Both riboflavin and chlorophylls are involved as sensitisers, but
also protoporphyrin and hematoporphyrin have been identified as
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Scheme 6. Fast excited state proton transfer (ESPT) to water with subsequent tautomerisation efficiently dissipates excitation energy in anthocyanidins
such as cyanidin (or in corresponding anthocyanins). The mechanism works under UV as well as visible light irradiation.

photoactive compounds in dairy products.30,52,184 The presence of
these sensitisers makes cheese and butter particularly vulnerable
to visible light-induced changes through both type I and type II
oxidation mechanisms. Typical off-flavours include stale aldehydes
and volatile disulfides,1,2,192 but addition of green tea extract (750
ppm) effectively reduced formation of lipid-derived aldehydes in
soft cheese with possibly improved flavour stability as result.193

Edible oils are ideal environments for type II photooxidation.
Their lipophilic nature allows high concentrations of oxygen, while
natural sensitisers such as chlorophylls are well soluble and eas-
ily extracted in the matrix during production. Naturally occurring
flavonoids like fisetin and baicalein (present at ppm levels) effi-
ciently inhibit linoleic acid peroxidation by quenching 1O2 with-
out being consumed.194,195 It may be argued that the natural pres-
ence of carotenes, which are excellent 1O2 quenchers, offers good
protection against photooxidation and possibly makes addition
of flavonoids superfluous. However, flavonoids are more versatile
and quercetin and rutin for example were found to protect flax
seed oil against UV-induced oxidation due to strong inner-filtering
(𝜖 ∼ 1.1× 104 L mol−1 cm−1 and 𝜖 ∼ 1.2× 104 L mol−1 cm−1 for
quercetin and rutin).196 Catechin, with 𝜖 ∼ 110 L mol−1 cm−1 at 300
nm excitation, was ineffective in this case.

Light exposure not only affects flavour; discolouration or colour
fading is also a quality defect attributed to photooxidation. As a
natural colour of many juices and other fruit and vegetable prod-
ucts like tomato paste for pizza and carrot paste for infant nutrition,
carotenoids are typically affected by light and by concurrent oxida-
tion of lipids and proteins. Paprika oleoresin, a common colouring
agent for meat products, cheese, and sauces is an example of
a carotenoid-based colouring agent that is affected by light
exposure.197 Upon evaluation of naturally occurring flavonoids,
EGCG and quercetin were found to protect with efficacies of∼ 50%
and ∼35% compared to 𝛼-tocopherol and∼ 40% and ∼27%

compared to BHT. Green tea extracts offered protection too, but
catechin was inefficient.198 In this respect, it was recently investi-
gated how plant phenols including quercetin and rutin regenerate
carotenoids from their first oxidation product, the radical cation.
Remarkably, plant phenols with average reducing power, rather
than the strong reducing ones, were demonstrated to provide the
most efficient regeneration of carotenoids (Fig. 2), an observation
that was rationalised in agreement with the Marcus theory for
electron transfer.199

Practical application
The examples as described have demonstrated that introduc-
tion of flavonoids is an effective strategy to inhibit light-induced
quality changes. Still, implementation of the technology is del-
icate as physical and organoleptical features may change due
to bitter taste and astringency200,201 and due to the tendency
to perturb colloidal stability.202 Applying a vegetal extract, com-
posed of different flavonoids, probably performs better than
spiking a single flavonoid compound when considering changes
in taste and mouthfeel. Food grade extracts from blueberries,
dark chocolate, grape skin, green tea, clover, and many more are
commercially available today. Tea extracts are rich in flavonols
(EGC and EGCG make up ∼35% of the dry matter in green tea),203

as are extracts from dark chocolate (610 mg kg−1 catechins in
black chocolate).204 Apples and pears are also a good source of
catechins and have been shown to provide protection against
singlet oxygen-induced protein oxidation.205 Grape skin and
hop extracts contain more proanthocyanidins (i.e. polymerised
flavanols) which are less useful due to the astringent sensations
and colloidal instability they provoke.178,179 Flavon-3-ols and their
glycosides, such as quercetin and rutin, are excellent photopro-
tectors, but their prevalence in fruits or vegetables is much lower
compared to flavanols (concentrations below 10 mg kg−1) and
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Figure 2. Marcus plot for electron transfer from plant phenols to
carotenoid radical cations shows that flavonoids with strong antioxidative
power were less efficient for regeneration of carotenoids than moderate
antioxidants. For quercetin, rutin, and green tea catechins the standard
free energy change for electron transfer (ΔG0) exceeds the reorganisation
energy (𝜆) for charge distribution in the donor–acceptor transition state
and results in increased activation energy as compared to less exergonic
reactions (e.g. with caffeic acid). As a consequence, slower electron transfer
(Marcus’ inverted region) is observed with carotenoid radical cation degra-
dation as preferred pathway over regeneration.

possibly limits utilisation.206 Flavones like luteolin are found in
herbs, including thyme, green pepper, and oregano, and may
be used for more specific applications in foods. Flavanones are
typical of citrus fruits, with naringenin, hesperetin, and eriodictyol
occurring in grapefruit, in oranges, and in lemons, respectively.
They prevail mostly as glycosides (at the C7 position) and taste
bitter (such as naringin from grapefruit). Isoflavones mainly occur
in soy (and derivatives) and prevail as glycosides of genistein,
daidzein, and glycitein.207 Their unpleasant bitter and astringent
taste practically refutes their use as extracts, although hydrolysis
to the corresponding aglycones may soften organoleptic per-
ception. Anthocyanins and anthocyanidins are common to many
fruits and are particularly important for the colour in berries and
grapes.208 In strawberries, for example, cyanindin-3-glucoside
and pelargonidin-3-glucoside prevail, while in grapes mainly
cyanidin-, pelargonidin-, delphinidin- and malvidin glucosides
and diglucosides are found.209,210 These compounds are excellent
inhibitors of photoreactions, but it is worth considering addition
of a co-flavonoid to stabilise anthocyanidins and anthocyanins
against hydrolysis.

To determine which extract is most suitable for a specific appli-
cation, much will depend on economy, effectivity to inhibit the
consequence of light exposure, and the physical compatibility
of the extract with the matrix. For example, colour stability may
be affected by the flavonoid itself (e.g. with anthocyanins) or by
(photo)oxidised flavonoids, the latter giving rise to yellowish di-
and oligomers.211 This was demonstrated by colour changes in
white wines, which gradually darken upon ultraviolet and vis-
ible light exposure due to interactions between riboflavin and
flavan-3-ols.212 Also availability of the flavonoid in the matrix is key
to effectively protect against light-induced changes. As for bever-
ages, water solubility is essential and favours the use of glycosides,
such as rutin, or flavon-3-ols like catechin and derivatives. Extracts
rich in quercetin and kaempferol, both effective photoprotectors,
are poorly soluble in aqueous systems and are used preferably in
more hydrophobic environments.113 They are excellent inhibitors
of lipid peroxidation (soy bean lecithin) under continuous UV

irradiation, with consumption of the antioxidant, however.213,214

Protection is even more effective in liposomes (e.g. from egg yolk)
as the aprotic microenvironment of the bilayer appears to stabilise
the ESIPT tautomer,215 which results in a very effective light-to-heat
conversion.216 The former illustrates the importance of under-
standing both the physical interaction of flavonoids with food
components as well as the photochemistry affecting the matrix
to determine which flavonoid is most effective to protect against
light-induced changes.

CONCLUSIONS
An estimated 90 million tons of food is wasted annually in Europe
alone, with almost half of it being discarded at retail and consumer
level.217 Among major causes of rejection are aesthetic issues (e.g.
discolouration) and premature spoiling due to inadequate stor-
age or packaging. Next to the economic impact of food wast-
ing by households, retailers and processors, the issue is core to a
larger ethical debate on resource management. In order to reduce
food waste, it is essential to identify all possible culprits affect-
ing quality and to mitigate their effects. Arguably a major fac-
tor affecting food quality, light exposure is perhaps equally influ-
ential as temperature. Despite this pivotal role, remarkably little
effort was put in increasing photostability of foods or beverages.
In this review it has been demonstrated that flavonoids are versa-
tile compounds with peculiar (photo)chemical properties that may
be effective against harmful light-induced changes. As quenchers
of excited sensitisers in bimolecular reactions they prevent typical
type I and type II oxidations, while efficient conversion of photon
energy into harmless heat protects against direct damage by UV
or visible light. Taking into consideration that flavonoids are safe,
cheap (often extractable from food processing waste streams),
abundant, and, as natural compounds, exempt from food addi-
tives certification,218 most likely they are competitive with syn-
thetic preservatives and eventually contribute to the sustainability
of food industry. In combination with a thorough insight in pho-
tochemistry of light-induced changes to select the most effective
quenching route, without doubt these compounds are capable of
protecting food and beverages against undesired effects of light
exposure to prevent premature quality loss.
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