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Summary

Bacterial communities are often heavily consumed by
microfaunal predators, such as protozoa and nema-
todes. Predation is an important cause of mortality
and determines the structure and activity of microbial
communities in both terrestrial and aquatic ecosys-
tems, and bacteria evolved various defence mecha-
nisms helping them to resist predation. In this review,
I summarize known antipredator defence strategies
and their regulation, and explore their importance for
bacterial fitness in various environmental conditions,
and their implications for bacterial evolution and
diversification under predation pressure. I discuss
how defence mechanisms affect competition and
cooperation within bacterial communities. Finally I
present some implications of bacterial defence
mechanisms for ecosystem services provided by
microbial communities, such as nutrient cycling, viru-
lence and the biological control of plant diseases.

Introduction

Bacterial communities form the backbone of virtually all
known ecosystems, and play a fundamental role in nutri-
ent cycling, primary production and consumption, or pol-
lutant degradation. Bacteria form also the base of many
food webs, and are subject to strong predation pressure
by eukaryotes in aquatic and soil environments (Gasol
et al., 2002; Rønn et al., 2002). Predation is a major
cause of bacterial mortality (Pernthaler, 2005), and a
driver of the genetic and functional structure of bacterial
communities (Griffiths et al., 1999; Rønn et al., 2002; de

Mesel et al., 2004; Bell et al., 2010). Predation also modu-
lates the metabolic characteristics and the activity of bac-
terial communities, thereby contributing to nutrient cycling
(Microbial loop, Clarholm, 1985; Bonkowski, 2004). Pre-
dation pressure is largely due to microfaunal predators
(Ekelund and Ronn, 1994; Pernthaler, 2005), a functional
group including protozoa and nematodes. A large fraction
of all protozoan species are predators of bacteria, and
free-living bacterivorous protozoa are present in all eco-
systems ranging from sea to soil including deserts
(Bouwman and Zwart, 1994; Ekelund and Ronn, 1994;
Rodriguez-Zaragoza et al., 2005). Bacterivorous proto-
zoa embrace many functional feeding groups, such as
free swimming ciliates (one of the best known examples
being the model organism Tetrahymena thermophila),
heterotrophic flagellates, and amoebae. Each of these
functional types has its own hunting characteristics and
ecological niche (Coûteaux and Darbyshire, 1998). For
example, naked amoebae dominate soil systems where
they can access very small pores (Ekelund and Ronn,
1994), while in aquatic systems heterotrophic nanoflagel-
lates are the main consumers of bacteria (Pernthaler,
2005). Nematodes, such as the well investigated Cae-
norhabditis elegans, are common in compost, soil as well
as aquatic systems (Jensen, 1987; Neher, 2001), and
form the second main group of bacterivorous organisms.
Resisting predation improves survival in top-down con-
trolled communities, and numerous bacteria from all phyla
developed an array of defence mechanisms reducing pre-
dation pressure (Matz and Kjelleberg, 2005). During the
last years, the investigation of bacterial defence strategies
has been gaining in momentum. Technical advances,
such as the availability of genome sequences and the
solid investigation of pro- and eukaryotic model organ-
isms, the better understanding of regulatory networks by
bacteria and high-throughput analytics, allowed under-
standing a number of molecular mechanisms involved in
bacterial defence. Additionally, the similarities between
predator resistance and pathogenesis (Adiba et al., 2010)
have fostered research on this subject by both environ-
mental and medical microbiologists. The detection
mechanisms involved in innate immunity and prey detec-
tion by free-living protozoa are very similar, and the data
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from immunological studies can help to better under-
stand ecological processes (Stuart and Ezekowitz,
2008). Our understanding of how predator–prey interac-
tions affect population dynamics and ecosystem stability
has greatly improved during the last decades and pro-
vides a powerful interpretation framework to understand
the causes and consequences of bacterial defence
(Jeschke et al., 2002; Yoshida et al., 2003; Brose, 2008).
Merging molecular tools with ecological models is a
promising path of ecological research allowing to reliably
predict the impact of different traits on the functioning
and development of bacterial communities. This review
aims at providing an interdisciplinary overview on these
recent advances. First, I will present the known defence
mechanisms involved in reducing predation pressure.
Then, I will place these mechanisms in a more general
ecological framework to discuss how distinct mecha-
nisms affect predator–prey interactions. Finally, I will
discuss direct and indirect consequences of bacterial
defence on other ecological and evolutive processes. I
will focus on interactions between bacteria and eukary-
otic predators. Non-eukaryotic consumers, such as bac-
terial predators (e.g. Bdellovibrio) and viruses, also play
a fundamental role in microbial ecology and evolution
(see for example Weinbauer, 2004; Sockett, 2009), but
for the sake of brevity and conciseness these will not be
considered. Throughout this review, I will use the terms
of ‘predators’ and ‘predation’ to describe the consumption
of bacteria. Microbial ecologists often use grazing for
what ecologists from other research fields would
describe as predation, and both terms can be in the
present context understood as synonyms.

Predation and the evolution of bacterial defences

Predation is a complex process involving a number of
components such as prey finding, recognition, consump-
tion and digestion (Jeschke et al., 2002). First I will give a
short overview on predator–prey interactions and then
consider the numerous morphological and chemical
adaptations of bacteria against predators according to
their putative effect on predators.

The predator functional response describes the rela-
tionship between prey density and consumption rate, and
can take various shapes according to the type of interac-
tion (Fig. 1). Two types of functional response are com-
monly found at all trophic levels, the type II (similar
to Michaelis-Menten kinetics) and type III functional
response (sigmoid). Prey defence affecting certain com-
ponents of predation may have distinct effects on the
shape of the functional response curve depending on
which component of the predator–prey interaction is
affected (Fig. 1). Bacteria evolved a wealth of defence
strategies, affecting virtually all components of predator–

prey interaction (Table 1). In aquatic and terrestrial eco-
systems, the most described strategies are morphological
adaptations, such as filament formation or clumping
(Hahn et al., 1999; 2004) and the production of toxic sec-
ondary metabolites (Jousset et al., 2006; Deines et al.,
2009; Mazzola et al., 2009), but these are only part of the
broad spectrum of antipredator adaptations (Matz and
Kjelleberg, 2005). Bacterial defence mechanisms can
increase the search time spent by the predator until
finding prey or the handling time required for capturing,
consuming and digesting prey. For commodity, I will clas-
sify the different components of the predator–prey inter-
action and the prey adaptations based on the model

Fig. 1. Potential effects of bacterial defence on a model type II
functional response curve of a microfaunal predator. Per capita
consumption depends on the prey density, and different
antipredator adaptations of the prey will have distinct effects on the
shape of the functional response. The black curve shows a type II
functional curve on a hypothetical undefended prey, the red curve
shows the consumption of defended prey.
A. Prey adaptations like motility, hiding or size reduction increase
the time the predator requires to find a prey, and lead to a reduced
consumption at low prey density.
B. Prey adaptations like indigestibility or constitutive toxin
production reduce predation regardless of prey density.
C. Quorum sensing-regulated traits (e.g. secondary metabolite
production by Pseudomonas spp.) are increasingly expressed as
prey density increase until potentially reducing predation pressure
to zero (type IV functional response).
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described by Jeschke and colleagues (2002), with a few
simplifications (Fig. 2). The different components might be
hard to disentangle, and different classifications exist
(Montagnes et al., 2008). Moreover, a single defence
strategy may affect different components of the predation
process. The provided classification should therefore be
rather considered as a guide that allows connecting bio-
chemical processes such as prey recognition to models
on population dynamics.

Search phase

Predators may spend a large fraction of their time
searching for prey. The search efficiency (the ‘attack
rate’ of the predator) largely depends on the time
needed to find his prey (Jeschke et al., 2002). Predators

may move randomly through their environment until
encountering potential prey. The search time can be
however greatly reduced by chemotaxis: microfaunal
predators, such as nanoflagellates (Mohapatra and
Fukami, 2007), amoebae (Konijn, 1969; Fenchel and
Blackburn, 1999) and nematodes (Beale et al., 2006),
use chemical cues from their prey to locate and reach it
more effectively. For example, quorum sensing signals
(a category of signal compounds allowing bacteria to
sense population density and diffusion gradients) such
as the N-acylhomoserine lactones (AHLs) produced by
Gram-negative bacteria, attract the nematode C. el-
egans (Beale et al., 2006) as well as human neutrophils
(Zimmermann et al., 2006), suggesting widespread use
of these signals as cue for prey detection. A first line of
defence for bacteria therefore might consist in impairing

Table 1. List of described antipredator adaptations by bacteria.

Defence mechanism Prey Predator Affected predation step Reference

Morphological
Filament formation Flectobacillus sp. Ochromonas sp. Ingestion Corno and Jurgens

(2006)
Serratia liquefasciens Acanthamoeba polyphaga Queck et al. (2006)

Biofilm S. liquefasciens A. polyphaga Ingestion Queck et al. (2006)
Pseudomonas aeruginosa Bodo saltans Search, ingestion Weitere et al. (2005)

Microcolonies P. aeruginosa Rhynchomonas nasuta Ingestion Matz et al. (2004a)

Surface properties
LPS modification Salmonella enterica Negleria gruberi Recognition Wildschutte et al.

(2004)
S-layer Actinobacteria Poterioochromonas sp. Digestion Tarao et al. (2009)
Flagellum modification Helicobacter pylori Macrophages Recognition Galkin et al. (2008)
EPS capsule Pseudomonas sp. Ochromonas sp. Ingestion/digestion Hahn et al. (2004)
Spore formation Bacillus sp. Tetrahymena thermophila Digestion Klobutcher et al.

(2006)

Secondary metabolites
Cyclic lipopeptides Pseudomonas fluorescens Negleria americana Kills predator (disrupts

membranes)
Mazzola et al. (2009)

P. fluorescens Hartmanella vermiformis Andersen and
Winding (2004)Acanthamoeba sp.

HCN/DAPG/PRN
HCN

P. fluorescens Acanthamoeba castellanii Kills predator (inhibits respiration) Jousset et al. (2010)
P. aeruginosa Caenorhabditis elegans Kills predator (paralytic death) Gallagher and Manoil

(2001)
Gluconic acid Enterobacter intermedium Colpoda steini Search/attack Gomez et al. (2010)

Vahlkampfia sp. Causes encystment
Neobodo designis

Violacein Chromobacterium violaceum Ochromonas sp. Kills predator Matz et al. (2004b)
B. saltans

Shiga toxin Escherichia coli Tetrahymena pyriformis Lainhart et al. (2009)
Exoproteases P. fluorescens C. steini Cause encystment Jousset et al. (2006)

Vahlkampfia sp. Kills predator
Neobodo designis

Vibrio cholerae C. elegans Kills predator Vaitkevicius et al.
(2006)T. pyriformis

Cafeteria roenbergensis
Serrawettin W2 Serratia marcescens C. elegans Search Pradel et al. (2007)

Secretion systems/effectors
Type III SS P. aeruginosa A. castellanii Effectors kill predator Matz et al. (2008b)
Type VI SS V. cholerae Dictyostelium discoideum Digestion (intracellular survival) Jani and Cotter

(2010)Burkholderia cenocepacia

For each adaptation, the main step of the predator–prey interaction affected is described. The preys and predators indicated are those presented
in the corresponding reference. Some reported effects are putative, and it is advised to consult the corresponding reference for detailed
information.
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the search process. This may be achieved by chemical
furtiveness, for example by abandoning the production
of quorum sensing signals. Bacteria escaping to micro-
refuges inaccessible to the predator also impede effi-
cient search by protozoa and nematodes (Postma et al.,
1990; Yeates et al., 2002), and the production of repel-
lents may be used to deter chemotactic predators (Hill-
iard et al., 2002; Pradel et al., 2007). Many bacterial
strains further produce toxic secondary metabolites that
inhibit predators before encounter. Lytic enzymes such
as proteases contribute to the toxicity of Pseudomonas
fluorescens CHA0 for various protozoa (Jousset et al.,
2006; Vaitkevicius et al., 2006; Niu et al., 2010), and the
pathogenic bacterium Vibrio cholerae uses extracellular
protease to kill bacterivorous nematodes and protozoa
(Vaitkevicius et al., 2006). Other bacteria like Entero-
bacter intermedium repel predators by acidifying their
environment (Gomez et al., 2010), and numerous strains
produce secondary metabolites (Andersen and Winding,
2004; Jousset et al., 2006; Mazzola et al., 2009) that
inhibit or deter the predator before encounter. In an
extreme case, these compounds induce the formation of
resting cysts by protozoa, or even kill the predator
(Schlimme et al., 1999; Andersen and Winding, 2004;
Jousset et al., 2006).

Encounter/recognition

When encountering potential prey, predators must recog-
nize it and prevent it from escaping. Eukaryotes use con-
served receptors such as the Toll-like receptors (TLRs) to
recognize molecular patterns associated with Gram-
positive and -negative bacteria (Underhill, 2004; Cosson
and Soldati, 2008). Protozoa select their prey based on
surface properties, such as flagella, cell wall components
(Wootton et al., 2007), lipopolysaccharide envelope com-

positions of Gram-negative bacteria (Wildschutte et al.,
2004) and hydrophobicity (Matz et al., 2002). Few data are
available on prey recognition by nematodes, but recent
studies indicate that they can discriminate between mixed
bacteria, partly based on their toxicity (Jousset et al.,
2009; Freyth et al., 2010). A number of mechanisms are
employed by bacteria to impair prey encounter and recog-
nition thereby reducing the attack rate and the predation
pressure at low prey density (Fig. 1). For example, high
motility prevents capture (Matz and Jurgens, 2005), prob-
ably by allowing prey retraction upon contact with enemies
(Matz et al., 2002). Further, diversification of molecular
patterns provides a protection against protozoan preda-
tors (Matz et al., 2005). This likely occurs through masking
of chemical cues used for prey recognition (Wildschutte
et al., 2004), a technique also used to evade the immune
system (Trent et al., 2006) and plant defences (Boller and
Felix, 2009). Some pathogenic bacteria with a modified
flagellum structure are not recognized by macrophages
(Galkin et al., 2008), and the conserved nature of TLRs
suggests that the same mechanism may help bacteria to
evade recognition by microfaunal predators. Morphologi-
cal adaptations such as the production of capsule
(exopolysaccharide, EPS) also reduce ingestion, either
through size effect or by masking prey surface (Hahn
et al., 2004). The production of toxic or repelling metabo-
lites may also play a role at this phase of predation, as
flagellates reject prey after ‘tasting’ them (Montagnes
et al., 2008). Protists also select their prey according to
their size (Jürgens and Simek, 2000; Pfandl et al., 2004),
and organisms out of the prey spectrum of the predator get
selective advantage (Pernthaler, 2005). For example, bac-
teria producing filaments and aggregates, but also very
small bacteria, are less consumed (Corno and Jurgens,
2008), an effect discussed more in detail in the next
chapter.

Fig. 2. Schematic view of the different steps involved during the predation process of a bacterial prey (red) by a protozoan predator
(symbolized by the amoeba). The adaptation mechanisms increasing predator efficiency (red) and prey resistance (green) are highlighted for
each step. Abbreviations (*): TLR, Toll-like receptor; T3SS, type three secretion system; ROS, reactive oxygen species.
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Attack/ingestion

Prey ingestion by protozoa usually occurs by phagocyto-
sis, a conserved mechanism present in most eukaryotes
(Stuart and Ezekowitz, 2008). Phagocytosis is a complex
process involving prey binding to specific receptors and
engulfment in a digestive vacuole. Morphological adapta-
tions that can prevent or reduce ingestion are widespread
in bacteria (Fig. 1, Table 1). Flagellates cannot ingest
large prey (Matz et al., 2002), and filament formation help
prevent ingestion (Hahn et al., 1999; Corno and Jurgens,
2006). However, some flagellates can grow on filamen-
tous bacteria, suggesting that this defence mechanism
only provides partial protection against predators (Wu
et al., 2004). Similarly, the formation of microcolonies
(Matz et al., 2004a) or aggregates (Blom et al., 2010),
reduces ingestion by flagellates and ciliates, but provide
inefficient protection against amoebae (Matz et al.,
2004a). Another morphological defence results from the
formation of biofilms (Matz et al., 2005), where cell aggre-
gation also favours intercellular communication, poten-
tially increasing the production of secondary metabolites
active against predators (Queck et al., 2006). Again, this
adaptation only provides limited protection as indicated by
the high diversity of amoebae growing on bacterial bio-
films (Thomas et al., 2008). Pathogenic bacteria can
prevent phagocytosis by inhibiting the restructuration of
the actin cytoskeleton, or by blocking the receptors
responsible for prey binding and initiation of phagocytosis
(Ernst, 2000). Since phagocytosis is conserved among
most eukaryotes, similar mechanisms probably help to
escape predation.

Digestion

Once the prey has been taken up, the digestion process
begins with engulfment of the prey and the formation of a
digestive vacuole, the phagosome. The phagosome is
subsequently acidified, and fused to lysosomes that
provide lytic enzymes and reactive oxygen species (ROS)
that will degrade the prey. The resulting phagolysosome is
a dual place for the interaction between predator and prey.
On the one hand it is the cell compartment where prey will
be killed and digested. On the other hand it is a place of
intricate contact between predator and prey that allows for
complex signalling, luring and poisoning from both sides
(Stuart and Ezekowitz, 2008). Secreted bacterial metabo-
lites may be more effective after prey ingestion (Table 1).
as they can target directly against the predator without
diffusion into the environment (Matz et al., 2004b; 2008a;
Deines et al., 2009). The vulnerability of the predator to
ingested bacteria is also apparent in nematodes.
Burkholderia cepacia and Pseudomonas aeruginosa can
rapidly kill C. elegans after ingestion (Kothe et al., 2003;

Zaborin et al., 2009), and secreted toxins from V. cholerae
inhibit digestion, delay development and eventually kill
C. elegans (Cinar et al., 2010). Shiga toxin-producing
strains of Escherichia coli can sense phagosome-like con-
ditions and kill ciliate predators by expressing the toxin
after ingestion (Lainhart et al., 2009). The opportunistic
human pathogen P. aeruginosa use the type III secretion
system to deliver effectors and toxins into the predator’s
cytosol (Matz et al., 2008b), and this process likely con-
tinues after ingestion. Other contact-dependant delivery
systems like the recently discovered type VI secretion
system (Hayes et al., 2010) play a role in predator–prey
interactions and contribute to inhibit predators (Jani and
Cotter, 2010). This is a new and dynamic research field,
and further studies will help elucidate the role of secretion
systems as predator defence. Adaptations that delay or
prevent digestion may reduce predation pressure even
without predator inhibition: at high prey density, predators
are limited by the time needed to digest their prey, and
saturated predators stop feeding until having digested the
prey already consumed (Jeschke, 2006). Prey adapta-
tions extending digestion time will delay the next attack,
and contribute to prey protection (Fig. 1) even if the
predator survives and if the ingested prey is eventually
digested (Jeschke, 2006). The protein coat of Bacillus
spores increases the resistance against digestion by cili-
ates (Klobutcher et al., 2006), and the S-layer of actino-
bacteria has been suggested to impair digestion by
flagellates (Tarao et al., 2009). Such adaptations likely
favour Gram-positive bacteria and contributes to their
dominance in natural communities consumed by protozoa
(Rønn et al., 2002). Other bacteria such as B. cepacia
survive in the digestive vacuoles of Acanthamoeba
polyphaga (Lamothe et al., 2004), and intracellular sur-
vival is considered to be the first step in the evolution of
endosymbionts (Horn and Wagner, 2004) or intracellular
parasites such as Legionella (Molmeret et al., 2005).

The presented defence mechanisms are not mutually
exclusive and may even act in concert. The same defence
adaptation can function at various steps of the predation
process (Fig. 2, Table 1). For example, the volatile com-
pound hydrogen cyanide is an efficient deterrent of
various eukaryotes, and at the same time a potent inhibi-
tor of cytochrome oxydases (Blumer and Haas, 2000) and
causing paralytic death of nematodes (Gallagher and
Manoil, 2001). The S-layer of actinobateria is another
case of adaptation affecting different predation steps,
putatively affecting both ingestion and digestion (Tarao
et al., 2009). Additionally, the efficiency of different
defence mechanisms varies with predator species or
functional group. Biofilm formation by P. aeruginosa inhib-
its consumption by amoebae and flagellates, but not by
ciliated protozoa (Weitere et al., 2005). Diverging impact
of predators on bacterial communities is correlated with
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their phylogenetic distance (Glucksman et al., 2010), and
this may be due to differences in the resistance to bacte-
rial toxins. Microfaunal predators of different phylogenetic
affiliation show very different sensitivity to bacterial sec-
ondary metabolites (Jousset et al., 2006; Pedersen et al.,
2011), and the variety of strategies employed to resist
predation presumably contributes to maintaining diverse
bacterial communities.

Regulation of defence strategies

Predator mediated induction of bacterial defences

Defence mechanisms increase the fitness of bacterial
prey in presence of predators but their production is costly
(Leibold, 1996; Callahan et al., 2008). Their expression
either distracts resources, as is the case in the production
of secondary metabolites, or alter resource uptake, as do
morphological adaptations, such as size changes or fila-
ment formation. It is thus advantageous for the prey to
only express defence traits when predator defence indeed
results in fitness gain, i.e. if predators are present. Induc-
tion of defence traits in presence of predators is a
common strategy to optimize the investment in predator
defence strategies, and it is not surprising that many
bacteria are able to modify their defence strategies in
presence of predators. Bacteria can sense diffusible
chemical cues secreted by protozoan predators and
respond by forming inedible filaments or microcolonies
(Corno and Jurgens, 2006; Blom et al., 2010). Similarly,
P. fluorescens responds to diffusible predator cues by
upregulating the production of toxic secondary metabo-
lites such as membrane disrupting biosurfactants
(Mazzola et al., 2009) or mitochondrial inhibitors such as
the polyketid 2,4-diacetylphloroglucinol (DAPG) (Jousset
and Bonkowski, 2010; Jousset et al., 2010). Chemical
communication is common in the rhizosphere (Dubuis
et al., 2007) and perception of predator associated chemi-
cal cues (kairomones) is widespread in planktonic micro-
organisms (Pohnert et al., 2007). Further studies are
needed to better understand the nature of protozoan
associated cues, and the regulatory cascades required for
induced defences and the transcriptome-level response
of bacteria to predators.

Density-dependent expression of bacterial defences

Another efficient strategy for predator defence is the use
of density-dependent regulation of defence traits. Many
Gram-positive and -negative bacteria present cooperative
multicellular behaviour regulated by cell-to-cell signalling.
Typically, each cell produces and senses autoinducers,
small diffusible molecules that function as proxy for cell
density and diffusion gradients (Keller and Surette, 2006).

Once a given population density is achieved, all cells
activate social behaviours that would be inefficient at low
cell density. Interestingly, many defence traits protecting
bacteria against microfaunal predators are activated by
quorum sensing. Fluorescent pseudomonads regulate
their secondary metabolism via the Gac/Rsm cascade in
a density-dependent way (Lapouge et al., 2008), and
many of these secondary metabolites are toxic for proto-
zoa (Jousset et al., 2006) and nematodes (Bjornlund
et al., 2009; Romanowski et al., 2010). Violacein produc-
tion by Chromobacter violaceum is regulated by AHLs
(Matz et al., 2004b), and quorum sensing-derived traits
are also important for the resistance of P. aeruginosa
(Matz et al., 2004a) and Serratia marcescens (Queck
et al., 2006) biofilms against predation by protozoa. Cell
signalling is also required for B. cepacia and P. aerugi-
nosa to kill bacterivorous nematodes (Gallagher and
Manoil, 2001; Kothe et al., 2003).

Ecological and evolutive implications

Bacterial defences against microfaunal predators can
have trophic and non-trophic effects on various other eco-
logical and evolutive processes (summarized in Fig. 3). In
this section, I will present some mechanisms causing
bacterial defences to influence other processes, and
discuss the environmental conditions likely to favour
these interactions.

Food web structure and stability

Prey defence is an increasingly recognized determinant of
predator–prey relationships (Altwegg et al., 2006). This is
also the case for bacterial communities, which is of par-
ticular importance considering the fundamental role of
bacteria for ecosystem functioning.

Trade-offs between prey defence and performance are
common, and the outcome of competition between resis-
tant and sensitive prey species depends on both resource
supply and predation pressure (Leibold, 1996). Prey
selection by predators strongly varies with prey size
(Jürgens and Simek, 2000; Salinas et al., 2007) and, in
particular at high resource availability, large bacteria are
less consumed (Corno and Jurgens, 2008). Larger organ-
isms have lower surface-to-volume ratios, and size is
negatively correlated to resource uptake by algae (Sunda
and Hardison, 2010). The spread of larger phenotypes
under predation pressure can therefore lead to a
decreased resource uptake at the community level. This
effect may be further accentuated if morphological adap-
tations such as filaments or microcolonies are induced by
chemical cues from predators (Corno and Jurgens, 2006;
Blom et al., 2010).
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Bacterial defences may have both stabilizing and desta-
bilizing effects on population dynamics, and a case by
case analysis is necessary to understand the possible
outcomes. Any adaptation causing alterations in the
predator functional response curve can potentially affect
the stability and strength of the interaction. Especially,
adaptations causing a shift from a type II to a type III
functional response (Fig. 1) may have far reaching con-
sequences. In a type II functional response, predation
efficiency steadily increases as prey density declines,
until eventually causing prey extinction. In contrast, in a
type III functional response predators are inefficient cap-
turing prey at low prey density, resulting in more stable
predator–prey systems (Rall et al., 2008). Body size ratio
between predators and prey is another predictor of food
web stability (see Brose, 2010), and the skewed size
distribution of bacterial communities resulting from selec-
tive prey consumption by protozoa (Pernthaler, 2005) may
destabilize food webs via allometric effects: if smaller prey
become dominant, the interaction may remain stable
albeit weaker, but dominance of larger prey may destabi-
lize food web structure (Brose, 2010). This is likely the
case in productive aquatic systems, where large pheno-
types, microcolonies and filamentous bacteria dominate
under predation pressure (Corno, 2006). The presence of
resistant phenotypes within the population causes prolon-
gation of cycles in predator–prey oscillations (Yoshida
et al., 2003). At the same time, toxic secondary metabo-
lites like 2,4-DAPG, hydrogen cyanide or proteases can
cause protozoa to produce dormant cysts (Jousset et al.,
2006). In soil the ‘cyst bank’ of dormant predators reaches
densities orders of magnitude above the active population
(Ekelund et al., 2002), and encysted protozoa can rapidly
resume their activity as soon as palatable prey becomes
available, thereby reducing predator–prey oscillations.

Toxic secondary metabolites can also affect different
trophic links at the same time. Secondary metabolites of

P. fluorescens DSS73 reduce predation by bacterivorous
nematodes, but also suppresses omnivorous prey con-
sumption by flagellates feeding on both the bacteria and
the nematodes (Bjornlund et al., 2009), with to date
unpredicted effects on food web stability. Future studies
combining quantitative measurements of secondary
metabolite production and modelling approaches are
needed to improve our understanding of the various con-
sequences of bacterial defence mechanisms in complex
communities.

Bacterial defences can also affect the link between
community diversity and functioning. Different bacterial
species consume complementary resources, and diverse
bacterial communities consume complex resources more
efficiently (Gravel et al., 2011; Jousset et al., 2011). Sub-
strate availability also influences the structure of bacterial
communities, and diversity peaks at intermediate produc-
tivity (Kassen et al., 2000). Protozoa preferentially feeding
on dominant or undefended prey species contribute to
sustain diversity in productive systems (Corno and
Jurgens, 2008; Bell et al., 2010), e.g. by promoting the
spread of less competitive or inedible species/strains.
Because of trade-offs between predation resistance and
growth rate, bacteria investing in predator defence likely
are less productive (Leibold, 1996), and predators can
cause negative relationships between bacterial diversity
and productivity via negative selection effects, i.e. the
dominance of predation resistant, albeit unproductive
species (Jiang et al., 2008). While indigestible or toxic
prey may be indiscriminately consumed by protozoa
(Lekfeldt and Ronn, 2008), many protozoa show a
marked food selectivity (Weekers et al., 1993), and prey
selection by flagellates increases with prey density
(Boenigk et al., 2002). High resource availability reduces
the relative cost of adaptations to predation less costly,
and resistant phenotypes are favoured at high resource
supply (Leibold, 1996; Corno and Jurgens, 2008; Friman

Fig. 3. Summary of some ecological and
evolutive processes altered by bacterial
defences against microfaunal predators.
Bacterial defence mechanisms such as
morphological adaptations (microcolonies,
filaments), toxicity, motility or surface
modifications (‘shielding’ with surface
molecules impairing detection or digestion)
can interfere directly or indirectly with various
ecological and evolutive processes, which are
discussed in detail in the text.
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et al., 2008). Prey adaptations leading to unpalatability
thus are likely to be more advantageous at high prey
density and the effects of prey defence mentioned above
are likely to be more prevalent in high resources environ-
ments, but marginal in oligotrophic systems where
resource acquisition is the main limiting factor.

Cooperation and cheating

Defence strategies affecting handling time or digestion
reduce the consumption of neighbouring bacteria by
predators (Fig. 1), even if they are not related to the
organisms investing in defence (Jousset et al., 2008).
Defence mechanisms therefore are open to cheating: pal-
atable phenotypes can hide within a toxic community,
therefore gaining benefit from its protection without invest-
ing in this shared function (Jousset et al., 2009). The
production of shared goods such as defence products is
more stable if cooperation is conditional, i.e. organisms
only start cooperating when the partners are likely to also
do so (West et al., 2007). Many bacteria coordinate
shared behaviours by quorum sensing: they produce dif-
fusible signals with the concentration increasing with bac-
terial abundance. Above a threshold signal concentration
indicating a large population of cooperators bacteria acti-
vate social behaviours (Keller and Surette, 2006). Various
defence traits are elicited by quorum sensing (Matz et al.,
2004b; Jousset et al., 2006), with bacteria more inten-
sively investing in antipredator defences in populations of
highly related individuals maintaining defence evolution-
ary stable despite of the associated costs (Keller and
Surette, 2006). Shared defence mechanisms also are
reinforced by prey selectivity of predators. Palatable phe-
notypes cheating by not producing secondary metabolites
toxic to the predators benefit from the investment of faith-
fully cooperating phenotypes in their vicinity are restricted
from spreading over a threshold frequency by predators
(Jousset et al., 2009). If predator defence is coupled to
other bacterial functions (see below), predators may
therefore enforce cooperation under conditions otherwise
advantageous for cheaters.

Facilitation

The protection of neighbouring bacteria by toxic organ-
isms may also function as a facilitation mechanism (Bruno
et al., 2003). Toxicity against protozoa not only reduce
predation pressure on the producer, but also on the
remaining community (Jousset et al., 2008). As discussed
above this may put constraints on cooperation, but also
facilitate the establishment of undefended bacteria in the
vicinity of secondary metabolite producers. This local
increase of bacterial diversity may introduce new function-
alities into the community (Peter et al., 2011). Antipredator

defences may thus play an important role in promoting the
taxonomical and functional diversity of microbial commu-
nities. The actual functions indirectly favoured by toxic
bacteria likely vary with ecological systems and microsites
in ecological systems; future studies have to shed light on
the implications of this type of interaction for ecosystem
functioning.

Diversification and prey evolution

According to the type of defence mechanisms, predator
resistance may contribute to diversification or be a side-
effect of it. In a multi-prey system, toxic and palatable prey
species/strains will coexist. Predators with a type III func-
tional response underconsume rare phenotypes (Kalinkat
et al., 2011). As prey recognition is based on morphologi-
cal and surface parameters (Montagnes et al., 2008), the
evolution of surface structures, such as modifications of
the lipopolysaccharides (LPS) composition, reduce con-
sumption (Wildschutte et al., 2004) and may contribute to
the observed diversification of bacteria in presence of
predators (Meyer and Kassen, 2007). Intense predation
pressure may favour rapidly evolving bacteria, for
example those with high mutation or recombination rate
(Vos, 2009), accelerating the evolution of bacterial com-
munities. Evolution may be further increased by horizontal
gene transfer between bacteria. Predator resistance
genes can be passed from undefended to defended bac-
teria. The pyrrolnitrin biosynthetic operon is a well-
described example for such horizontal transfers of
defence mechanisms (Costa et al., 2009). Pyrrolnitrin is
an efficient secondary metabolite active against proto-
zoan predators (Jousset et al., 2010), and very similar
versions of the biosynthetic operon are present in many
bacterial phyla, suggesting high mobility of this genetic
element (Costa et al., 2009). Interestingly, vacuoles of
protozoa are hot spots of horizontal gene transfer
(Schlimme et al., 1997). Bacteria able to survive passage
through protozoa may thus have the double advantage of
reduced mortality and increased gene shuffling.

Virulence

The evolution of resistance mechanism against predation
has often been put in parallel with pathogenicity and viru-
lence (Molmeret et al., 2005; Adiba et al., 2010). Indeed,
prey recognition and digestion follow conserved mecha-
nisms that form the basis of innate immunity by animals
(Stuart and Ezekowitz, 2008). The mechanisms respon-
sible for survival within the phagosome of protozoa and
macrophages present also striking similarities, and
various genes responsible for pathogenesis by Salmo-
nella enterica are upregulated during the passage through
the phagosome of Tetrahymena (Rehfuss et al., 2011).
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Acanthamoeba stimulates the growth of the opportunistic
Acinetobacter pathogen, while other pathogens such as
Legionella survive within its amoebal host, converting its
predator into a vector (Marciano-Cabral and Cabral,
2003). Shiga toxin-producing E. coli O157:H7 may also
have evolved as protozoan-resistant strain, or at least
may have been favoured by protozoan predators (Stein-
berg and Levin, 2007). Additionally, pathogens challenged
with protozoa show an increased virulence. Co-incubation
of Streptomyces californicum with A. polyphaga increases
its cytotoxicity against macrophages, and S. enterica
exposed to rumen protozoa of ruminants show an
increased pathogenicity (Rasmussen et al., 2005). Bacte-
rial defence mechanisms appear therefore to have
evolved parallel to or in synergy with pathogenesis.
However, Friman and colleagues (2009) report an oppo-
site trend, and show that predation by T. thermophila
selects for lower virulence in Serratia liquefaciens, sug-
gesting that negative trade-offs between predator resis-
tance and virulence also occur.

Other ecosystem processes

If defence mechanisms overlap with other functions, they
may also indirectly affect other ecosystem processes.
Cyclic lipopeptides, a category of biosurfactants inhibiting
protozoan predators (Andersen and Winding, 2004;
Mazzola et al., 2009), are also involved in various other
physiological processes like biofilm formation or bacterial
motility (Raaijmakers et al., 2010). Other bacterial sec-
ondary metabolites primarily known for their antifungal
activity have been reported to be essential for reducing
predation. For example, cyclic lipopeptides, hydrogen
cyanide or DAPG reduce the survival of bacterivorous
protozoa and nematodes (Jousset et al., 2006; Mazzola
et al., 2009; Meyer et al., 2009; Neidig et al., 2011), and
the promotion of toxic bacteria under predation pressure
(Jousset et al., 2008) may contribute to the inhibition of
plant pathogens. This effect may be further increased if
secondary metabolite production is upregulated in pres-
ence of microfaunal predators, as demonstrated by
pseudomonads (Mazzola et al., 2009; Jousset and
Bonkowski, 2010; Jousset et al., 2010). Predators may
therefore contribute to increase the ability of soil bacterial
communities to control plant pathogens and understand-
ing the interaction between microfaunal predators and
their bacterial prey may be central for improving the use of
biocontrol bacteria in agricultural systems. Various bacte-
rial compounds active against predators, such as DAPG,
also activate induced plant defences, improving plant
health (Iavicoli et al., 2003; Raaijmakers et al., 2010).
DAPG moreover increase the exudation of labile nutrients
by plant roots (Phillips et al., 2004), and its overproduction
in presence of protozoa may lead indirectly to an

increased activity of rhizosphere bacteria and an
enhanced nutrient supply to plants (Bonkowski, 2004).
The often reported, but as yet unexplained impact of
microfaunal predators on plant architecture and hormone
balance (Bonkowski, 2004; Krome et al., 2010), may be
related to bacterial traits involved in predator defence
which indirectly also affect plant performance.

The interplay between bacterial defence mechanisms
and predators could also play a role in decomposition
processes and the biodegradation of complex organic
compounds such as polycyclic aromatic hydrocarbons.
This class of recalcitrant pollutants usually degrades
slowly because of their hydrophobicity. Biosurfactants
produced by bacteria increase the bioavailability of poly-
cyclic aromatic hydrocarbons in soil, thereby accelerating
the bioremediation process (Tecon and van der Meer,
2010). Promoting biosurfactant producers by manipulat-
ing predation pressure might be thus an interesting strat-
egy to enhance biodegradation processes.

Bacterial defence mechanisms also overlap with func-
tions involved in nutrient cycling. Proteases, such as the
alkaline protease AprA of P. fluorescens, contribute to soil
matrix degradation, but are also an efficient defence
mechanism against protozoa (Jousset et al., 2006) and
protects the host plant against root-knot nematodes (Sid-
diqui et al., 2005). Gluconic acid is another interesting
case of all-purpose molecule. This compound is involved
in the solubilization of phosphorus in soil and improves
plant nutrition (Rodriguez and Fraga, 1999). Recently, it
has been discovered that gluconic acid also efficiently
deters and inhibits microfaunal predators (Gomez et al.,
2010). These overlaps between traits involved in defence
and other bacterial services suggest that conditions
favouring prey defence may also have a direct and indi-
rect impact on a range of processes including nutrient
cycling, pollutant degradation and plant productivity.

Predator evolution

In the same way as bacteria adapted to predators,
predators evolved adaptations to bacterial defence
mechanisms. Predators and prey rapidly co-evolve in
experimental microcosms, and this mutual adaptation is a
major driver of predator–prey dynamics (Yoshida et al.,
2007). Adaptations to prey defences are common, but
vary markedly between predator species. Protozoa from
distinct high level taxonomic groups show strong differ-
ences in their sensitivity to bacterial toxic metabolites
(Pedersen et al., 2011), and the broad spectrum toxin
violacein distinctly impact taxonomically related proto-
zoan species (Deines et al., 2009). The amoeba Acan-
thamobea castellanii is tolerant to high cyanide
concentrations (Jousset et al., 2010), a feature that many
eukaryotes acquired by expressing alternative cyto-
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chrome oxidases (McDonald, 2008). At the community
level, soil inoculation with P. fluorescens DR54 producing
the biosurfactant viscosinamide selects for protozoan
populations resistant to this toxin (Johansen et al., 2005),
and some filamentous flagellates evolved the ability to
consume filamentous bacteria (Wu et al., 2004), an oth-
erwise efficient and widespread defence strategy (Hahn
et al., 1999). Other predators evolved more subtile inter-
ference mechanisms. Caenorhabditis elegans disrupts
quorum sensing in a number of Gram-negative bacteria
(Kaplan et al., 2009), and amoeba can inhibit the produc-
tion of defence toxins by bacteria (Jousset et al., 2010).
As a consequence, bacterial populations investing in anti-
predator defences may still be consumed by adapted
predators. Predicting the outcome of this arms race is a
complex and rapidly evolving research field, and the next
years will certainly uncover novel and exciting aspects of
this battleground.

Future perspectives

The study of bacterial defence against predation has been
gaining momentum during the last decades, and emerged
as a fascinating topic crossing boundaries of various
research fields (Jessup et al., 2005). It provides an ideal
field for interdisciplinary research, and is likely to contribute
significantly to join research activities in distantly related
fields such as microbiology, ecology and immunology.
Bacteria are ideal model organisms for ecological
research; they are easy to modify, allowing switching on
and off traits of interest and monitoring effect of these
modifications on predator–prey interactions (Yoshida
et al., 2007). The short doubling time allows setting up
evolutionary experiments in the laboratory (Elena and
Lenski, 2003), and using high-throughput analytical tools
enable to test predictions with up to now unrealized levels
of precision (Brockhurst et al., 2011). The use of predators
as model organisms for infection and immunological
research uncovered a number of novel molecular mecha-
nisms involved in interactions between bacteria and
eukaryotes (Adiba et al., 2010). Our understanding of bac-
terial defence in complex bacterial communities is likely to
benefit from recent technical advances in high-throughput
sequencing. Mutagenesis and transcriptome analysis may
help to understand the pathways involved in the regulation
of defence mechanisms, and deep sequencing allows
following population fluctuations in high number of repli-
cates and with a sufficient temporal resolution to leap from
descriptive to predictive studies (Brockhurst et al., 2011) or
to investigate complex environmental systems in detail.
These new techniques, combined with new modelling
approaches and the use of model predators, form a solid
basis that will certainly help understand better the mecha-
nisms and implications of bacterial defences.
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