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ABSTRACT Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic
properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs
(leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cul-
tivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial
communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes
shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterial res-
ervoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and
related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root mi-
crobiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were corre-
lated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae
and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-
associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority
of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic
factors and vineyard management.

IMPORTANCE Vine-associated bacterial communities may play specific roles in the productivity and disease resistance of their
host plant. Also, the bacterial communities on grapes have the potential to influence the organoleptic properties of the wine,
contributing to a regional terroir. Understanding that factors that influence these bacteria may provide insights into manage-
ment practices to shape and craft individual wine properties. We show that soil serves as a key source of vine-associated bacteria
and that edaphic factors and vineyard-specific properties can influence the native grapevine microbiome preharvest.

Received 21 December 2014 Accepted 20 February 2015 Published 24 March 2015

Citation Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D, Gilbert JA. 2015. The soil
microbiome influences grapevine-associated microbiota. mBio 6(2):e02527-14. doi:10.1128/mBio.02527-14.

Editor Janet K. Jansson, Pacific Northwest National Laboratory

Copyright © 2015 Zarraonaindia et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0
Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

Address correspondence to Jack A. Gilbert, gilbertjack@anl.gov.

Bacteria form complex and dynamic associations with plants
that range from mutually beneficial to commensal or patho-

genic (1, 2) and play key roles in soil quality, host productivity,
and host health through direct or indirect mechanisms, such as
mineralizing soil organic matter, activating plant defense mecha-
nisms, and even producing antibiotics against phytopathogens
(3–6). Plant-associated bacteria colonize both exterior surfaces
(epiphytes) and interior surfaces (endophytes), and the soil sur-
rounding plants is the most likely origin for many of these organ-
isms. Plant soil-microbe interactions are complex, with both plant
species and soil type being factors exerting their effect on soil
microbial community and so playing key roles in soil pathogen
suppression (7). Plants can be inoculated with growth-promoting
bacteria that colonize via roots to confer pathogen resistance or
improve productivity (8). However, when not inoculated, plant
roots are known to influence rhizosphere microbial community

composition through both root morphology and selective enrich-
ment via root exudation (9). Building on previous work, Bulgarelli
and colleagues (10) proposed a model of root selection for soil
microbiota whereby the composition of the soil microbiome is
defined by edaphic factors, followed by substrate-driven commu-
nity selection within the rhizosphere, and finally by host
genotype-dependent tuning of endophytic bacteria that colonize
roots and, eventually, leaves and reproductive structures. In pota-
toes and poplars, the rhizosphere and the root microbial compo-
sition are cultivar specific and developmental stage dependent,
while the microbiome of Arabidopsis spp. is mostly influenced by
the edaphic and physical properties of soil (11–13). Aboveground
epiphytic microbiota are mostly selected by nutrient-poor condi-
tions and highly variable conditions of temperature, humidity,
and UV radiation intensity (14, 15) of the plant environment, and
yet some leaf epiphytes have plant species-specific associations
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that change little with geographic location (16). Elucidating the
origin of bacteria that colonize crops and, hence, shape the disease
resistance, productivity, and stress tolerance of their hosts may
provide biological targets for future biotechnological application.
However, model crop systems, such as grapevines, also provide an
opportunity to unravel the complex influence of soil type, edaphic
factors, climate, plant variety, and vineyard management practices
on bacterial colonization and stability within the crop. Under-
standing these ecological principles is vital if we are to translate
this knowledge into practical application.

Viticulturists rely on the assumption that the land from which
grapes are grown imparts a unique quality to the wine, called the
terroir. The physiological response of the vines to soil type, cli-
matic conditions, and vineyard characteristics and management is
believed to give rise to particular organoleptic properties of the
wine defining its terroir. The existence and impact of region-
specific microbiota in defining the terroir have been more contro-
versial, as some studies have been inconclusive (17), while other
studies found evidence for a biogeographic pattern (see, e.g., ref-
erences 18 and 19). Microbial spatial pattern analyses have mainly
been focused on studying the grape microbiota, but the relative
importance of the microbiome of local soils in defining the terroir,
which is also influenced by local climate and vineyard character-
istics (20), is not known. The potential importance of bacteria and
fungi associated with soils and growing plant organs has been
characterized (21, 22), but to date, research has mostly focused on
the fermentative stages whereby fungi (17) and bacteria may have
a direct influence on the wine.

In the present study, we characterized the bacteria associated
with Merlot grapevines using 16S rRNA amplicon sequencing and
shotgun metagenomics to disentangle the influences of host cul-
tivar, soil edaphic parameters, and grapevine developmental stage
(dormancy, flowering, and preharvest) on the bacterial commu-
nity composition, structure, and function from three grapevine
parts (roots, leaves, and grapes or flowers) and associated soil
(bulk soil and root zone soil). Specifically, we aimed to determine
whether the soil was the main source of bacteria colonizing these
grapevines and how edaphic factors, climate, and vineyard char-
acteristics might influence the phylogeny and functional potential
of this source.

RESULTS

A total of 62,109,490 16S rRNA V4 amplicon sequences were gen-
erated from 725 samples covering five sample types from each of
five replicate plants in New York plus 5 grape samples from Bor-
deaux. Of these raw sequences, many were annotated as mito-
chondria or chloroplasts and were removed, leaving 44,582,970
sequences that clustered into 381,871 operational taxonomic
units (OTUs; 97% nucleotide identity [ID]). A subset of 26 root
samples and 22 bulk soil samples were randomly selected for shot-
gun metagenomic analysis. While similar quantities of sequences
per sample were recovered for the two sample types, a higher
number of sequences were annotated into functional categories in
roots than in bulk soil samples (root average, 152,753; bulk soil
average, 66,572). Bulk soil and root samples had significantly dif-
ferent functional gene structures and compositions (samples
grouped according to sample type, bulk soil or root, in the first
axis of the PCoA [PCo1] r2 � 0.626 and PCo2 r2 � 0.150) (see
Fig. S1 in the supplemental material).

Most bacterial OTUs originate in soil, suggesting its poten-
tial as a source reservoir. At an even sequencing depth of 1,000
sequences per sample (used for all analyses), 33% to 48% of be-
lowground OTUs were shared among all belowground sample
types (bulk soil, root zone soil, and roots). Meanwhile, the pro-
portion of OTUs shared among aboveground sample types was
lower (see Table S1A in the supplemental material), with only 6%
to 9.8% of the OTUs present in grapes and leaves (which shared
24% and 33% of the OTUs with each other) also present in flower
samples. However, 37% of the OTUs found in leaves and flowers
and 42.1% of the OTUs found in grapes were also present in roots.
The majority of plant organ-associated bacterial taxa appeared in
the soil (Fig. 1; see also Text S1 and Table S1A), and some ex-
tremely rare (�0.001%) taxa in soil or root samples, including
Pasteurellales, Staphylococcus, Gluconobacter, and Streptococcus
spp., were more abundant above ground (0.08% and 1.30% in
grape and leaf samples).

No OTUs were found in all the samples, but 3 OTUs (97%
nucleotide ID) were detected in 75% of the samples. These “core”
microbiota, comprising OTUs associated with Bradyrhizobium,
Steroidobacter, and Acidobacteria spp., were more abundant below
ground. Across vineyard, cultivar, year, and plant developmental
stage, bulk soil samples had 17 OTUs in common, while root zone
samples had 15 and roots had 10. In aboveground samples, only
flowers maintained core OTUs across all samples, with 3 OTUs
that belonged to the Pseudomonas viridiflava, and Erwinia genera.
Every sample type also had unique OTUs (bulk soil � 19, root
zone � 18, roots � 18, grapes � 30, flowers � 1, and leaves � 13),
which all had low relative abundance (see Table S2) (for more
detail on core microbial taxa, see Results in the supplemental ma-
terial).

Microbial community structures were significantly different
among plant organs and soil samples. Aboveground samples
(leaves, grapes, and flowers) were less diverse than belowground
samples (bulk soil, root zone soil, and roots), and root samples
were not as diverse as the samples from the surrounding soil (see
Table S1B in the supplemental material). All aboveground sam-
ples were dominated by Proteobacteria (grapes, 80.7%; leaves,
90%; flowers, 98%) (Fig. 2A), which also dominated soil and root
samples, although to a significantly lesser extent (32% and 57%,
respectively). Communities associated with both grapes and
leaves were composed of Firmicutes, Acidobacteria, and Bacte-
roidetes in low abundance. In flower samples, Pseudomonas spp.
(61.8%) and Erwinia spp. (25.2%) were the dominant Proteobac-
teria taxa, while leaves and grapes contained species of Pseudomo-
nas (leaves � 43%; grapes � 19%), Sphingomonas (leaves � 19%;
grapes � 33%), and Methylobacterium, the latter of which was
often the third-most-abundant genus. While soil and root sam-
ples were also dominated by Proteobacteria spp. (32% and 57%,
respectively), they also contained Acidobacteria spp. (19% in soil;
10% in root), Bacteroidetes spp. (10% in soil; 13% in root), and
Verrucomicrobia spp. (8% in soil; 5% in root), with a greater rel-
ative abundance of Planctomycetes spp. in soils (7%) and of Acti-
nobacteria spp. in roots (5.1%; Fig. 2B), which were also enriched
for Bacteroidetes spp. and Proteobacteria spp. (Fig. 2B), including
Xanthomonadales (Steroidobacter), Cytophagaceae, Chitinopha-
gaceae, Rhizobiales, and Actinomycetales spp. (Fig. 2B) (single
analysis of variance [ANOVA], Bonferroni corrected, P value �
0.01). Steroidobacter spp. comprised 16.7% of the OTUs in roots
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(�1% in soils), and their relative abundances were remarkably
stable between sample dates.

Sample type (bulk soil, root zone soil, root, flower, leaf, or
grape) was found to be the major explanatory variable (45% ex-
plained) of microbial community structure (Fig. 2C) (PCo1 �
34% and PCo2 � 11%) and had the greatest permutational mul-
tivariate test statistic when constrained for the remaining experi-
mental factors (R2 � 0.87, P � 0.001). A multivariate regression
tree (MRT) that included all experimental factors (sample type,
vineyard, cultivar, year, and plant developmental stage) and all

edaphic factors (pH, moisture, soil temperature, total C and N,
and C:N ratio) identified sample type as the most significant vari-
able (see Fig. S2 in the supplemental material). However, as dem-
onstrated previously (10, 13, 23), remarkable similarities among
root zone soil and bulk soil microbial communities were found
(Fig. 2C; see also Fig. S2); the variance explained by bulk soil
versus root zone samples was smaller than the variance explained
by year, pH, or vineyard (see Fig. S2). Permutational multivariate
analysis of variance (PERMANOVA) showed that within soil sam-
ples, sample type (bulk or root zone) explained less variance when

FIG 1 Bipartite network of OTU sharing between samples. Samples are represented as large circles with sample type designated by color, while OTUs are
represented as black points. Edges connect sample nodes to OTU nodes detected in that sample and are also colored by sample type. To reduce the complexity
of the network, only OTUs detected at least 50 times across all samples are included. Nodes are ordinated using an edge-weighted spring-embedded algorithm
in which nodes repel each other and shared edges bring them closer together. Hence, nodes with a large degree of OTU overlap (unweighted by the number of
observations of that OTU) form clusters. (The table of edges and nodes needed to reconstruct the OTU network is provided in www.bio.anl.gov/PRMT/
Supplementary_dataset.xlsx.)
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constraining the analyses by vineyard or year (R2 � 0.0137, P �
0.001) than was explained by vineyard when constraining the
analysis by sample type (R2 � 0.515, P � 0.001).

Random Forests supervised learning models revealed that ob-
served microbiota had a high discriminative power to distinguish
samples as coming from either flowers or roots, suggesting that
these two plant parts were the most distinct of the sample types.
Compared to all other sample type combinations, flowers and
roots had the lowest predictive error, with all samples correctly
identified (class errors, 0 and 0.006, respectively; see Table S1C in
the supplemental material). Belowground samples could be dis-
criminated from aboveground samples by the changing relative
abundances of Chthoniobacteraceae (DA101 genera), Betaproteo-
bacteria (IS-44), and Pseudomonas viridiflava. Flowers had a
greater relative abundance of P. viridiflava, a known pathogen of
tomato, melon, chrysanthemum, eggplant (24), and A. thaliana
(25), than either grapes or leaves.

Predicted functions of aboveground and belowground bac-
teria show organ-specific adaptations. In order to compare
aboveground and belowground functional potentials, functional
content was predicted from amplicon data using PICRUSt (26).
Aboveground samples showed lower nearest sequenced taxon in-
dex (NSTI) values (aboveground mean NSTI � 0.06 � 0.035 and
belowground mean NSTI � 0.20 � 0.02), indicating that those
sample types have better representation in the reference genome
database used to generate the predictions, and thus better accu-
racy than belowground samples. Bulk soil and root metagenomes
were generated to validate these functional predictions. The em-
pirical and predicted functional annotations of bulk soil and root
samples were significantly correlated (Mantel R � 0.79 [P �
0.001] and R � 0.56 [P � 0.001], respectively), suggesting a mean-
ingful ability to make functional predictions for all sample types.

Several predicted pathways were significantly enriched in the
microbiota of aboveground organs (Bonferroni-corrected
ANOVA, P value � 0.01), among them, genes associated with
signal transduction, cellular processes and signaling, membrane

transport, cell motility, amino acid metabolism, and xenobiotic
biodegradation and metabolism. Genes involved in xenobiotic
biodegradation and metabolism had the highest relative abun-
dance in grapes, followed by leaves. Genes associated with nitro-
gen metabolic pathways were significantly more abundant in
leaves and roots than in other sample types (P � 0.001).

When analyzing the functional abundance of genes from
paired metagenomes of bulk soil and root samples from each of six
plants, we found that several microbial functional categories, in-
cluding iron acquisition and metabolism, dormancy and sporula-
tion, motility and chemotaxis, potassium metabolism, stress re-
sponse, sulfur metabolism, metabolism of aromatic compounds,
and membrane transport, were significantly enriched in root sam-
ples (see Table S3 in the supplemental material). The genomic
potential for siderophore production (aerobactin, enterobactin,
and pyoverdine) was highly enriched in Merlot roots (P �
0.0002), suggesting potential plant recruitment of siderophore-
producing bacteria. Only one functional category, spore DNA
protection (subsystem level 2 of dormancy and sporulation),
which can influence the survival of bacterial DNA when sporu-
lated, likely during periods of reduced plant activity, was found
exclusively in roots.

Within organs, edaphic factors were secondary drivers of
community structure. In aboveground samples, a weak but sig-
nificant correlation was observed with year of collection for both
grape and leaf microbiota (Fig. 3A and B), which may have been
due to the warmer air temperatures in September 2011 (number
of cooling degree days [CLDD] � 113 and highest extreme max-
imum temperature for the month [EMXT] � 84°F) than in Sep-
tember 2012 (CLDD � 81 and EMXT � 86°F). For grape samples,
a number of taxa associated with year of collection were signifi-
cantly different, including Agrobacterium, Sphingomonas, and Ox-
alobacteraceae spp., all of which were more abundant in 2011
(Fig. 3A). In leaf samples, Pseudomonadales and Oxalobacteraceae
spp. were significantly more abundant in 2011, whereas Bacil-
laceae and Pseudomonas abundances were higher in 2012
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FIG 2 Aboveground and belowground samples showed differences in their bacterial community structures and compositions, while bulk soil and root
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(Fig. 3B). Changes in Pseudomonas abundance were particularly
large, representing 32% of the community in 2012 and 9% in
2011. No effects of cultivar or vineyard were observed.

In belowground microbial communities, vineyard and year of
collection were secondary drivers after plant organ. Variance in
each of the three belowground sample types was significantly ex-
plained (ADONIS P � 0.001) by vineyard while constraining the
analysis for the remaining experimental variables (R2 � 0.52 in
bulk soil, R2 � 0.39 in root zone, and R2 � 0.26 in root samples).
Many taxa were responsible for the microbial community differ-
ences among vineyards (see Table S4 and Results in the supple-
mental material); however, aboveground samples did not show
such vineyard specificity. In addition, supervised learning classi-
fication could predict the vineyard of origin of soil and root sam-
ples (see Table S5).

PERMANOVA showed that the year of collection was the third
most explanatory variable in bulk soil (R2 � 0.086, P � 0.001) and
root zone (R2 � 0.122, P � 0.001) microbial communities when
constrained by sample type and vineyard; although the year of
collection was not significant for root samples (R2 � 0.062, P �
0.40), stepwise regression using forward selection of variables in-
cluded the year of collection as an explanatory variable as part of
the model best explaining the community dissimilarity in all be-
lowground samples (Fig. 3C). All soil temperatures were signifi-
cantly lower (t test, P � 0.01) in the 2012 sampling months (April
and September) than in 2011 (June and September; see Table S6 in
the supplemental material), which could explain the significant
influence of the year of collection on the data from belowground
communities.

Bacterial diversity was also influenced by edaphic factors, as
shown by a BEST rank model which included pH, carbon, and
moisture as the factors explaining the microbial beta-diversity
patterns for bulk soil. This was confirmed by both a Mantel test
and canonical correspondence analysis (CCA), which showed
that, while all edaphic factors had some influence, pH and C:N
ratio were the factors that most strongly correlated with microbial

beta-diversity (Fig. 3D). pH and C:N ratio were also found to have
the most significant correlations with changes in root microbial
community structure (Fig. 3C). Total soil carbon also influenced
the aboveground organ microbiota (grapes and leaves) (Fig. 3A
and B). In addition, leaf microbial communities were affected by
moisture and soil temperature.

Plant organ-specific signatures were preserved through early
fermentation independently of environmental conditions. The
grape bacterial communities examined here (Suffolk, NY) were
compared to bacterial communities from Merlot grapes from
Bordeaux, France (collected following the same methods and pro-
cessed and sequenced with this study’s samples), and to bacterial
communities from freshly crushed Merlot grape must from Cali-
fornia (19). Despite significant differences in location, DNA ex-
traction procedure, sample type (whole grapes versus must), and
potential inoculation sources (e.g., grapes in bulk transport are
often damaged, attacked by flies, etc.), the California must bacte-
rial community structure was more similar to Suffolk aboveg-
round samples (grapes, flowers, and leaves) than to Suffolk below-
ground samples (bulk soil, root zone, and roots; Fig. 4A), which
suggests that organ-specific signatures are preserved even during
early fermentation.

Comparing the microbiota of Suffolk grapes, Bordeaux grapes,
and Californian must, several OTUs appeared in 80% of samples,
demonstrating the existence of a “core” grape microbial phylog-
eny that is independent of growing region, climate, and sample
collection method. Interestingly, in all comparisons involving
Suffolk grapes (Suffolk vs Bordeaux grapes, and Suffolk vs Cali-
fornian must) shared OTUs were phyllosphere or grape surface
related, such as those corresponding to Methylobacterium, many
sphingomonads, Pseudomonas, and soil-associated bacteria such
as Microbacteriaceae (also found in botrytized wine ferments
[27]). However, the OTUs found in 80% of samples in compari-
sons of Bordeaux grapes and Californian musts included a range
of OTUs related to the malolactic fermentation process in wine,
such as those in the Lactobacillales order (Lactococcus, Streptococ-
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cus and Leuconostaceae; Fig. 4B). Unexpectedly, in comparisons of
the phylotypes shared among the different sample types, Califor-
nia must samples shared more taxa with Suffolk soil than with
Suffolk grapes (~43% and 21%, respectively; Fig. 4C).

DISCUSSION

Plant parts maintain distinct microbial communities, with sample
type explaining the greatest proportion of variation in microbial
community structure of all factors. Overall, Merlot microbial di-
versity was greater in belowground (roots, root zone, and bulk
soil) than aboveground (leaves, flowers, and grapes) samples, as
described for other plant systems (28, 29). This decrease in diver-
sity may be due to the extremes of temperature, UV exposure, and
humidity experienced by epiphytes on aboveground organs (15,
16). Species of Pseudomonas and Sphingomonas taxa found in
aboveground plant parts could influence plant health and produc-
tivity (30, 15), while Methylobacterium spp. found in leaves and
grapes may stimulate plant development through phytohormone
production (31). Sphingomonas and Methylobacterium spp. can
survive the wine fermentation process (27), and yet their impacts
on wine organoleptic properties remain unknown. Steroidobacter
spp., which were found in higher abundance in roots than in soil,
may play an essential role in plant development and physiology, as
brassinosteroids have been shown to control seed germination,
stem and root elongation, vascular differentiation, fruit ripening,
leaf expansion, and stress protection in plants (32, 33). The en-
richment of Actinobacteria, Bacteroidetes, and Proteobacteria spp.
in roots (Fig. 2B) is likely driven by chemoattraction via photoas-
similates secreted by root cells (10). The taxa enriched in root
samples (Xanthomonadales, Rhizobiales, Bradyrhizobium, Sapros-
pirales, Cytophagales, and Actinomycetales spp.) comprised 64% of
the core OTUs (OTUs present in �95% of samples), which sug-
gests that they outcompeted other bacteria for colonization of the
roots or that the plant selects for these taxa or both. For example,
the enrichment of roots in taxa belonging to the Rhizobiales order,
such as Bradyrhizobium spp. (both part of the root core microbi-
ota), may result in N fixation and antibiotic production (33) that
would promote plant growth and disease suppression.

Microbial metabolic capabilities enriched in roots compared

to soils included traits previously identified as favoring the move-
ment or attraction of bacteria toward root exudates (10, 34) and
genes encoding the metabolism of macro- and micronutrients (K,
S, and Fe) as well as plant stress tolerance. Iron acquisition is both
a known virulence factor (35) and a potential pathogen biocontrol
signature, as nonpathogenic bacteria producing siderophores re-
duce iron availability, restricting pathogen growth (3, 36); there-
fore, it may benefit the plant to enhance siderophore production
in the root and root zone.

Whereas plant endophytic colonization from soil microbiota is
a quite well-established concept, the origin of plant epiphytes is
believed to be more complex. In the present study, where epi-
phytes and endophytes were analyzed simultaneously, soil was
more diverse and contained the majority of OTUs found in
aboveground samples, suggesting that soil serves as a primary res-
ervoir for potential plant-associated bacteria. Regarding endo-
phytes, Rhizobium, Staphylococcus, and Agrobacterium spp. were
observed in grapes and leaves but were not previously observed as
epiphytes in the same plant parts of Merlot vines (22), suggesting
that they likely originated in the soil and migrated through roots
to aerial parts, where they flourished because of their potential
adaptation to improved nutrient supply and reduced bacterium-
bacterium competition due to the selective environment. In con-
cordance, previous studies on grapevine endophytes demon-
strated the migration of endophyte Burkholderia phytofirmans
strain PsJN from the rhizosphere to young grapes of cutting sys-
tems (37). In addition, it is likely that the rootstock affects further
endophytic colonization, as it has been shown to play a key role in
pathogen resistance, and it may be expected that different root-
stocks differentially select microbes from the surrounding soil.
Further research is needed to explore the effects of rootstock se-
lection on the final microbiota of grapevine tissues.

Referring to epiphytes, soil has been previously proposed as a
potential microbial inoculum for grapevine aboveground organs.
Martins and colleagues (22) showed that some epiphytic bacteria
were common among aerial plant parts and soil, which led them to
propose that the physical proximity between soil and grapevine
parts might facilitate microbial migration through rain splash,
high winds, insects, etc. In addition, Compant and colleagues (21)
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demonstrated that aboveground organs may also be colonized by
epiphytes from other plant surfaces (38), which may explain the
presence of species of taxa that were abundant and unique to
aboveground grapevine parts in this study, e.g., Actinobacillus spp.
were present in leaves and grapes but not in the rest of the sample
types. Furthermore, while endophytes could colonize surface tis-
sues, epiphytes could establish as endophytes through wounds
and natural openings, suggesting that epiphytes and endophytes
are part of a continuum (39, 40). Thus, none of these means of
microbial colonization of plant organs are mutually exclusive and
many or all of them may act in concert to influence the final
grapevine organ microbial community structure.

Biogeographic trends in bacterial community structure and
composition were observed only in bulk soil. Bacterial and fungal
communities associated with Chardonnay and Cabernet Sauvi-
gnon musts have previously been shown to exhibit significant bio-
geography (19). In the current study, however, edaphic factors
within vineyards outweighed biogeographic trends, suggesting
that soil bacterial assemblages have extensive local heterogeneity
even across small distances, and soils with similar edaphic vari-
ables and homogenous climatic conditions. This local heteroge-
neity could necessitate highly specific regionalization of vineyard
management practices to support beneficial bacterial taxa, both
above ground (e.g., Pseudomonas, Sphingomonas, and Methylo-
bacterium spp.) and below ground (e.g., Rhizobiaceae and Brady-
rhizobium spp.). The vineyard-associated localization of bacterial
taxa has implications for viticulturists who rely on the assumption
that the “land” imparts a unique quality to the wine specific to that
growing site, called the terroir, but to date, only grapes and must
have been implicated. These results suggest that the local biogeog-
raphy of the soil microbiota may also have an indirect influence.

The origin of the microbes in wine ferments is still poorly un-
derstood, but, when not purposely inoculated, they are commonly
assumed to come from the grapes themselves (41); however, some
particular microbes might come from the winery equipment and
barrels as well (42). The present study results evidenced that mi-
crobial community structures were most similar between grape
and must samples, suggesting that the community present on
grapes prior to fermentation remains relatively stable or, at least,
more stable than differences among plant organs. Despite this, in
comparisons of the phylotypes shared among the different sample
types, California must samples shared more species of bacterial
taxa with the soil from this study than with the grape samples. A
plausible explanation might be related to the harvest practices and
transport procedures, where harvested grapes ultimately forming
part of the must might have received a significant input of micro-
organism phylotypes from soil when manually harvested, as these
grapes are usually stored in boxes located on the ground. Mechan-
ical harvesting is not exempt from this, as the machinery generates
dust from the ground, which could colonize grapes. Martins and
colleagues (22) proposed a similar idea, suggesting that dust gen-
erated in tillage (commonly used to control weeds in vineyards)
might contribute to the migration of microorganisms from soil to
aerial parts, where they would establish as grape epiphytes. All
these results imply that soil microbiota may have a more direct
role in winemaking and that soil microbiota are potentially in-
volved in the formation of the regional wine terroir.

In conclusion, microbial community structures were signifi-
cantly different between plant parts and soils, and yet aboveg-
round samples shared more OTUs with belowground environ-

ments than they did with each other, suggesting that soil is a major
microbial reservoir. Differences in the soil bacterial communities
of different vineyards are reflected in the roots, with the abun-
dances of species of several taxa showing specific vineyard region-
alization. This suggests that, even within a single region, there can
be significant variation in the community structure in both soils
and vines, pointing to a potential microbial seed bank in soils that
is differentially selected for by the Merlot vine and that might
shape the microbial assemblages of aboveground organs, such as
grapes, thereby indirectly influencing wine characteristics.

MATERIALS AND METHODS
Data availability. 16S rRNA raw data are publically available at the Earth
Microbiome Project (EMP) portal (http://www.microbio.me/emp/), and
shotgun metagenomic data are accessible through MG-RAST (http://
metagenomics.anl.gov/). Both projects are available under the name
“Merlot microbiome.”

Sample collection. Grapevine samples were collected at 5 vineyards on
Long Island (Suffolk County, NY) which are between 0.5 and 5 mi distant
from each other. These vineyards contain many Merlot cultivars main-
tained under similar soil and climatic conditions. Additionally, these
vineyards are managed by a single owner, minimizing differences in viti-
culture management. Five replicate plants of four Merlot cultivars (clones
1, 3, 6, and 181) growing in two soil types (Haven and Riverhead) were
analyzed (see Table S6 in the supplemental material). All four clones had
been grafted onto the same rootstock (no. 3309). Soil chemical analyses
(described below) did not show significant differences between soil types;
therefore, soil type was controlled for in statistical analyses but its direct
effects were not examined.

In each grapevine, five different sample types were studied over 2 years
(2011 and 2012): bulk soil, root zone soil (soil surrounding roots), roots,
leaves, and grapes or flowers (season dependent) (see Table S6 in the
supplemental material). In 2011, samples were collected in June (flower-
ing) and September (at harvest). In 2012, samples were collected in April
(dormant, no leaves or grapes collected) and September (at harvest).
Plants were chosen to represent the same aspect (orientation to prevailing
wind and sun) and position (proximity to end of row), and samples were
randomly collected from each plant. A total of 720 samples were collected
in New York.

Five bulk soil surface samples (depth, 5 to 7 cm) were collected 20 to
30 cm from each stem using a 33-in. by 7/8-in. soil corer and composited
in the field. Homogenized soil was immediately passed through a 1-mm-
pore-size sieve and divided into two subsamples, one each for soil chem-
istry and microbial community analysis. Roots and root zone soil samples
were collected with a spade close to the stem at depths of 10 to 15 cm.
Roots were manually removed from soil using sterile gloves. Five aboveg-
round samples were collected per organ and plant (five leaves and five
flowers or grapes). Leaves of similar developmental stages were collected.
Undamaged grapes were chosen from different grape bunches (17). Ad-
ditional grape samples of cultivar 181 Merlot grapevines (five plants) col-
lected from the Chauteau Camensac winery in Bordeaux, France, follow-
ing this protocol were sent to Argonne National Laboratory for
sequencing. All belowground and aboveground samples were stored in
sterile bags on dry ice at the time of sampling, and they were stored at
�80°C until DNA extraction.

Analysis of abiotic factors: soil chemistry and climate. Several
edaphic factors were analyzed in bulk soil samples: soil temperature, pH,
moisture, total carbon, and total nitrogen. Soil temperature was collected
at sampling by insertion of a temperature probe into the open holes after
soil coring. Soil pH was measured in a soil and water suspension (2:5
soil/water). Moisture content was obtained by the oven-drying method
(at 105°C). Subsamples of each soil were pulverized in a ball mill (Spex
CertiPrep, Metuchen, NJ) prior to total C and N measurement by dry
combustion (900°C) with an Elementar vario MAX cube elemental ana-
lyzer (Hanau, Germany).
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Suffolk region monthly precipitation and air temperature measure-
ments for 2011 and 2012 were obtained from annual climatological sum-
maries of Mattituck Station (40.990°N, 72.512°W) extracted from the
National Oceanic and Atmospheric Administration (NOAA) Web page
(http://www.ncdc.noaa.gov/cdo-web/datasets/ANNUAL/stations
/COOP:305142/detail).

DNA extraction and sequencing. Genomic DNA was extracted from
all samples using a PowerSoil-htp 96-well DNA isolation kit (MoBio) with
a 10-min (65°C) incubation step modification (http://www.earthmicro
biome.org/emp-standard-protocols/dna-extraction-protocol/). Extrac-
tion of DNA from plant parts and soil samples followed the same proce-
dure. We did not conduct any sterilization prior to DNA extractions for
any sample type, and for all sample types, endophytes and epiphytes were
extracted, sequenced, and analyzed simultaneously. For the 16S rRNA
gene amplicon analysis, the V4 16S region was amplified in triplicate for
each sample using the 515F/806R primers with 12-bp barcodes as de-
scribed by Caporaso and colleagues (8, 43) following the EMP PCR pro-
tocol (http://www.earthmicrobiome.org/emp-standard-protocols/16s/).
The V4 region was chosen because it can adequately distinguish bacterial
OTUs at the short read lengths used in this study (43). PCR products were
pooled at equimolar concentrations and cleaned using an UltraClean PCR
clean-up kit (MoBio). 16S rRNA amplicons were sequenced on an Illu-
mina MiSeq instrument using 151-bp paired-end sequencing and on an
Illumina HiSeq instrument using a single 151-bp read.

Additionally, 22 bulk soil and 26 root samples were randomly selected
for shotgun metagenomic sequencing. Shotgun libraries were prepared
using a Nextera XT DNA sample preparation kit (Illumina) following the
manufacturer’s instructions. Libraries were sequenced using an Illumina
MiSeq instrument with a 251-bp paired-end sequencing run. All sequenc-
ing was performed at the Next Generation Sequencing Core at Argonne
National Laboratory.

Data analysis. (i) 16S rRNA gene amplicon analysis. Forward raw
sequences were demultiplexed and quality filtered using QIIME 1.7 (44).
OTUs were clustered against GreenGenes 13_5 reference sequences, and
reads failing to hit the reference were subsequently clustered de novo at the
97% similarity level using uclust (45). OTU sequences were aligned using
PYNAST (46, 11). OTU taxonomy was determined using the RDP classi-
fier retrained toward the GreenGenes database (97% similarity) (47). A
tree was constructed from a gap-filtered alignment using FastTree (48). A
final OTU table was created, excluding unaligned sequences, singletons,
and sequences matching plant plastids. To avoid biases generated by dif-
ferences in sequencing depth and removal of plastid sequences, the OTU
table was rarified to an even depth of 1,000 sequences per sample in com-
parisons of all sample types in this study.

Downstream data analysis was conducted using QIIME 1.7 (44) or R
software (v 3.0.1). The core microbiome and shared phylotypes were ex-
amined and OTUs shared between samples were visualized using a bipar-
tite OTU network and the edge-weighted, spring-embedded algorithm for
visualization in cytoscape (49). To reduce network complexity, the OTU
table was filtered to include only OTUs detected at least 50 times across all
samples.

Within sample type, alpha diversity estimates were calculated by ana-
lyzing the observed species, Shannon index, and evenness. Each sample
type was analyzed independently to evaluate the potential influence of the
remaining experimental factors (vineyard, cultivar, plant developmental
stage, and year of collection) on the microbial communities, rarifying the
belowground samples (bulk soils, root zone soils, and roots) to 5,100
reads per sample, flower samples to 1,500 reads per sample, and leaf and
grape samples to 170 reads per sample. Beta diversity estimates based on
UniFrac distances were used to examine community dissimilarity and
determine the impact of experimental factors on microbial community
structure. Principal coordinate analysis (PCoA) plots were used to visual-
ize these differences. ANOVA was performed to determine which OTUs
significantly differed in abundance among experimental factors after Bon-
ferroni correction. Stratified permutational multivariate analysis of vari-

ance (PERMANOVA) with 999 permutations was conducted within each
sample type to explore the percentage of variance explained by the re-
maining experimental factors to account for factor nesting. In addition, a
multivariate regression tree (MRT) was generated using the mvpart pack-
age (50) in standardized data (sum of squares, 51) with 100 iterations and
automatic selection of the best tree within 1 standard error (SE) of the
overall best, to test the effect of the experimental factors (sample type,
vineyard, cultivar, year, and plant developmental stage) and all edaphic
factors (pH, moisture, soil temperature, nitrogen, carbon, and C:N ratio).
In MRT analysis, data split into hierarchical clusters, where variables cho-
sen for each split minimize within-cluster dissimilarity and thus have the
greatest explanatory power.

The edaphic factors influencing the microbial communities of soils
and grapevine organs were also explored by canonical correspondence
analysis (CCA) using vegan (51). ANOVA followed by stepwise ordina-
tion was used to obtain the significance of the overall model used to create
the CCA and obtain the significance P value for each of the variables
included in the model. The BEST test was used to rank all edaphic vari-
ables by their importance and to identify the ones capturing the greatest
variance in the community. Similarly, a Mantel test was used to examine
the correlations among soil edaphic factors and microbial community
structures (based on UniFrac distances). Pearson correlations were used
to determine OTUs whose abundances were significantly correlated with
particular edaphic factors (e.g., pH).

A supervised learning analysis (52) was conducted using the Random
Forests classifier (53) with 1,000 trees, with OTUs as predictors and sam-
ple type or vineyard as class label, to evaluate not only the discriminative
power of the microbiota to distinguish those groupings (sample type and
vineyard) but also the robustness of the groupings themselves. The con-
tribution of each OTU to the overall Bray-Curtis dissimilarity observed in
comparisons of the microbial communities of the bulk soil and root sam-
ples from the different vineyards was analyzed by the similarity percent-
ages test (51).

In addition, 16S rRNA sequences and the OTU table of a study ana-
lyzing California Merlot must samples were downloaded from the “2019”
project accessible at QIIME-db (micro-bio.me/qiime/). That study tar-
geted the same 16S gene region, the V4, and used the same primers as
those used in the present study. The publicly available Merlot Californian
must bacteria data set was compared to the Merlot grape microbiota se-
quence data set generated in this study, which included samples collected
at five locations in Long Island (Suffolk, NY) and at a vineyard in Bor-
deaux, France. The closed reference OTUs of the two studies were merged,
and the combined OTU table was rarified to 800 reads per sample. Diver-
sity indices (alpha-diversities and beta-diversities), shared phylotypes,
and core OTUs shared among samples were calculated in QIIME (44) as
previously described.

The functional content of microbiota from all plant parts and soil
samples was predicted from the 16S rRNA data using PICRUSt software
(26). For that purpose, a closed reference OTU picking strategy was used,
removing all the OTUs that did not match with the GreenGenes 13_5
reference sequences at 97% similarity. OTUs were normalized by dividing
their abundances by known or predicted 16S copy number abundances
(26) before final metagenomic functional predictions were created. Pre-
dicted functional counts were rarefied to an even depth, and single ANO-
VAs were calculated comparing KEGG orthology (KO) values (levels 2
and 3) among belowground and aboveground samples. To validate
PICRUSt predictions, the predicted function counts (relative abundance
of each gene) derived from the 16S rRNA amplicon data of root and bulk
soil samples were compared to shotgun sequencing functional annota-
tions of the same samples. The relative abundances in the predicted and
observed datasets were correlated and distances were examined using
Bray-Curtis dissimilarity matrices, which were determined to be statisti-
cally similar or dissimilar by Mantel test.

(ii) Shotgun metagenomic analysis. The raw sequences from the Nex-
tera XT libraries sequenced for 48 root and bulk soil samples were up-
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loaded to MG-RAST v3 (54). Sequences were quality filtered and anno-
tated following the default parameters. For downstream analysis, only the
forward reads of the project were used. For taxonomic analysis of the
metagenomes, the sequences obtained were compared to the GreenGenes
database and M5NR database using a maximum E value of 1e-5, a mini-
mum identity of 60%, and a minimum alignment length of 15. For func-
tional analysis, sequences were compared using SubSystems and a maxi-
mum E value of 1e-5, a minimum identity of 60%, and a minimum
alignment length of 15. A comparison of these annotations to KEGG and
RefSeq data resulted in interpretations of the data that were not signifi-
cantly different. A PCoA was created with the functional abundance hier-
archical classification of all 48 samples to evaluate whether the metabolic
capabilities of soil and roots differed. A subset of 12 (6 root samples and 6
bulk soil samples) of the 48 samples were further analyzed by comparing
the Bray-Curtis distances of the relative abundances of the genes associ-
ated with functional categories in the root samples and bulk soil samples
using the bar-chart tool, which returned a t test P value for the compari-
son. The 12 samples included in the analysis correspond to MG-RAST
accession numbers 4520306.3, 4520328.3, 4520330.3, 4520336.3,
4520344.3, 4520350.3, 4520354.3, 4520366.3, 4520370.3, 4520380.3,
4520388.3, and 4520392.3 and comprise paired root and soil samples
from the same plant, to avoid biases related to unbalanced representation
and low replication of the factors studied, such as the different vineyards,
clonal varieties, the year of collection, etc.
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