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A B S T R A C T

In order to ensure the food safety, risk managers may implement measures to reduce human exposure
to contaminants via food consumption. The evaluation of the effect of a measure is often an overlooked
step in risk analysis process. The aim of this study was to develop a systematic approach for determin-
ing the effectiveness of mitigation measures to reduce dietary exposure to chemical contaminants. Based
on expert opinion, a general framework for evaluation of the effectiveness of measures to reduce human
exposure to food contaminants was developed. The general outline was refined by application to three
different cases: 1) methyl mercury in fish and fish products, 2) deoxynivalenol in cereal grains, and 3)
furan in heated products. It was found that many uncertainties and natural variations exist, which make
it difficult to assess the impact of the mitigation measure. Whenever possible, quantitative methods should
be used to describe the current variation and uncertainty. Additional data should be collected to cover
natural variability and reduce uncertainty. For the time being, it is always better for the risk manager to
have access to all available information, including an assessment of uncertainty; however, the proposed
methodology provides a conceptual framework for addressing these systematically.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Risk management measures are an important tool in ensuring
the safety of food. A variety of approaches can be applied, ranging
from consumer advice, codes of practice and, ultimately, regulato-
ry limits for the maximum permitted concentration of chemical
contaminants in food. Such measures are intended to reduce con-
sumer exposure to contaminants in the food that may occur either
naturally e.g. mycotoxins, result from environmental contamina-
tion e.g. heavy metals, or are formed during food processing e.g.
acrylamide and furan. The determination of the success of any risk
management measure can often be overlooked in the risk analysis
process but is as important a step as the risk assessment or the risk
management intervention itself. Indeed, the outcome of any risk

management measure should feed into a revised risk assessment.
Assessing the impact of risk management measures, if done cor-
rectly, can lead to more effective risk reduction by identifying
measures that are having the biggest impact or no impact at all.

The effectiveness of a risk management measure is typically mea-
sured by changes in the intake of a particular contaminant by
consumers or certain subgroups within the consumer population
which can involve changes in dietary consumption or a reduction
in the concentration of a particular contaminant in the foodstuff itself.
However, there can be many sources of variation and uncertainty
involved – from measuring the chemical contaminant itself to the
availability of consumption data – that will have an impact on any
conclusions drawn. It is also important to recognise that some in-
dividuals will be impacted more than others, and the inter-individual
variability must also be considered. These uncertainties should be
identified and their impact should be considered in the context of
both the exposure assessment and the conclusions drawn on the
success of the exposure mitigation measure. It is also becoming
evident that some risk management measures can have second-
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ary or unintentional consequences. To include such consequences
may require additional consideration and the application of ap-
proaches like risk–benefit analysis.

The aim of the current study was to develop a science based ap-
proach for determining the effectiveness of mitigation measures on
dietary exposure to chemical contaminants in food.

2. Methodology

A general framework for estimating the effectiveness of mitigation measures to
reduce human exposure to food contaminants has been developed. The frame-
work was assessed and refined using three different case studies related to certain
contaminants in certain food products. The following case studies were chosen so
that they cover chemical contaminants having a different nature of occurrence, and
the product was deemed very relevant for presence of the particular contaminant:
1) Methyl mercury in fish and fish products, 2) Deoxynivalenol in small grain cereals,
and 3) Furan in heat treated foods. Methyl mercury in fish and fish products was
selected because of the variation of presence of this contaminant within different
species, and the potential high exposure of high fish consumers. The balance of risks
and benefits to different sub-populations through their consumption of oily fish is
of particular interest, in order to assess what is the best guidance for consumers.
Deoxynivalenol in cereal grains was chosen because of the natural occurrence of this
contaminant and the large annual variation in the presence and concentrations of
this mycotoxin in cereal grains. Furan was chosen because this compound is only
formed during heat treatment of food products.

The three case studies have been completed to look at the types of dietary mit-
igation measures that have been or could be used and the challenges associated with
assessing the effectiveness of these measures.

3. Results and discussion

3.1. General framework

The general framework for estimating the effectiveness of mit-
igation measures to reduce human exposure to food contaminants
is presented in Fig. 1. The scheme and results of its application to
the three case studies is further detailed in the following sections.

3.1.1. Risk assessment
The basis for any risk management intervention should be a risk

assessment demonstrating the need to reduce dietary exposure. The
need to reduce dietary exposure may apply across the population
or may be targeted at certain population subgroups e.g. pregnant
women. The risk assessment may have resulted in a health based
guidance value such as a Tolerable Daily Intake (TDI) or, in the case
of substances that are both genotoxic and carcinogenic, a margin
of exposure (MoE) with – if needed – a recommendation to reduce
exposure to as low as reasonably achievable, the so-called ALARA
approach. The challenge with ALARA often is in defining what is “rea-
sonably achievable”. In preparing the exposure assessment a number
of approaches may be used from simple deterministic approaches

to more complex probabilistic modelling. If the contaminant of
interest is found in several dietary sources then conservative (worst
case) intake scenarios may be used or more detailed modelling ap-
proaches that give more realistic intake estimates. Any intake
assessment has a number of associated uncertainties. The main
problem is that the collection of data on food consumption and on
the presence of nutrients/contaminants is expensive and, there-
fore, is often limited. This leads to (sampling) uncertainties, as small
datasets are not fully representative of the true distributions (of food
consumption and/or contaminant concentrations) of all (sub)popu-
lations concerned. Risk is typically associated with intake values
occurring in the extreme tails of the distributions. Consumption
diaries are often used to capture dietary habits. Typically these diaries
cover a short period, e.g. 1–7 days, for around 1000–2000 individu-
als, but investigations using intake diaries are not regularly updated.
Problems can arise when rarely consumed items are of interest, or
if more detailed patterns are required such as combinations of foods
or consumption amongst specific subpopulations, as these will not
be well represented. Assumptions are necessary in practice, such
as extrapolating from countries/sub-populations/seasons for which
information is available, and assuming typical or average levels for
model parameters rather than accounting for the true range of vari-
ation. Sampling and measurement uncertainties and simplified
model approximations also give rise to uncertainties (Kennedy, 2010).
These uncertainties are being made more and more explicit in such
assessments (EFSA, 2012a) and must be carefully considered when
looking at the impact of any dietary exposure mitigation ap-
proach. It is important to consider quantifying the uncertainties in
both measured concentrations of the contaminant and consump-
tion data and to generate confidence (or credible) intervals around
those exposure estimates. More research is required to quantify
complex uncertainties, including the joint distribution of contami-
nants in cumulative assessments or multivariate modelling of food
combinations (Kennedy, 2010). These are relevant for assessing sec-
ondary impacts of dietary risk mitigation measures (e.g. likely
replacement foods for assessing secondary impacts) but are often
unquantified in standard models. The impact of unquantified un-
certainties may be evaluated using expert judgement (EFSA, 2006).
The same approach should be applied when repeating the intake
assessment after the mitigation measures have been applied.

3.1.2. Control measure(s)
The appropriate risk management or dietary intake mitigation

measure will be determined based on the occurrence of the con-
taminant of concern, the processes that lead to its presence in food,
and levels of consumption of foods containing the substance. In some
cases the measure can be the advice to either the consumer (e.g.
in the case of consumption of fish containing methyl mercury), or
to growers and processors. For growers and processors this advice
may take the form of good agricultural practice or good manufac-
turing practices. Similarly, toolboxes may be developed containing
a number of approaches that can be used to reduce contaminant
levels. This approach has been taken for process contaminants such
as acrylamide (FoodDrinkEurope, 2014). In some cases, regulatory
limits may be put in place to prevent food with high levels of con-
tamination from entering the food chain.

For certain contaminants the goal of the exposure mitigation
measure may be clear, e.g. to reduce human exposure below the
appropriate health based guidance value such as a TDI. A related
goal may be to reduce levels of a contaminant in food to the
maximum concentrations specified in legislation. However, for con-
taminants for which the ALARA approach is used the challenge can
be in determining when a reduction in exposure is adequate. The
MoE has been developed as a mechanism for prioritising contami-
nants that require risk management measures and can provide some
guidance on when exposure reductions may be considered

Fig. 1. A stepwise approach to assess the application and impact of any dietary ex-
posure mitigation measure(s) to chemical contaminants in food.
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adequate. EFSA has advised that contaminants with a MoE of <10,000
are not a priority for action (EFSA, 2012b).

3.1.3. Primary and secondary consequences
The primary or intended consequence of any control measure

is to reduce consumer exposure to the contaminant of concern. Some
risk management measures are aimed at directly reducing the level
of a contaminant in a food, whereas others aim to change con-
sumption behaviour e.g. eating smaller portions or less frequently
a certain food item. They may be targeted at certain population
groups rather than the entire population, may aim to reduce acute
exposure, e.g. from a single serving or portion, or to reduce chronic
exposure over time.

Risk management measures could have secondary conse-
quences. Such indirect consequences should be considered before
implementing a risk management measure. Could the measure lead
to changes in concentrations of other substances in the food which
may have harmful or beneficial effects? What could be the impact
of changing consumption patterns on the (micro)nutrient intake?
Is it likely that consumers may substitute one food with another
and what could be the impact of that in terms of nutrient intake?
Changes may occur in the organoleptic or aesthetic qualities of a
food product as a result of a control measure and this can also impact
consumption habits. Answering questions about possible second-
ary consequences requires a detailed understanding of the total diet
across the population and the net health impact of combinations
of compounds and potential effects. These are extremely challeng-
ing problems, and efforts to address them have been limited so far,
e.g. see the Brafo project (Hoekstra et al., 2012), the Qalibra project
(Hart et al., 2013) or the Beneris project (Leino et al., 2013). Hart
et al. (2013) describe the Qalibra project (Quality of life – inte-
grated benefit and risk analysis) which proposed a general approach
to calculate uncertainty and variability in human exposure to various
compounds and to characterise the resulting overall health risks and
benefits. Aggregation is achieved through the use of the disability
adjusted life year (DALY) measure that can combine multiple pos-
itive and negative health effects. Qalibra can be used to consider
DALYs lost by a population of individuals under a range of hypo-
thetical consumption scenarios.

3.1.4. Control measure effectiveness
An essential part of assessing the impact of mitigation mea-

sures to reduce dietary exposure is the collection of appropriate
baseline data before the control measure is implemented. However,
there may be sources of variation (e.g. temporal or spatial), imply-
ing that data need to be collected for several months or years under
different conditions and in different regions. Only in this way full
insights into the inherent variability in the data can be obtained,
allowing a clear assessment of any further steps required to accu-
rately assess the impact of a risk management measure, given this
inherent variability. A good example is the mitigation of high my-
cotoxin concentrations in cereals since these contaminants are
known to vary over time and place (see case study). Other sources
of variability or uncertainty may exist in sampling strategies used
to monitor control options. Careful consideration should be given
to these points and appropriate refinements made e.g. targeting rel-
evant foods or regions, or increasing the frequency of sampling or
sensitivity of the methodologies used. With limited resources, it is
usually not feasible to monitor impacts across all levels of variabil-
ity. Total diet studies (TDS) provide a practical solution for assessing
overall average trends in dietary intakes of nutrients and contami-
nants. For a given country, TDS consider broad food groups separately,
e.g. fish, dairy, meat. For each group, TDS involves collecting mul-
tiple items from the market, representing the mix of specific foods
and amounts generally consumed. Ideally, these are sampled from
a range of locations and times of year to account for realistic

variation. The collected food items are then prepared and cooked
in a standard way and then pooled into single homogenous samples
per food group. The aim is to measure average nutrients and con-
taminant intakes from samples that are typical of the food group
for the country, and which accounts for realistic processing effects
up to the point of consumption. The pooled samples are analysed,
which is more economical and representative for an average intake
as consumed. TDS allows for changing dietary and preparation habits,
or any other emerging issues, e.g. see Rose et al. (2010). For certain
contaminants the sources of uncertainty may be so large when it
comes to determining intake via the diet that it may be necessary
to consider utilising biomarkers as a more reliable estimate of ex-
posure or obtaining more accurate information before repeating the
assessment. For example, detailed consumption data of less-
consumed species of fish containing high levels of methyl mercury
may not be captured in food consumption surveys, so refined data
collection is required.

An important consideration is whether or not the impact of the
mitigation strategy can be assessed within the framework of the
original risk assessment that gave rise to the need to mitigate in
the first place. For example, an exposure assessment may be based
on worst-case assumptions using upper percentiles of consump-
tion and chemical occurrence, but the mitigation strategy may be
to reduce exposure on average. In this case, the reduction in average
exposure levels cannot typically be assessed under worst-case as-
sumptions. It may be possible to assume an intake distribution and
use the value of the extreme tails, recognising that there would be
a level of uncertainty. In some cases it may be challenging to measure
the impact of a strategy on exposure within the original risk as-
sessment population/parameters and, therefore, difficult to determine
if the exposure mitigation strategy was appropriate to begin with.
A significant period of time is usually required before the impact
of the dietary mitigation measure can be properly assessed. During
that time period new issues or data may emerge, e.g. health based
guidance values may be updated or new food consumption surveys
may be carried out to reflect changes in food consumption. Addi-
tionally, technologies may change or improve e.g. improvement in
analytical techniques. More information may emerge on sources of
variation in levels of a contaminant. The uncertainties associated
with the exposure assessment change as further information
emerges. It is important to document and assess any changes in the
new exposure assessment and to consider the impact they may have
when reaching an overall conclusion on the impact of the expo-
sure mitigation measure.

Sensitivity analysis can be used to consider the impact of mit-
igation measures, even before they are put in place. The most flexible
approach is to employ modelling. As data on actual impacts are
almost never available before changes are made, this is usually the
only option prior to the mitigation. In a population-based dietary
exposure assessment involving multiple foods and over 1,000 con-
sumers, it can be challenging to do a comprehensive global sensitivity
analysis because of the high number of inputs. What is typically
done is that the drivers of exposure are assessed and relative con-
tributions of different sources considered. This in turn points to
strategies for exposure reduction in a quantitative way. Similarly,
the model can be run with various ‘what-if’ configurations to show
how hypothetical situations will play out. Examples are used in
the Qalibra, Brafo, and Beneris studies cited above. Modelling studies
can also be used to investigate which uncertainties have the great-
est impact on the result (e.g. as done by Kennedy and Hart (2009),
Kennedy (2010), and Slob et al. (2010)). The simplest option is to
compare alternative methods, with different uncertainty compo-
nents included or excluded. Typically before any conclusions can
be drawn as to the effectiveness of dietary exposure mitigation
measures, a revised risk assessment may be required after the mea-
sures have been implemented. New data may have emerged on
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the hazard characterisation side and these should be included in
the assessment along with the revised exposure assessment. As
discussed above it may be possible to use sensitivity analysis
to determine what mitigation measures are having the greatest
impact and which are having little or no impact. This can inform
the next stage of the risk management approach. It is important
to include in the conclusions the level of uncertainty associated
with the assessment and suggestions for reducing the level of
uncertainty.

3.2. Case studies

3.2.1. Methyl mercury in fish and fish products
3.2.1.1. Introduction. Methyl-mercury (MeHg) occurs through natural
and anthropogenic processes, and is present in the human diet,
mainly in fish and seafood products. Because the compound accu-
mulates in the tissue of fish, concentrations tend to be highest in
the larger predatory fish higher up the food chain such as shark,
swordfish and tuna. MeHg is a neurotoxin that affects the devel-
oping central nervous system in the unborn child. MeHg, as
measured in hair, is used as a biomarker for human intake via food,
and has been used to link childhood IQ with maternal intake (Cohen
et al., 2005).

3.2.1.2. Risk assessment. Published risk assessments and mitiga-
tion efforts related to MeHg in the diet have focused on women
of childbearing age and the impact on neurodevelopment of the
child. Risk assessments are primarily based on epidemio-
logical studies of cohorts, e.g. as held in the Faroe Islands and the
Seychelles Child Development Study (Myers et al., 2007). In these
studies, biomarkers such as maternal hair are linked with child
neurological function/IQ. Associations with cardiovascular
disease were addressed by JECFA (FAO/WHO, 2007) and found to
be inconclusive.

EFSA (EFSA and Panel on Contaminants in the Food Chain (EFSA,
2011c)) performed an assessment of risk based on data submitted
by 4 countries: Germany, Spain, Czech Republic and Slovakia. MeHg
was analysed in 1083 samples for the ‘Fish and other seafood’ FoodEx
category. FoodEx is a food classification system developed to allow
EU countries to have standardised descriptions of food at different
levels of aggregation, from broad categories such as bread, meat,
fish, etc. through to individual foods (EFSA, 2011a). Like the earlier
JECFA assessment (FAO/WHO, 2007), EFSA (EFSA, 2012a) also re-
ported that evidence for potential health effects, other than
neurodevelopmental effects, was inconclusive. A tolerable weekly
intake (TWI) of 1.3 μg/kg b.w. MeHg, expressed as mercury, was es-
tablished by the CONTAM Panel (EFSA, 2012c). This TWI was based
on new data on the BMDL05 (lower confidence limit of a one-sided
95% confidence limit on the benchmark dose) from the Faroese
cohort one at age 7 years. For comparison against this TWI, an as-
sessment of current exposure levels in various population groups
was carried out by taking the mean concentration per fish type and
averaging the implied intake per person-day using dietary con-
sumption surveys (EFSA, 2011c). Finally, the average daily intake
per person was calculated empirically and summaries of the pop-
ulation distributions were investigated for defined sub-populations
of interest. This is the observed individual mean (OIM) method for
calculating usual intakes. No appreciable differences were found in
the intake distribution of women aged 18–45 as compared to the
general adult population. A further refinement was made by con-
sidering fish consumers only, and taking the 95th percentile intake
within each population group. Intake in these groups was found to
be highest amongst children, with the dietary exposure of high
and frequent consumers varying from a minimum MB (middle

bound)1 of 0.54 μg/kg b.w. per week in elderly to a maximum MB
of 7.48 μg/kg b.w. per week in children aged 3–10. The higher ex-
posure in children amongst fish consumers was explained by their
higher food consumption in relation to their body weight. The mean
dietary exposure was found to be below TWI in all age groups, except
in toddlers and children in some surveys. However, the 95th per-
centile exposures were close to or exceeded the TWI for all age
groups. For high consumers of fish meat the TWI may be ex-
ceeded by up to approximately six-fold. This group may include
pregnant women. The CONTAM Panel also emphasised the need to
consider the impact of any control measures on the beneficial effects.

A similar risk assessment was carried out by Zeilmaker et al.
(2013) who considered the exposure to MeHg in the Dutch popu-
lation aged 15 + together with a database of MeHg concentrations
of various fish species in the Belgian market (Sioen et al., 2007). This
study suggested that consuming 100 g of fish per day would have
the greatest impact on reduced IQ of the woman’s offspring if the
fish was exclusively swordfish, pike, or tuna. For many other fish,
this hypothetical scenario would result in a much smaller impact.
The study of EFSA (EFSA, 2012c) is more realistic in the sense that
it accounts for realistic amounts of each species consumed.

3.2.1.3. Control measures. The main control measure that has been
used for methyl mercury is dietary advice aimed specifically at preg-
nant women in regard to fish consumption. The first ever published
advice on MeHg was from the US Environmental Protection Agency
(EPA) and Food and Drug Administration (FDA) in 2004. The main
recommendations were for pregnant women, nursing women and
children to avoid certain species of fish and to restrict consump-
tion to an average of two meals a week of low mercury varieties
of fish (US FDA, 2013). The UK NHS website (UK NHS, 2013) says
that pregnant women should avoid shark, swordfish, marlin, and
also limit the intake of oily fish such as tuna, salmon and trout. The
other risks in oily fish are mainly due to pollutants such as PCBs
and dioxins. A recent review article by Silbernagel et al. (2011) pro-
vides information for physicians on preventing overexposure to
MeHg due to fish consumption, and pregnant women or people who
consume fish more than once a week are advised to choose low
mercury fish species.

In the Qalibra project (Hart et al., 2013), the scenario consid-
ered was that all adults would follow a recommendation to consume
200 g of oily fish per week, based on the general advice to consume
two portions of oily fish. This was based on the assumption that
the beneficial effects from oily fish would generally be at least as
important as the risks, so everyone would accept the advice and
no individuals would actually reduce their intakes if they were
already consuming more than 200 g.

3.2.1.4. Primary and secondary consequences. Data are not always
available on the consequences of current advice, so assumptions on
these consequences have to be made. The target audience for risk
mitigation is pregnant women. If the control measure is advice to
minimise consumption of certain fish species then any high con-
sumption amongst this target group should ideally be reduced. The
intended primary consequence is therefore a reduction in expo-
sure to MeHg. Ideally, a target reduction in exposure should be

1 MB here refers to the treatment of concentration measurements found to be below
the Limit of Quantification (LOQ) or Limit of Detection (LOD), during the exposure
calculation. It is common to find many concentration values <LOD or <LOQ, and al-
ternative methods for dealing with these lead to different results. A simple approach
is to replace those values with a lower bound (LB) of zero, and complete the as-
sessment as if those were the observed values. Alternatively, we might replace them
by the upper bound UB. For measurements <LOQ this would be LOQ whereas for
<LOD it would be LOD. The MB indicates that any missing values were replaced by
a mid-point within a region (either 0-LOD or LOD-LOQ, as appropriate).
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identified as well as a quantitative assessment of whether adher-
ing to the dietary advice given will achieve this reduction. However,
sufficient data on fish consumption by pregnant women is gener-
ally not available in national food consumption databases. Some
recent cohort studies have been carried out, e.g. by Chan-Hon-Tong
et al. (2013). These authors considered information about intakes
before and during pregnancy of a range of foods, including fish, and
calculated the resulting exposures to MeHg and other compounds.
Contamination data in this case came from the French TDS. Refer-
ences are also included to various related studies.

Potential secondary consequences are as follows (more details
are given in Hoekstra et al. (2012)):

• Reducing oily fish consumption can reduce exposure to con-
taminants (MeHg, PCB/dioxins) but also lower the intake of
beneficial polyunsaturated fatty acids (PUFAs) such as
docosahexaenoic acid 22:6 n-3 (DHA). The associated health
effects related to reduced oily fish consumption are considered
to be: an increased risk of fatal coronary heart disease (CHD),
an increased risk of stroke, a change (positive or negative) in IQ
of newborns, a reduced risk of low sperm count (infertility) in
male offspring, a reduced risk of decreased production of TT4
hormone and diffuse fatty change in the liver. These potential
effects have different degrees of evidence based on dose–
response or epidemiology data, and occur at different levels of
exposure. With this list of potential competing health effects it
is possible that the benefits could be reduced in addition to the
risks (Hoekstra et al., 2012). It is therefore important to consid-
er the overall net health impact to avoid counterproductive
measures being introduced.

• Decreasing fish consumption will probably result into increas-
ing consumption of meat and/or vegetables. There will be
associated changes in health risks and benefits from this re-
placement effect.

• Fish consumption for non-target groups may also be reduced.
This may include family members sharing meals or individuals
generally following advice not intended for them.

The assessment of Hoekstra et al. (2012) was specifically set up
to quantify the overall impact, across the whole population, includ-
ing multiple risks and benefits. It was assumed that those individuals
not within the targeted population and currently consuming more
than 200 g oily fish per week would maintain their current level of
consumption, to maintain the benefits. The risk assessment was re-
peated, this time assuming that everyone consuming less than 200 g
was to consume exactly 200 g of fish per week, to assess the com-
bined impact on the disability adjusted life years (DALY). In this case,
nutrients and contaminants would both be increased for any indi-
vidual currently consuming less than 200 g/week.

3.2.1.5. Control measure(s) effective. Whether or not the control
measure is effective should be assessed by monitoring the con-
sumption amounts and selected fish intake of pregnant women, e.g.
using dietary surveys and food frequency questionnaires. For
example, Oken et al. (2003) describe the impact on pregnant
women’s fish consumption following advice to reduce consump-
tion. Additionally, the species of fish being consumed should be
examined in detail. Based on an assumed selection of species under
the current scenario and hypothetical future scenarios, simple ex-
posure calculations could be performed to update the risk
assessment, similar to Zeilmaker et al. (2013). Leino et al. (2013)
also consider the net effect of MeHg intake on neurological devel-
opment, considering three alternative consumption scenarios –
regular, lean, or fatty fish consumption – in the Finnish popula-
tion. Probabilistic modelling was used to account for uncertainty
related to contaminant levels, consumption and toxicology

variables. Consumption data of 12 commonly consumed fish species
were collected from 3827 pregnant women in Finland. Account-
ing for secondary effects requires a more detailed assessment as
performed in Hoekstra et al. (2012), although many simplifying as-
sumptions were necessary in their study to make it practical.
Substantial uncertainties remained unquantified.

In 2010, a Joint Expert Consultation convened by the FAO and WHO
considered the benefits of DHA versus the risks of MeHg amongst
women of childbearing age, pregnant women and nursing mothers,
and concluded that – in most circumstances evaluated – fish con-
sumption lowers the risk of suboptimal neurodevelopment in their
offspring as compared to not eating fish. Amongst infants, young chil-
dren and adolescents, the evidence was insufficient to derive a
quantitative framework of health risks and benefits (FAO/WHO, 2011).

Overall, to date, no clear conclusions could be drawn – based on
the available data – on the effectiveness of the control measures.

3.2.1.6. Uncertainties. The EFSA (EFSA, 2012c) report includes the
recommendations of 1) more MeHg concentration data should be
obtained in the food groups contributing significantly to expo-
sure, and 2) improved modelling of the dose–response used within
the epidemiological studies. The CONTAM panel (EFSA, 2012c) pro-
vided the overall assessment that the impact of uncertainties on
the risk assessment is considerable but that the assessment is likely
to be conservative. The treatment of unquantified uncertainties
follows the guidance of the Opinion of the Scientific Committee
related to Uncertainties in Dietary Exposure Assessment (EFSA, 2006).
The main uncertainties are detailed below:

• Uptake of dietary advice is variable and difficult to quantify, as
are the secondary effects linked to replacement food intake and
the resulting change in contaminant or beneficial nutrient intakes;

• Similarly, current consumption of fish and the choice of fish
species are both uncertain and variable;

• Information underlying the dose–response relationships linking
maternal hair/blood to long term MeHg intakes is limited, there-
fore, the true dose–response is uncertain;

• The level of aggregation in the EFSA comprehensive database does
not include detailed information about individual fish species
consumed, and in 10 out of 15 surveys there are fewer than 500
women of child bearing age. During pregnancy it is likely that
women will reassess their diet, so it is uncertain how accurate-
ly the women in these surveys represent the target group of
pregnant women;

• MeHg concentration data for individual species are limited and
not necessarily representative for a particular country of inter-
est. They originated from both random and targeted sampling,
which could lead to overestimation. In addition, the available data
were mostly reported as total mercury so a conversion factor had
to be assumed;

• Food processing is believed to influence the intake of MeHg, al-
though true cooking practices are variable and the true effects
uncertain.

3.2.1.7. Conclusions. This case study illustrates through a review of
existing studies, the application of the framework to a situation
where a mitigation strategy involves dietary advice based on sci-
entific evidence. Particularly relevant to this example are: the use
of modelling studies to investigate alternative hypotheses about
actual dietary changes; the impact of potential secondary effects of
food substitutions, multiple contaminant and nutrient changes and
their health-related consequences. There is evidence to suggest that
pregnant women do alter their dietary habits, although the infor-
mation is not sufficient to determine the extent to which the advice
to avoid particular fish species is followed. According to current risk
assessments the TWI could be exceeded, particularly for high fish
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consumers, but note that the TWI has a built-in safety factor. Ben-
eficial effects of fish consumption and confusion/conflicting
information to pregnant women could reduce the effectiveness of
the measures (Bloomingdale et al., 2010). However, the advice to
avoid particular types of fish is very clear, and the concentration
data suggest these fish have substantially higher levels of MeHg.

Many uncertainties exist, making it difficult to assess the impact
of the advice. A reduction in these uncertainties and better assess-
ment of the balance between risk and benefits is required before
the impact of the advice can be accurately assessed. Quantitative
methods, such as those mentioned above, should be employed wher-
ever possible. The dietary intake of pregnant women and other
sensitive subgroups should continue to be monitored, and further
nutrient and contaminant data should be collected.

3.2.2. Deoxynivalenol in cereal grains
3.2.2.1. Introduction. Fusarium fungi are commonly found in the tem-
perate regions of Europe, Asia and America (Parry et al., 1995). Under
favourable environmental and agronomical conditions, Fusarium
fungi may infect cereal grains. Several of the Fusarium species are
capable, to a variable degree, of producing mycotoxins of the
trichothecenes class, such as deoxynivalenol (DON), nivalenol, T-2
toxin and HT-toxin, as well as some other toxins like zearalenone
and fumonisins. Due to the large influence of climatic conditions,
annual and regional variation in concentrations of mycotoxins in
harvested cereals is large. Regulation (EC) No. 1881/2006 sets
maximum levels for the presence of DON in European foodstuffs.
DON is a chemically stable contaminant, which, to a large extent,
survives food processing and occurs in cereal food products.

3.2.2.2. Risk assessment. In the period 1999–2003, the European
Commission Scientific Committee for Food adopted a series of opin-
ions on Fusarium mycotoxins, laying down a temporary (t)TDI and
then a full TDI for DON of 1 μg/kg body weight (bw)/day, a tTDI of
0.2 μg/kg bw/day for zearalenone, a group TDI of 2 μg/kg bw/day
for fumonisins, a tTDI of 0.7 μg/kg bw/day for nivalenol, a com-
bined tTDI of 0.06 μg/kg bw/day for T-2 and HT-2 toxins, and an
opinion on trichothecenes as a group (European Commission, 1999,
2000a, 2000b, 2001, 2002a, 2002b, 2002c, 2003). In the frame-
work of Directive 93/5/EEC the Scientific Cooperation (SCOOP) Task
3.2.10 ‘Collection of occurrence data on Fusarium toxins in food and
assessment of dietary intake by the population of EU Member States’
was performed and finalised in April 2003 (European Commission,
2003). This SCOOP Task aimed to provide the scientific basis for the
evaluation and management of risk to public health arising from
dietary exposure to Fusarium toxins, taking into account the most
recent data available. During the period March 2002–January 2003,
11 EC Member States provided occurrence data for DON and other
Fusarium toxins in cereals and derived products. In total 11,022
samples were analysed for the presence of DON, and in 57% of these
samples this toxin was found to be present. For DON most data were
available for wheat. The percentage of cereal samples (raw cereals
and flours) with a DON concentration of 750 μg/kg or higher was
7%, and the percentage of cereal products with a DON concentra-
tion of 500 μg/kg or higher was 6%. Based on deterministic
calculations, the average intake level (mean food consumption and
mean occurrence data) was low for both the entire population and
the group of adults, and did not exceed 46.1% of the TDI of 1 μg/kg
bw/day. However, for young children the intake was very close to
the TDI. At high intake level (95th percentile food consumption and
mean occurrence data) for young children the intake exceeded the
TDI and for adolescents (13–18 years old) the intake was close to
the TDI. SCOOP stressed the lack of occurrence data, and the lack
of harmonised methods for sampling and analysis (which were es-
tablished later by the EC) and the need for further information on
the role of technological processing on the fate of trichothecenes

(including DON). To date, no update on the SCOOP risk assess-
ment has been performed. Besides SCOOP, other risk assessments
for DON in cereal grains have been performed by JECFA (FAO/WHO,
2011) and by the National Institute for Public Health and the En-
vironment (RIVM) in The Netherlands (2001, 2009), but as SCOOP
formed the basis for Regulation (EC) No. 1881/2006, this risk as-
sessment was considered in this study.

3.2.2.3. Control measures. The SCOOP task identified cereals, par-
ticularly wheat and maize, as major sources of human dietary intake
of Fusarium toxins. The estimated daily intakes of young infants and
adolescents were close to or even exceeded the TDI in some cases,
like for DON. Based on the SCOOP assessment of the dietary intake
and the scientific opinions, the EC set maximum levels for DON,
zearalenone and fumonisins, which came into force, respectively,
July 2006, March 2007 and October 2007 (European Commission,
2005, 2006b, 2006c). Maximum levels for DON vary between un-
processed, intermediate and finished products, and between product
groups, from 1750 μg/kg in unprocessed durum wheat and oats, to
200 μg/kg in processed cereal based foods and baby foods for infants
and young children. The aim of the Regulations is to achieve a high
level of public health protection by reducing the presence of
these mycotoxins in food products to the lowest levels reasonably
achievable (ALARA).

Complete elimination of DON and other Fusarium toxins is not
possible, therefore, the aim is to prevent and reduce as much as pos-
sible their presence in the feed and food chain through Good
Agricultural Practices (GAP) in the cereal cultivation stage, and Good
Manufacturing Practices (GMP) in consecutive stages of the cereal
supply chain. To this end, the EC has published the Recommenda-
tion on the prevention and reduction of Fusarium toxins in cereals
and cereal products in 2006 (2006/583/EC) (European Commission,
2006a). This recommendation defines general principles for drawing
up national codes of practices in member states. The principles refer
to factors that can lead to fungal infections, growth and toxin pro-
duction in cereal crops at the farm level and methods for their
control. Factors that are relevant include, amongst others, crop ro-
tation, choice of the variety, crop planning, ploughing and fungicide
application (van der Fels-Klerx and Booij, 2010). Farm advice should
be given to the growers for proper application of GAP on their farm
by farm advisors and consultants. In the UK the authoritative body,
the Food Standards Agency, published national codes of practice in
2007 (European Commission, 2006b; UK Food Standards Agency,
2007), at the same time guidelines for growers were published by
the UK cereal development board (HGCA, 2010). In member states,
national monitoring programmes are in place in order to check com-
pliance to the maximum levels for DON in cereals, as set by the EC.
Methods for sampling and chemical analyses are defined by the EC
as well (European Commission, 2006d) in order to ensure the quality
of the results and for harmonisation of the collected data. Since 2010,
EFSA have collated occurrence data for several contaminants in-
cluding DON from across all member states.

The cereal supply chain often sets lower limits for unprocessed
cereals than the EC limits to be sure that processed products comply
with EC legislation (van der Fels-Klerx and van Wagenberg, 2014).

3.2.2.4. Primary and secondary consequences. The primary conse-
quence of the control measures is a reduction of the DON
concentrations in cereals that enter the food production chain, and
thus in food end products. This will directly reduce dietary intake
by consumption of cereal derived foods. Through proper applica-
tion of GAP, DON concentration in the harvested cereals will be
reduced. However, due to the climatic and regional influences, a re-
duction in DON contamination is not guaranteed. Checking of the
mycotoxin concentration by chemical analyses is therefore neces-
sary. A critical control point for determining DON concentration is
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at mill intake and, depending on the structure of the chain, also at
the collector intake (van der Fels-Klerx and van Wagenberg, 2014).
At the collector, harvested cereals are collected from a variety of
growers. The batches from individual farms are stored into large silos.
In the silos, mixing of batches and their DON concentrations occurs.
Depending on the country and region, the proportion of the cereal
chain that includes a collector stage varies. If a collector is not in-
volved, the miller directly obtains batches of cereals from individual
farmers. In that case, the critical control point for determination of
DON levels is at the mill. During primary processing (milling), DON
concentration of the cereals may be reduced as higher concentra-
tions occur in the outer layers of the cereal grain that forms the bran
fraction after milling. Cereal products with a lower bran content than
whole wheat (e.g. white flour) have a reduced DON content whilst
cereal products with a high bran content (e.g. high fibre breakfast
cereals) have an increased DON content compared to the unpro-
cessed wheat. During secondary processing (e.g. baking) DON is
highly stable and any reduction achieved is only through the dilu-
tion of adding non-cereal ingredients. One possible secondary
consequence of the legislation is that secondary processors may
reduce the fibre content of products to reduce the DON concen-
tration. This could have a negative effect on health as fibre has an
acknowledged health benefit and the European diet is already de-
ficient in fibre (Bates et al., 2010). Another secondary consequence
could be the increased usage of fungicides to reduce fungal infec-
tion and growth during wheat cultivation, which could result into
increased exposure to fungicide residues.

3.2.2.5. Control measure(s) effective. Pieters et al. (2004) calcu-
lated human dietary intake of DON by cereal grain consumption in
The Netherlands in the periods 1998–1999 and in 2000. The years
1998–1999 showed high contamination of cereal-derived foods with
DON and, consequently, measures were taken by the Dutch gov-
ernment and industry, covering prevention of DON contamination
of grains and prevention of contaminated grains to be used for con-
sumer products. In the year 2000, DON contamination of wheat was
reduced by 50%, and intake of DON via cereal grain consumption
by young children was reduced by one-third, as compared to 1998–
1999 (Pieters et al., 2004). This might be largely due to sampling
and chemical analyses of DON concentration in batches that enter
the food chain, and removing contaminated lots from food produc-
tion. Data on the presence of DON in wheat samples collected at
harvest during the 20-year period of 1989–2009 in four north-
west European countries showed no significant increase or decrease
in the percentage of samples that contained the toxin. However, this
percentage seems to increase in the latest study years (van der
Fels-Klerx et al., 2012b). Though urinary biomarkers might be used
to estimate the effects of the mitigation measures (FAO/WHO, 2012),
limited biomarker studies are available and no suitable study was
conducted before control measures were introduced to allow an ef-
fective comparison to be made post control measures.

3.2.2.6. Emerging issues. Several toxins closely related to DON, in-
cluding the acetylated derivatives of DON (3- and 15-AcDON),
nivalenol and its acetylated derivative, fusarenon X, were not con-
sidered in the original risk assessment. The presence of the acetylated
DON derivatives seem to be related to the presence of DON (Edwards,
2009b). Zearalenone (ZON) also often co-occurs with DON (van der
Fels-Klerx et al., 2012b). Therefore, the control measures aimed to
reduce DON are likely to reduce these toxins as well. On the other
hand, reducing the presence of DON and ZON producing Fusarium
species may provide other species the possibility to grow and
produce other mycotoxins. The concentration of nivalenol and
fusarenon X does not appear to be related to the presence of DON.
Furthermore, regression analysis of DON to the type A trichothecenes
HT-2 and T-2 in cereals indicate mutual exclusion so when DON

concentrations are low, HT-2 and T-2 concentrations are high
(Edwards, 2009a, 2009b). Little is known though, on the interact-
ing effects of the complex of Fusarium species present on cereals.

A further emerging issue for DON control is the presence of
masked mycotoxins. The glucoside metabolite of DON – DON-3-
glucopyranoside – occurs in cereals and cereal products, is not
detected by standard methods of analysis, and can be metabolised
back to the parent mycotoxin molecule by the action of the diges-
tive system. This metabolite, which can be present at concentrations
up to 50% of the parent mycotoxin (Berthiller et al., 2009), was not
included in the original risk assessment.

3.2.2.7. Uncertainties. Local weather conditions during a short time
period of crop flowering have a large influence on Fusarium species
infection of the crop and mycotoxin production. Modelling studies
have shown that seasonal and regional variation can explain to a
large extent the variation seen in DON concentration in wheat
(Edwards, 2009b). Empirical models to describe DON contamina-
tion of harvested wheat in The Netherlands are mostly based on
region of the country and rainfall, relative humidity and tempera-
ture in different time periods around wheat flowering (Hooker et al.,
2002; Franz et al., 2009). Inclusion of the period up to wheat flow-
ering only increased the explained variance of the models a little
(van der Fels-Klerx and Booij, 2010; van der Fels-Klerx and van
Wagenberg, 2014). The regional variation in DON concentration in
a particular cereal cannot solely be explained by the differences in
local weather. It is likely that the presence of different fungal species
in the Fusarium complex may play a role. Furthermore, cereal types
and varieties are known to differ in their susceptibility for fungal
infection and species involved.

Given the effects of local weather on the presence of Fusarium
species and their mycotoxins, climate change is expected to influ-
ence both the fungi and mycotoxins as well (West et al., 2012).
Quantitative data on the impact of climate change is, however, not
largely available. Recently, a modelling study estimated the impact
of climate change on DON concentration in wheat in north-west
Europe in 2040 (van der Fels-Klerx et al., 2012a, 2012c). Results of
this study showed no large differences in mean occurrence in DON
in the future as compared to the baseline period; however, varia-
tion between regions and years was estimated to increase (van der
Fels-Klerx et al., 2012c). It is also important to note that the Fu-
sarium species complex has continued to evolve over time with
changes in the species distribution across Europe having occurred
in the last 20 years with the progression of Fusarium graminearum
into northern Europe (West et al., 2012), which has increased the
occurrence of DON in cereals across northern Europe (van der
Fels-Klerx, 2013).

Another source of variation is the differences in daily intake of
cereal derived products between age groups, between countries,
ethnic groups and between groups of consumers, e.g. vegetarians
eating more cereal derived foods or celiac patients eating less cereal
derived foods. Furthermore, contamination of certain cereal types
with mycotoxins may differ amongst regions around the world, for
instance, contamination of wheat grown in Ukraine may be differ-
ent from the same wheat variety cultivated in Scandinavia.

3.2.2.8. Conclusion. Effects of regional and temporal variation, and
climate change on the presence of DON, and effects of consump-
tion patterns on the dietary intake of DON, will hinder a proper
assessment of the effect of the control measures on reduction of the
intake. There is a need for long term data collection to assess the
extent of seasonal and regional variation and to accurately quan-
tify chronic exposure. Due to the massive diversity of cereals and
sources within the European diet, accurate consumption data is ex-
tremely difficult to attain and long-term biomarker studies would
better identify the range of acute and chronic exposure to DON. This

366 H.J.I. Fels-Klerx et al./Food and Chemical Toxicology 74 (2014) 360–371



should be combined with studies to understand the extent that as-
sociated trichothecene mycotoxins and their masked derivatives
contribute to the overall toxin load to consumers.

3.2.3. Furan in heat-treated foods
3.2.3.1. Introduction. Furan is the parent compound of a class of com-
pounds known as furan derivatives or substituted furans that are
known to contribute to the aroma and flavour of several foods in-
cluding coffee (Maga and Katz, 1979). But only when its presence
was described in canned and jarred foods including baby foods in
jars by the US Food and Drug Administration (US FDA, 2004b) furan
raised considerable attention and consumer exposure was initial-
ly estimated. Following these findings EFSA has published a first
‘Report of the Scientific Panel on Contaminants in the Food Chain
on furan in food’ (EFSA, 2004), concluding “that there is a relative-
ly small difference between possible human exposures and doses
in experimental animals that produce carcinogenic effects, proba-
bly by a genotoxic mechanism. However, a reliable risk assessment
would need further data on both toxicity and exposure”. Various
programmes and research were initiated to collect data on toxici-
ty, mechanisms of formation and exposure, e.g. EU 6th framework
project Furan-RA, http://www.furan-ra.toxi.uni-wuerzburg.de/). Oc-
currence data were collected by FDA and made publicly available
from 2004 through 2008 (US FDA, 2004a). Following up on their
report, EFSA has established a monitoring database and regularly
published the updated results, providing an updated exposure as-
sessment in the most recent report (EFSA, 2011b).

3.2.3.2. Risk assessment. The first comprehensive risk assessment
was only recently published by JECFA (FAO/WHO, 2011),
summarising data available worldwide on formation, analytics, levels
in foods, exposure assessments, absorption, distribution, metabo-
lism and excretion (ADME), toxicology, carcinogenicity and
mechanism of action.

Furan can be formed in foods by thermal degradation pro-
cesses or the Maillard reaction from a variety of precursors naturally
present in foods, such as carbohydrates, amino acids, ascorbic acid
or polyunsaturated fatty acids (PUFAs), or through free radical re-
actions during food irradiation (FAO/WHO, 2011). Because of the
conditions of formation (high temperature, closed atmosphere) for-
mation of furan is mostly restricted to industrially heat processed
and preserved foods, whilst formation under usual household
cooking conditions is much less likely due to fast evaporation of the
volatile compound (Crews, 2009).

Human dietary exposure was determined based on occurrence
data collected in the European Union (EFSA, 2011c), the US (US FDA,
2007) and a number of national/local surveys. Overall, furan levels
were highest for coffee (powder roasted > > instant powder > brewed
roasted), baby foods in jars and canned and jarred foods. Publicly
available dietary exposure assessments (including worldwide, Eu-
ropean and national assessments) were based on deterministic
approaches. The exposures reported by JECFA (FAO/WHO, 2011)
ranged from 0.25 to 1.17 μg/kg bw/day for adults, from 0.08 to
0.23 μg/kg bw/day for children (1–6 years) and from 0.27 to 1.01 μg/
kg bw/day (infants up to 12 months). Highest (95th) percentiles of
consumers reached dietary exposures up to 2.22 and 1.34 μg/kg bw/
day for adults and infants, respectively. The major contributor to
adult exposure was coffee. This is a consistent finding between JECFA
(2011), EFSA (2011a) and the various published national Risk As-
sessment studies (Lachenmeier et al., 2009, 2012; Liu and Tsai, 2010;
Mariotti et al., 2013; Minorczyk et al., 2012; Pavesi Arisseto et al.,
2010; Scholl et al., 2012a, 2012b, 2013; van der Fels-Klerx et al.,
2012b; VKM, 2012; Waizenegger et al., 2012). For children, break-
fast cereals are the major dietary contributors to furan exposure.
For small infants, the main contributors are baby foods in jars. Pasta,
meat and vegetable products were reported to contain consider-

ably more furan than fruit and cereal based products (Jestoi et al.,
2009; Lachenmeier et al., 2009, 2012; Pavesi Arisseto et al., 2010;
Scholl et al., 2013). Highest exposures were estimated to reach up
to 2.8 μg/kg bw/day in this target group (97.5th percentile; Scholl
et al., 2013).

Furan is a liver toxin and carcinogen in animal studies and is clas-
sified by the International Agency for Research on Cancer (IARC) as
‘possibly carcinogenic to humans’ (IARC, 1995). Rats and mice given
furan orally for 2 years have developed liver tumours (hepatocel-
lular adenoma and carcinoma in rats and mice and cholan-
giocarcinoma specifically in rats) (US NTP, 1993). The mechanism
of action of furan carcinogenicity is unclear, but is supposed to
involve the formation of a reactive, ring-opened metabolite, cis-2-
butene-1,4-dial (BDA). Genotoxicity cannot currently be excluded,
and no safe level of exposure has been established (JECFA, 2011).
JECFA applied the MoE approach to furan considering that its car-
cinogenicity may involve a genotoxic mechanism of action.
Benchmark dose modelling was applied to determine the BMDL10

of 0.96 mg/kg bw/day based on hepatocellular adenoma and car-
cinomas developing in mice in a 2-year cancer bioassay (FAO/WHO,
2011; US NTP, 1993). Even though a high incidence of cholan-
giocarcinomas was observed in rats at the lowest tested dose (2 mg/
kg bw/day), the relevance of this endpoint for humans was
questioned, since these were only seen in rats and were associ-
ated with extreme liver toxicity and an “early and marked biliary
tract proliferative response” (FAO/WHO, 2011).

Besides JECFA, a number of other risk assessment studies applied
the MoE approach to estimate the level of concern for consumers
(including exposures of small children) using either NOAEL, T25 or
BMDL10 levels published in the literature as point of departure for
the determination of the MoE (Carthew et al., 2010). Resulting MoEs
varied strongly depending on the scenarios and conservatism applied
and it was more or less unanimously concluded that these MoEs
represent a human health concern. Characteristics and results of the
individual risk assessment studies are summarised in supplemen-
tary materials.

3.2.3.3. Recommendations and control measures. Current recom-
mendations from the published literature, as summarised by the
Codex Committee on Contaminants in Food (CCCF) in a Discus-
sion Paper on Furan (Codex Alimentarius, 2011) are mostly directed
towards consumers and include e.g. to stay with a healthy and varied
diet containing fresh fruits and vegetables, to allow volatilisation
of furan by stirring foods in an open pan or preparing food freshly,
since cooking at home was found to generate negligible amounts
of furan (immediate evaporation). Suggestions have been made that
consumers may consider to moderate their coffee consumption or
let coffee stand for a few minutes before consuming it. It was con-
cluded that the currently available research was unsuccessful to
provide effective solutions for decreasing furan in foods and it was
considered premature to establish a Code of Practice (Codex
Alimentarius, 2011). However, aforementioned options were sug-
gested as possible consumer education material for national
authorities, or for inclusion in a future Code of Practice (Codex
Alimentarius, 2011).

Advice to national authorities and food processors is limited to
the general recommendation to investigate further into mitiga-
tion measures (Codex Alimentarius, 2011). Mitigation strategies
proposed in the published literature were reviewed by Anese and
Suman (2013). No regulatory limits were established, nor were guid-
ance values or a toolbox approach comparable to the one for
acrylamide defined.

3.2.3.4. Primary and secondary consequences of control measures. Since
no specific control measures have been put in place, primary and
secondary consequences of control measures remain hypotheti-
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cal. However, it is conceivable that due to its formation mechanism(s)
and suspected precursors, other heat process related contami-
nants or components might be affected as well by measures taken
(Codex Alimentarius, 2011):

• The reactions that generate furan are those that also provide
flavour and texture, i.e. organoleptic properties are likely to be
affected by any measure. Similarly, microbiological safety or shelf
life of canned and jarred food juices may be influenced.

• Furan versus acrylamide formation was studied in coffee under
different roasting conditions (Guenther et al., 2010), showing that
conditions that lowered furan formation actually promoted for-
mation of acrylamide and vice versa.

• Food components such as PUFAs, ascorbic acid or carotenoids
are possible precursors. Avoiding the use or addition of such com-
pounds may change the nutritional profile of some foods.

• If consumers are asked to limit consumption of certain foods,
such as coffee, they will likely replace them with other prod-
ucts or beverages (with different or unknown effect/impact).

• Practical aspects and convenience of ready-made food consump-
tion (e.g. outside the home, travelling) may also play a role.

As soon as adverse or beneficial effect data become quantifi-
able, risk–benefit approaches, such as the methodology developed
under the remit of the EU funded project BRAFO (Hoekstra et al.,
2012) could be used to determine the effects of control measures.

3.2.3.5. Uncertainties. One of the biggest sources of uncertainty and
variability resides in the chemical nature of the volatile furan. Being
formed upon heating, it only stays in the product if cooked in closed
containers, such as retorting of e.g. pumpkin puree, carrot juices,
baby foods in jars (Bianchi et al., 2006; Goldmann et al., 2005;
Lachenmeier et al., 2009; Limacher et al., 2008; Wegener and
Lopez-Sánchez, 2010) or if trapped in the matrix, e.g., with coffee
roasting, grinding, shelf life and preparation (Goldmann et al., 2005;
Guenther et al., 2010; La Pera et al., 2009; Mesias and Morales, 2013).
Once prepared for consumption, furan was shown to evaporate to
different extent (Codex Alimentarius, 2011); however, no quanti-
tative prediction of the loss due to preparation is possible to date.
On the other hand, home cooking has shown little potential to gen-
erate significant amounts of furan (Crews, 2009).

A validated analytical method to determine furan levels in food
is still not available. Recommended analytical methods are gas
chromatography-mass spectrometry with headspace extraction or
headspace solid-phase microextraction. The FDA published an an-
alytical method, based on headspace sampling followed by gas
chromatography/mass spectrometry (GC/MS) analysis, on their
website (US FDA, 2006). Analytical methods were reported to be
reliable in different matrices and model systems, though sensitive
to parameters such as headspace temperature and extreme pH that
must be controlled (Altaki et al., 2007, 2009; Crews et al., 2007;
Nyman et al., 2006, 2008; Ruiz et al., 2010; Wenzl et al., 2007;
Yoshida et al., 2007). No specific analytical procedure was re-
quired from member states for the submission of data to the EFSA
monitoring database (EFSA, 2010).

Uncertainties in the furan food occurrence database will be gen-
erated if information on the sample preparation is not provided with
the sample and may thus lead to significant overestimation of ex-
posure. In addition, information on food intake from national surveys
or databases may not discriminate canned or jarred versus home-
made food consumption, i.e. the food grouping is not appropriate
for estimating furan exposure. The furan containing food may be
used for the full category (even if other foods in the same catego-
ry are known not to contain furan), which may lead to additional
overestimation of exposure. For instance, JECFA indicated that most
coffee samples in the EFSA monitoring database were analysed

as instant powder, beans or ground coffee, and not as brews
prepared for consumption. Mean furan level for all coffees was then
converted to coffee brew by applying a ‘universal’ dilution factor,
disregarding the different types of coffee, and disregarding the po-
tential evaporation upon preparation. Furthermore, furan levels were
then assigned to the wider food group, “coffee, tea and cocoa”
(FAO/WHO, 2011). A recent study on coffees sold in vending ma-
chines showed how furan levels vary not only between vending
machines but also over time during the limited short lifetime of a
freshly drawn coffee, between vending and consumption, and with
or without stirring (Mesias and Morales, 2013).

Besides uncertainties in the food occurrence databases and ex-
posure assessments, uncertainties exist on the toxicological side of
the RA. Scientific evidence seems to indicate that a genotoxic mech-
anism of action for furan carcinogenicity cannot be excluded.
Consequently, the MoE approach has been applied to furan in various
risk assessment studies. However, dose–response information from
animal studies is limited and therefore, different values have been
used as the point of departure to estimate the MoE (summarised
in supplementary materials). This has been acknowledged as a lim-
itation in the database by JECFA (Carthew et al., 2010; FAO/WHO,
2011).

3.2.3.6. Emerging issues. In order to address uncertainties related
to the carcinogenic dose–response (particularly the development
of cholangiocarcinomas at low doses), the National Toxicology
Program of the US Department of Health and Human Services (US
NTP) has recently completed another 2-year cancer bioassay in male
rats. The dose range used was 0, 0.02, 0.044, 0.092, 0.2, 0.44, 0.92
and 2.0 mg/kg bw/day. Though the study is completed and histo-
pathology in progress, results are not available yet. The study is
expected to improve the dose–response assessment, better define
the carcinogenic endpoint and allow refining of the Benchmark Dose
estimations (US NTP, 2013).

The current evaluations exclusively addressed furan and its sup-
posed genotoxic metabolite, BDA. However, other similar important
flavouring compounds such as the group of alkylated furans poten-
tially share significant similarities with respect to formation, structural
characteristics and the resulting potential metabolic fate (EFSA, 2011a;
JECFA, 2006; Peterson, 2012; JECFA, 2010; JECFA, 2012). The infor-
mation database on these compounds is extremely limited regarding
both occurrence/exposure and toxicological aspects and, consequent-
ly, they have not been addressed in combination with furan. Recent
studies indicate that methylfurans may be formed in food in a similar
way to furan, i.e. Maillard reactions or thermal oxidation of ascorbic
acid (Adams et al., 2011; Becalski et al., 2010; Limacher et al., 2007,
2008). Though levels of 2- and 3-methylfuran determined in a variety
of food commodities, including baby foods, were in general lower than
those of furan, levels of 2-methylfuran (2-MF) approached those of
furan and were even higher in samples of roasted, ground and instant
coffees (Becalski et al., 2010). In another study on baby foods, levels
of 2-MF and 2,5-dimethylfuran were very close to or even higher than
furan (Habibi et al., 2013). The Codex Alimentarius Committee rec-
ommended to include “furan analogues that are of toxicological
relevance to humans (e.g., 2-methylfuran, 3-methylfuran) in miti-
gation studies” (Codex Alimentarius, 2011).

3.2.3.7. Conclusions. This case study shows that it can be very chal-
lenging to take a compound of recent concern (with ample data
available) through the framework. Though many risk assessment
studies have identified a potential concern, specific mitigation strat-
egies that could lead to reduction of human exposure have not been
formulated to date. A particular problem in the risk assessment is
the volatility of furan and the lack of consistent information in the
occurrence databases on how samples were generated, on prod-
ucts as purchased from the shelves or as prepared ready for
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consumption. This leaves immense uncertainty in the occurrence
database and, consequently, any estimated exposure levels. Cur-
rently available food intake databases do not allow to reliably
estimate furan exposure since the intake of canned or jarred foods
may not be specifically recorded. The situation may be better in case
of small infants consuming baby foods in jars since their diet is
usually less varied than an adult’s diet, and child specific intake in-
formation is available (e.g. German DONALD study; Lachenmeier
et al., 2012).

Current recommendations are directed both to food processors
to investigate into mitigation and to consumers related to con-
sumption and cooking habits. Neither a reduction on the occurrence
side nor a change in consumer behaviours has been documented
to date. Because of these limitations and uncertainties exposure mod-
elling (and modelling of exposure reduction) will be challenging but
may be feasible for very specific scenarios. Monitoring of biomarkers
of exposure would be an opportunity to relate occurrence and intake
data to a more realistic exposure assessment, yet a good biomarker
for furan exposure has to be identified.

4. Overall conclusions

Ensuring that mitigation measures put in place to reduce dietary
exposure to contaminants are effective is key to reducing consum-
er risk. In assessing the impact of a mitigation strategy prior to or
after its implementation, a risk manager is usually faced with an
extremely complex picture. This will typically involve large uncer-
tainties, of many different types, as well as natural variability. It is
very important that a risk manager is open about the criteria for
success, and can judge these against a risk assessment carried out
in a clear and transparent manner. Despite the difficulties, it is always
better that the risk manager has access to the relevant informa-
tion, including an assessment of uncertainty and variability, however
large, and the proposed methodology provides a conceptual frame-
work for addressing these systematically. It is then for the risk
manager to decide the success of the measures, and act according-
ly. Where a quantitative assessment is not possible, or where simple
assumptions are necessary, these should be documented.
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