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The differences in the richness and prevalence of human pathogens among different geographical

locations have ramifying consequences for societies and individuals. The relative contributions of differ-

ent factors to these patterns, however, have not been fully resolved. We conduct a global analysis of the

relative influence of climate, alternative host diversity and spending on disease prevention on modern pat-

terns in the richness and prevalence of human pathogens. Pathogen richness (number of kinds) is largely

explained by the number of birds and mammal species in a region. The most diverse countries with

respect to birds and mammals are also the most diverse with respect to pathogens. Importantly, for

human health, the prevalence of key human pathogens (number of cases) is strongly influenced by disease

control efforts. As a consequence, even where disease richness is high, we might still control prevalence,

particularly if we spend money in those regions where current spending is low, prevalence is high and

populations are large.
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1. INTRODUCTION
Pathogens cause roughly one in five human deaths (nearly

11 million per year), are responsible for 51 per cent of

years of life lost globally and have long affected human

demographics (Anderson & May 1991; WHO 2004,

2008). They have also been identified as drivers of

human behaviour (Fincher & Thornhill 2008a; Nettle

2009; Park & Schaller 2009; Preston et al. 2009; Zhu

2009), the politics and political stability of countries

(Thornhill et al. 2009), human fertility (Guegan et al.

2001), global economies (Thornhill et al. 2009) and

more generally the course and dynamics of human history

(Denevan 1992; Morens et al. 2004). Pathogen richness

(the number of kinds), prevalence (number of cases)

and their consequences vary dramatically among regions

(figure 1a), as they have since humans first began to

spread around the world (Wolfe et al. 2007). Yet the

dominant causes of such variation remain incompletely

understood.

Researchers have linked the presence and prevalence of

some pathogens to climate, as has been highlighted in

recent discussions of climate change and disease (Lafferty

2009b). The prevalence of malaria (Pascual et al. 2006;

Chaves et al. 2008), plague (Snall et al. 2009) and

dengue (Cazelles et al. 2005) are affected both by climate
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and changes in climate. Where it has been considered, the

richness of pathogens also correlates with climate or its

proxy (latitude), in humans (Guernier et al. 2004; Jones

et al. 2008), non-human primates (Nunn et al. 2005)

and some bird species (Calvete 2003).

Yet while the distribution, richness and prevalence of

human pathogens covary with climate, other non-climate

factors might also be important (Guernier et al. 2004). In

particular, additional variation in human pathogen rich-

ness might be explained by differences among regions in

the richness of alternative hosts or vectors (Hawkins &

Pausas 2004; Cumming & Guegan 2006). Host richness

could influence pathogen richness in humans in three

non-exclusive mechanisms. A greater number of alterna-

tive host or vector species can decrease the probability

of local extinction of a given pathogen (Hechinger &

Lafferty 2005; Nunn et al. 2005). Alternatively, regions

with greater host richness probably have a higher total

richness of pathogens, such that the species pool of patho-

gens capable of jumping to humans may be higher (Jones

et al. 2008; Pedersen & Davies in press). In this scenario,

host species richness might influence the emergence of

human pathogens rather than the probability of local

extinction. The first two scenarios are cases in which

diversity might beget more diversity. Finally, the patterns

of alternative host species richness may simply capture the

integrated effects of drivers of diversification (e.g. histori-

cal climate, isolation, topography and geographical area)

more effectively than simple measures of modern climate

or geography.
This journal is q 2010 The Royal Society
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Figure 1. Map showing geographical variation in human pathogen richness (a: darker red indicates greater richness; maximum
249) and the regions in which additional spending on disease control might have the greatest effect on human pathogen preva-
lence (c: on a logged scale, darker red indicates more additional spending recommended; maximum $8.5 billion). (b) Scatter
plot of the relationship between human pathogen richness and the richness of birds þmammals and (d) between human patho-

gen prevalence and richness.
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Another possibility—the premise on which public

health spending is based—is that differences in disease

control effort among regions affect the prevalence and rich-

ness of parasites and infectious diseases (Lafferty 2009a,b).

For example, human efforts to control malaria over the last

century have varied between regions, impacting malaria’s

distribution and prevalence (Hay et al. 2004). Finally, the

age of particular habitats or biomes may influence the

diversity of many taxa, with lineages having had less time

to colonize and diversify in younger biomes (Rohde

1992; Rosenzweig 1992). The habitat constituted by

human bodies has been present in some regions longer

than others. Therefore, we might hypothesize that patho-

gen richness would increase, the longer humans are

permanently settled in a region. Over time, pathogens

may have an opportunity to overcome dispersal barriers

(Araujo & Ferreira 2000; Araujo et al. 2008; Moodley

et al. 2009) or even to evolve to colonize humans as a

novel host (Jones et al. 2008). When humans first migrated

into the Americas, they left behind many diseases present

in Europe (Wolfe et al. 2007). On the other hand, many

of those diseases eventually overcame this initial dispersal

limitation and colonized the Americas with catastrophic

consequences (Denevan 1992).

Here we use data from political regions of the world to

construct models of human pathogen richness and preva-

lence that include: (i) climatic and geographical variables

thought to be potentially important for the transmission,

persistence or diversification rates of pathogens; (ii) two

measures of the productivity available to human patho-

gens, human population density and total human

population size; (iii) the richness of two major groups of

alternative hosts for human parasites and diseases, birds
Proc. R. Soc. B (2010)
and mammals; (iv) a measure of disease control effort

(healthcare spending) and (v) a categorical measure of

the time that humans have permanently occupied

particular regions.
2. MATERIAL AND METHODS
We modelled the relationship between spatial variation in

human pathogen richness and prevalence, and various

environmental variables, healthcare spending and human

population.

(a) Data collection

(i) Pathogen richness

We compiled data on the number of human pathogens,

including bacteria, viruses, helminthes and protists in each

country or territory. Data were extracted from the Global

Infectious Diseases and Epidemiology Network (GIDEON)

database (http://www.cyinfo.com) on 15 May 2009. Separ-

ately, we extracted the estimates of the richness of

pathogens with birds and/or mammals as their reservoirs.

GIDEON is a medical database that provides continually

updated data on the regional presence and the status of

pathogens. The database has been used in a variety of

recent studies of the consequences and patterns of pathogen

richness and prevalence (Guernier et al. 2004; Smith et al.

2007; Fincher & Thornhill 2008a,b; Fincher et al. 2008).

Globally, the GIDEON database includes 347 pathogens of

humans. The average pathogen richness per political unit

was 204 (n ¼ 214, range ¼ 180–250).

(ii) Pathogen prevalence

In addition to considering pathogen richness, we also con-

sidered one commonly used measure of prevalence. We

http://www.cyinfo.com
http://www.cyinfo.com
http://rspb.royalsocietypublishing.org/
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used data from Fincher et al. (2008) in classifying prevalence

for all types of each of seven classes of parasites: leishmania-

sis, trypanosomes, malaria, schistosomes, filariae, spirochetes

and leprosy, for a total of 22 pathogens (excluding three

pathogens that occurred in every political region), each of

which accounts for a significant proportion of global

mortality. Each pathogen was coded as endemic (3), sporadic

(2) or not endemic (1)—on the basis of the GIDEON

reports. A single index of prevalence was derived across

disease classes by summing their ranks such that if all

disease classes were endemic in a region, that region would

have a total prevalence of 22 � 3 ¼ 66. In practice, the

greatest prevalence observed for a region was 47, for

Nigeria.

(iii) Climatic and geographical variables

Contemporary environmental variables were obtained from

the WorldClim database (Hijmans et al. 2004) at a spatial

resolution of 18 and extracted using ArcGIS (ESRI 2006).

We integrated the 18 data to produce measures of climatic

variables for the entire political regions. We did this in two

ways. First, we calculated the average of each climatic vari-

able among grid cells by political region. Second, we

calculated the maximum, minimum and range for each cli-

matic variable among grid cells for each political region.

We selected three climatic variables for analyses that are

clearly associated with diversity theory and/or directly

linked to the biology of human pathogens: temperature, pre-

cipitation and actual evapotranspiration (AET). Unlike

temperature and precipitation data, AET data were derived

from MODIS 16 (Mu et al. 2007). Correlations between

variations of these variables and pathogen richness have

been suggested previously (Guernier et al. 2004). Tempera-

ture is implicated as a driver of diversity in metabolic

theory (Brown et al. 2004) and temperature-dependent kin-

etics (Rohde 1992), wherein higher temperatures are

predicted to be associated with faster generation times,

mutation rates and ultimately rates of diversification. Species

energy theory suggests that regions with more productivity,

as measured by net primary productivity or AET, have lower

rates of extinction and hence more rapid diversification rates

(where diversification¼ speciation 2 extinction) (Rosenzweig

1968). Larger geographical areas may also allow the persist-

ence of more species, across a wider range of conditions

(e.g. greater topographic and soil heterogeneity). In addition,

larger areas may have potential direct effects on diversification

rates (Rosenzweig & Sandlin 1997). In turn, the geographical

area of each political region (derived from the CIA World

Factbook; http://www.cia.gov/cia/publications/factbook) was

also included as a potential explanatory variable.

(iv) Human population data

In addition to the external environment, factors that may

influence the pathogen richness include aspects of human

population size and density. Countries or territories with

greater numbers of individuals may be more likely to

record a particular pathogen. Population density is also posi-

tively correlated with disease richness among primate species

(Nunn et al. 2003) and carnivore species (Lindenfors et al.

2007), and epidemiological models suggest that disease

prevalence and spread is heavily dependent on host densities

(Anderson & May 1979). We include as potential explana-

tory variables both human population density (people per

square kilometre) and size in a region. Data on human
Proc. R. Soc. B (2010)
populations and the area of political units came from the

WHO (2004) and, when the WHO database lacked data,

from the CIA World Factbook (http://www.cia.gov/cia/

publications/factbook).

(v) Disease control data

Disease control effort would ideally have a significant impact

on pathogen richness and prevalence. Sufficient data existed

from the vast majority of political units to include the follow-

ing potential explanatory variables in our models (source for

all: WHO 2004): per capita government spending on health-

care (measured both with average exchange rates in US

dollars (USD) and via purchasing power parity (PPP)), per

capita total spending on healthcare (includes non-govern-

ment spending, measured in USD and PPP), general

government spending on health as a percentage of total gov-

ernment spending, immunization rates (we tested four

different proxies: per cent of 1-year olds immunized

with three doses of Hib3 (Haemophilus influenzae type

B) vaccine, per cent of 1-year olds immunized with

three doses of Hepatitis B, per cent of 1-year olds immu-

nized with MCV (Meningococcal conjugate vaccine) and

per cent of neonates protected at birth against neonatal

tetanus).

(vi) Alternative host data

Data on the diversityof birds in each political region were derived

from the Avibase, World Bird Database (http://avibase.bsc-eoc.

org/checklist.jsp?lang=EN), an online database of regional bird

distribution. Mammal data for each political region are from

the NatureServe mammal distribution maps (Patterson et al.

2007). The scale of our spatial analysis is restricted by the data

with the lowest resolution (e.g. coarsest grain size). Although

much finer resolution data are available for birds and mammals,

these data could not be used because the distribution patterns of

the several hundred kinds of human pathogens are more poorly

understood than are the distribution of more than 12 000 bird

species and 4000 mammal species. The fact that warbler species

distributions are better understood than the distribution of

human pathogens is a gap that clearly deserves research

attention.

(vii) Human history data

The longer humans have permanently resided in a region, the

more human pathogens may be present in that region.

Because dates of first human settlement are contentious

and reliable evidence is not available for many regions, we

scored the time since first permanent human settlement in

each region on a five-point scale: 1 ¼ Africa (region of

origin and first settlements); 2 ¼most of Europe, Asia,

Australia, New Guinea (by approx. 40 000–60 000 BP);

3 ¼North America (by approx. 15 000–25 000 BP); 4 ¼

South America (by approx. 1000–5000 years after

North America (i.e. 10 000–24 000 BP). This timeframe

also includes parts of Northern Europe that were covered

in ice during the last glacial maximum and were repopulated

during this time period); 5 ¼most islands (by approx. 1000–

7000 BP).

(b) Statistical analysis

We identified the key predictors and pathways leading to

pathogen richness and prevalence using a three-step

approach. First, we evaluated correlation strengths among

the large set of putative predictor variables to identify the

best subset of variables that demonstrated the strongest

http://www.cia.gov/cia/publications/factbook
http://www.cia.gov/cia/publications/factbook
http://www.cia.gov/cia/publications/factbook
http://www.cia.gov/cia/publications/factbook
http://www.cia.gov/cia/publications/factbook
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correlations (r . 0.25) but captured different axes

of variation (i.e. were not themselves strongly correlated,

r , 0.50) (see electronic supplementary material, figure S1).

Second, we constructed a generalized linear model (GLM)

with Poisson errors for pathogen richness in R (http://www.r-

project.org). To normalize residuals, human population size,

geographical area and per capita healthcare spending (PPP)

were log-transformed. The full model is provided as tables

S1 and S2 in the electronic supplementary material). We

then used a model simplification procedure, removing non-sig-

nificant terms (a¼ 0.05) in a stepwise fashion (Crawley

2002), to explore the relative contributions of the various

terms included in the start model. Next, we generated a

GLM of pathogen prevalence using the same set of initial pre-

dictors. Because pathogen prevalence is influenced by richness,

we also included log (pathogen richness) among the predictor

variables. Standard model criticism was performed to check for

non-constancyof variance and non-normalityof errors (Crawley

2002). We saved model residuals and examined spatial

autocorrelation using Moran’s I correlograms. Since spatial

data are only partially independent, regression approaches

are not fully justified except where spatial autocorrelation in

residuals is insignificant (Diniz Filho et al. 2003).

While stepwise model simplification procedures have been

criticized (Whittingham et al. 2006), there remains no best

method to select among multiple predictor variables without

a priori information (Anderson 2008). Importantly, to avoid

potential type I error (Mundry & Nunn 2009), our modelling

procedure was not used in significance testing but rather to

discriminate among potential causal pathways for the set

of predictors that independently demonstrated strong and

significant correlations with pathogen richness and/or

prevalence (see §3).

Third, we used structural equation modelling to evaluate

casual pathways inferred from our GLMs. We explored all

significant terms retained with our GLM following model

simplification, plus the key climate terms demonstrating

strong univariate correlations with pathogen richness and

prevalence, even when they were non-significant in the

GLM, because previous work suggested climate to be an

important predictor of pathogen richness (Guernier et al.

2004). Because of the difficulty of fitting nonlinear terms

within structural equation models (SEMs) (Kline 1998),

we additionally square-root-transformed richness and preva-

lence, and log-transformed AET and temperature, prior to

model fitting. We compared three models: model one

included direct and indirect effects of climate on pathogen

richness and prevalence, as well as direct effects of human

population size, disease control effort and mammal plus

bird species richness. Model two excluded the non-signifi-

cant pathways from within model one. Model three

included only the strongest correlations inferred from the

GLMs and SEM model two. These models were chosen to

explore the relative importance of key predictor terms

along a gradient of decreasing path complexity. Models

were contrasted using goodness-of-fit statistics and Bayesian

information criterion (BIC), which is related to, but pena-

lizes additional parameters more strongly than, Akaike’s

information criterion (AIC). Model fitting was performed

using the SEM R-library.

Last, because pathogen prevalence varies greatly from

country to country, any effort to reduce total global preva-

lence should target particular regions. Deciding which

regions to target will depend on the factors that determine
Proc. R. Soc. B (2010)
the magnitude of pathogen prevalence in a particular

location. Our GLM results identify these key factors that pre-

dict prevalence in a location. In turn, we explored the impact

that a minimal increase in healthcare spending would have on

global pathogen prevalence given the relationship between

prevalence and the predictor variables in our final GLM

(see §3). We used a ‘greedy’ algorithm to apportion $18

billion (US dollars, approx. 1% of annual private spending

on healthcare (WHO 2008)) among regions in $100 000

increments, so that each additional increment maximized

per capita reduction in global prevalence:
P214

i¼1ðnipiÞ; where

ni is the human population size of country i and pi is the

expected prevalence from the GLM.
3. RESULTS
Pathogen richness and prevalence are strongly correlated

with mammal plus bird species richness, geographical

area, human population size, disease control effort and

various climate variables related to temperature, precipi-

tation and productivity (electronic supplementary

material, tables S1 and S2). The number of mammal

plus bird species in a region is the strongest single corre-

late of pathogen richness (r ¼ 0.85), whereas disease

control effort is the strongest correlate of prevalence

(r ¼ 0.69) after pathogen richness.

Our full GLM, including all strongly correlating terms

(§2), explains over 82 per cent of pathogen richness

among geopolitical regions (estimated as per cent

deviance explained; electronic supplementary material,

table S1). However, by removing non-significant terms

from the model, we show that just three variables;

number of bird plus mammal species, disease control

effort and total human population, are sufficient to

explain approximately 82 per cent of the variation in

pathogen richness (GLMs; table 1 and figure 1b). Despite

evidently strong spatial autocorrelation in both response

and predictor variables, we found no evidence of residual

spatial autocorrelation (electronic supplementary

material, figure S2), except at distances of less than

400 km, indicating that almost all variation in pathogen

richness is explained by predictor variables included

within our model.

Pathogen prevalence is also well predicted by our

GLMs. The reduced model, which includes disease con-

trol effort and two aspects of climate (maximum

temperature and minimum AET), explains variation in

prevalence among regions as well as the full model

which includes additional terms (83% deviance explained

for both models; compare table 2 and table S2 in the elec-

tronic supplementary material). Because parsimony (and

information theory) favours models with fewer par-

ameters, we refer to this reduced model as our

‘favoured’ model.

Our results both for pathogen richness and prevalence

were robust to the alternative proxies of disease control

effort (electronic supplementary material, tables S3 and

S4). Total human population size was a better predictor

in our models than human population density (not

shown).

By fitting structural equation models, we show that

bird plus mammal richness has the strongest direct

effect on pathogen richness, whereas the direct effects of

climate and healthcare spending are weak (figure 2a).

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
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Table 1. GLM of pathogen richness: pseudo-r2 ¼ 0.82,

AIC ¼ 1367.5.

coefficient estimate z-value p-value

intercept 5.213eþ00 173.633 ,2e216

bird þmammal
richness

8.501e205 5.959 2.53e209

health spending (per
capita)

28.131e203 22.484 0.012985

total human

population

1.138e202 3.884 0.000103

Table 2. GLM of pathogen prevalence: pseudo-r2 ¼ 0.83,

AIC ¼ 998.57.

estimate z-value p-value

intercept 24.967eþ00 22.966 0.003021
health spending (per

capita)
23.452e202 23.485 0.000493

total human
population

22.734e202 22.341 0.019236

maximum
temperature (8C)

1.158e203 4.345 1.39e205

minimum AET 22.893e205 22.946 0.003220
pathogen richness 1.623eþ00 4.939 0.003220
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By contrast, pathogen prevalence was most strongly

affected by spending on disease control and pathogen

richness, with additional effects owing to climate and

human population size, as suggested by the GLMs. A

simplified model, with a linear pathway linking mammal

plus bird species richness to pathogen richness, which

in turn drives pathogen prevalence, is favoured by good-

ness-of-fit statistics (adjusted goodness-of-fit index ¼

0.44 and 0.98, BIC ¼ 156.15 and 24.62 for the model

including all significant paths and the three-parameter

model, respectively). However, it is not possible to

explore all possible path combinations without inflating

type I error rates.

When pathogens with bird versus mammal reservoirs

are considered separately, we find that the number of

mammal species is the stronger predictor for both patho-

gen types (figure 2b). Notably, mammal species richness

is better than bird species richness at predicting

richness of pathogens with a bird reservoir (electronic

supplementary material, tables S5 and S6).

The relationship between disease control effort and

prevalence is linear on a semi-log plot, such that as

effort increases returns on that effort diminish (electronic

supplementary material, figure S1). Although it was not

possible to differentiate clearly between our alternative

proxies for disease control effort (electronic supplemen-

tary material, tables S3 and S4), our analyses suggest

that the most efficient strategy for reducing per capita dis-

ease prevalence is to concentrate additional healthcare

effort in a small subset of countries (figure 1c). With an

increase in healthcare spending of just 1 per cent ($18

billion per year) targeted in the regions indicated in

figure 1c, disease prevalence could be reduced by several

per cent for over two billion people.
Proc. R. Soc. B (2010)
4. DISCUSSION
We find that most of the variation in pathogen richness

from one political region to the next is explained by

mammal and bird richness, health spending and total

human population. In itself, mammal plus bird richness

explained most (72%) of the variation in pathogen

richness. By contrast, pathogen prevalence is influenced

by pathogen richness and disease control efforts, as well

as the direct effects of climate and total human

population.

Given the strong relationship between pathogen rich-

ness and bird and mammal richness, one can predict the

number of kinds of pathogens that will be present simply

by knowing the number of bird and mammal species pre-

sent in a country. We can identify at least three

mechanisms that may link pathogen richness and bird

and mammal richness. The first possibility is that human

pathogens, birds and mammals have all responded to simi-

lar drivers of diversification. Bird and mammal diversity

tends to increase with primary productivity, whether as

measured directly or in the form of AET (Hawkins et al.

2003). Productive environments are thought to have a

reduced rate of extinction, whether of pathogens or hosts

(Wright 1983), while hot, productive areas are also pre-

dicted to offer higher mutation rates, faster generation

times and, as a consequence, accelerated speciation rates

(Rohde 1992). Larger geographical areas typically offer,

in addition to more hosts, a wider variety of habitats and

climates (MacArthur & Wilson 1967). We included

direct measures of primary productivity and area in our

models. However, bird and mammal diversity may also

be influenced by topographic complexity and isolation

(Davies et al. 2007). Topographic complexity can increase

habitat diversity and in turn increase species richness. Iso-

lation reduces the chances of species arriving and/or new

propagules rescuing the population if they go extinct

(MacArthur & Wilson 1967). It is impossible to include

in any model all of the environmental variables and their

various transformations that potentially influence richness

and so perhaps bird and mammal richness are, in a way,

a proxy for the complex effects of many interacting

environmental drivers.

A second possibility is that regions with high bird and

mammal richness have higher total pathogen richness,

and hence a higher probability of the origin or host

switch of a pathogen that also or newly affects humans.

In this model, much like the model recently offered to

explain correlations between consumer and producer

richness (Jetz et al. 2009), diversity begets diversity. The

third possibility is that mammal and bird richness directly

influences human pathogen richness by serving as alterna-

tive hosts. If either of the latter two links were the primary

cause of the patterns we observed, we would expect to see

pathogens with bird reservoirs best predicted by bird rich-

ness and pathogens with mammal reservoirs best

predicted by mammal richness. Instead, mammal rich-

ness is the stronger predictor of the richness of

pathogens both with non-human mammalian reservoirs

and those with non-human bird reservoirs (electronic

supplementary material, tables S5 and S6). Since no bio-

logical link is expected between these two variables, the

correlation implies that mammal richness captures

additional variables important for pathogen diversity

rather than causing such patterns.

http://rspb.royalsocietypublishing.org/
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Figure 2. SEM illustrating standardized coefficients for pathways among variables retained within the GLMs. Arrows indicate
the direction of causality. Double-headed arrows indicate modelled covariance structure. (a) Coloured arrows represent the
significant pathways from the GLMs of disease richness (red) and disease prevalence (blue). The pathway from AET to disease
richness is not supported in the SEM or GLMs. Pathways in bold represent the SEM favoured by goodness-of-fit statistics

(adjusted goodness-of-fit index ¼ 0.44 and 0.98, BIC ¼ 156.15 and 24.62, for the full model (all significant paths shown)
and the favoured three-parameter model, respectively). (b) Coloured arrows represent the pathways retained in the minimum
adequate models for the GLMs of richness of pathogens with mammal (orange) and bird (green) reservoirs. Values adjacent to
paths represent standardized coefficients, asterisks indicate p-values from GLMs: ***p , 0.001, **p , 0.01, *p , 0.05.
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Last, we mention one intriguing alternative expla-

nation for the correlation between pathogen richness

and the number of mammal and bird species in a

region: pathogen diversity might drive diversity of host

clades. High pathogen richness might depress host popu-

lation densities, thereby inhibiting competitive exclusion

(Janzen 1970; Connell 1971; Fincher & Thornhill

2008b) or increase the pace of evolution and species

diversification via co-evolutionary arms races

(Dobzhansky 1950). Studies in primates support a link

between number of pathogens and number of species in

host clades (Nunn et al. 2004), suggesting a link between

pathogens and host diversification. However, additional

data on the distribution of non-human parasites are

required to evaluate this hypothesis more fully.

Therefore, although there is a strong statistical

relationship between bird and mammal diversity and

pathogen richness, we cannot assume that the richness
Proc. R. Soc. B (2010)
of alternative host species causes pathogen richness.

More research is needed to uncover any causal links

among these variables and the mechanisms that define

the relationships. If we are right that bird and mammal

richness indicate rather than cause human pathogen rich-

ness, there is no conflict between conservation and

human health. In addition, given the incredible extent

of ecosystem services humans receive from biological

diversity (Costanza et al. 1997), reducing bird and

mammal diversity in the hopes of reducing human

pathogen richness would be unwarranted.

Compared with the influence of bird and mammal

richness, the effort countries make on disease control is

poorly correlated with human pathogen richness. The

best models of richness do not include disease control

measures. Although we cannot preclude that other

measures of disease control effort would have explained

more variation, environmental variables alone account

http://rspb.royalsocietypublishing.org/
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for the vast majority of the variation in pathogen richness.

In theory, regional or even global eradication of diseases

can be cheaper in the long run than more local disease

control (Ottesen et al. 2008), but in practice eradication

successes are rare, with just one example of global

eradication of a disease, that of smallpox (de Quadros

2002).

The effect of disease control effort was far greater on

human pathogen prevalence (table 2) than on richness.

In light of climate change, ecologists have tended to

emphasize the links between climate and the prevalence

of individual diseases (McMichael et al. 2006; Senior

2008; Semenza & Menne 2009), but recent reviews

suggest the possible influence of other factors, including

disease control measures (Reiter 2001; Gould & Higgs

2009; Lafferty 2009b; Ostfeld 2009). We found that cli-

mate had a direct effect on pathogen prevalence, but

the impact was minor relative to the influence of disease

control efforts. The idea that disease control can influ-

ence prevalence is the basis of billions of dollars of

public health aid and medical care spent every year on

contagious diseases. Critically, disease control effort can

influence pathogen prevalence even if it does not affect

pathogen richness. For example, while massive pro-

grammes to control malaria reduced malaria prevalence

throughout the USA, it had no effect on disease richness;

malaria is still present in the USA (Reiter 2001). In our

analyses, the USA and Russia (with total annual health-

care spending of $2 trillion and $50 billion, respectively;

WHO 2008) are interesting case examples. In both

countries, pathogen richness is high and prevalence is

relatively low (figure 1d), despite substantial differences

in annual healthcare spending ($2 trillion and $50 billion,

respectively). Such differences between pathogen richness

and prevalence exemplify the enormous challenges disease

eradication faces. This issue is simultaneously hopeful

and worrisome for public health planning. For the vast

majority of pathogens where eradication has failed, efforts

at prevention can reduce prevalence in the short-term,

but any reductions in healthcare efforts can lead to a

resurgence of disease cases (e.g. dengue; Phillips 2008).

The time humans have lived in a region was not a sig-

nificant predictor in either of our GLMs. However, Africa

has marginally greater disease prevalence than other

regions (including African versus non-African countries

as a binary variable in the GLM explains an additional

approximately 3 per cent of the variation in prevalence;

DAIC ¼ 5.6). One might expect such a pattern since as

humans migrated out of Africa they shed some of their

pathogens (Araujo et al. 2008). However, other expla-

nations are also possible. Africa may suffer from the

persistent effects of many years of low spending on dis-

ease control, rather than just the effects of current

spending. Alternatively, disease prevalence may be elev-

ated because of enhanced susceptibility owing to the

high incidence of human immunodeficiency virus or the

presence of a greater number of more closely related pri-

mates (particularly apes) (Pedersen & Davies in press).

Regardless of its cause, the pathogen prevalence in

Africa is greater than expected on the basis of its bird

and mammal richness and climate alone.

Our analyses suggest that the most efficient strategy for

reducing per capita global pathogen prevalence is to

concentrate additional healthcare effort in particular
Proc. R. Soc. B (2010)
countries based on the key predictors of pathogen

prevalence, population size and current healthcare spend-

ing patterns. Assuming the relationship between pathogen

prevalence and its key predictors (healthcare spending,

pathogen richness, human population size, temperature

and AET) modelled in table 2 and a modest 18 billion

dollar additional global spending, representing just 1 per

cent of the total private spending on healthcare per

annum (WHO 2008), spending would be most effectively

focused on regions with large populations (e.g. India and

Pakistan) and also areas with almost non-existent

spending on healthcare, such as Madagascar and much

of eastern Africa (figure 1c). Our models predict that

such a targeted effort would be able to reduce global

pathogen prevalence by several per cent for over two

billion people. However, these calculations assume

monies are apportioned randomly among potential local

strategies and programmes (which in the absence of

global plans is not unrealistic). More focused efforts on

easier to control pathogens, such as filariasis, which can

be treated with a combination of two relatively cheap

drugs (Ottesen et al. 2008), might yield even greater

impacts on prevalence and ultimately human survival.

We may view ourselves as apart from nature, but our

parasites and infectious diseases appear to have not

noticed the shift in our worldview. Human pathogens

remain subject to the same influences as the rest of biodi-

versity, despite our best efforts to influence them

otherwise. Humans who live in regions with low biological

diversity of pathogens can attribute that low diversity not

to the success of public health, but rather to the migration

of their ancestors to a climate that is relatively cool and

dry, and where fewer alternative hosts and disease vectors

exist. Except for cases in which we completely eradicate

widespread diseases, we are unlikely to be able to

change patterns of pathogen richness dramatically

(except by changing patterns of climate). On the other

hand, pathogen prevalence is much more sensitive to vari-

ation in health spending among regions. These two

results together offer some hope in terms of controlling

pathogens and their effects, both today and in a warmer

future world. Pathogen richness, even when high, does

not guarantee high prevalence, because of the potential

impact of disease control effort. From the perspective of

reducing global pathogen prevalence, we would argue

that additional disease control effort would be best

focused in those many regions where prevalence remains

high, populations are large and healthcare spending per

capita is relatively low. Because pathogens are not

restricted by political boundaries and local epidemics

can rapidly transform into global pandemics, reducing

prevalence in one part of the world will also benefit

other parts of the world. While it is clear that aspects of

the distribution of pathogens have, in the past, affected

all aspects of human life, the degree to which these patho-

gens will affect us in the future depends on how well we

mediate their prevalence.
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