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a b s t r a c t

The growth parameters (growth rate, m and lag time, l) of three different strains each of Salmonella
enterica and Listeria monocytogenes in minimally processed lettuce (MPL) and their changes as a function
of temperature were modeled. MPL were packed under modified atmosphere (5% O2, 15% CO2 and 80%
N2), stored at 7e30 �C and samples collected at different time intervals were enumerated for S. enterica
and L. monocytogenes. Growth curves and equations describing the relationship between m and l as
a function of temperature were constructed using the DMFit Excel add-in and through linear regression,
respectively. The predicted growth parameters for the pathogens observed in this study were compared
to ComBase, Pathogen modeling program (PMP) and data from the literature. High R2 values (0.97 and
0.93) were observed for average growth curves of different strains of pathogens grown on MPL.
Secondary models of m and l for both pathogens followed a linear trend with high R2 values (>0.90). Root
mean square error (RMSE) showed that the models obtained are accurate and suitable for modeling the
growth of S. enterica and L. monocytogenes in MP lettuce. The current study provides growth models for
these foodborne pathogens that can be used in microbial risk assessment.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Ready-to-eat minimally processed vegetables (MPV) have
gained more importance in the last 20 years due to consumers’
demand for fresh, convenient, preservative-free foods that may
promote health (Zink,1997; Jacxsens et al., 2010). In Brazil, theMPV
market increases yearly, with lettuce representing the most
consumed leafy vegetable in the country (Sato et al., 2007).

Concurrent with the increase in their production and
consumption, ready-to-eat vegetables have been associated with
progressively more disease outbreaks (Harris et al., 2003;
Sivapalasingam et al., 2004; Little and Gillespie, 2008; Lynch
et al., 2009). Between 1999 and 2008, 6062 foodborne disease
outbreaks were reported in Brazil, of which 114 involved vegetables
(Anonymous, 2010). Moreover, several surveys have been carried
out to evaluate the microbiological quality of MPV in Brazil (Fröder
et al., 2007; Silva et al., 2007; Oliveira et al., 2011) and abroad
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(Abadias et al., 2008; Ailes et al., 2008; Meldrum et al., 2009;
Caponigro et al., 2010; Giusti et al., 2010) and have reported on
the prevalence and/or countable levels of pathogens such as
Salmonella and Listeria monocytogenes in these products (Fröder
et al., 2007; Little et al., 2007; Abadias et al., 2008; Cordano and
Jacquet, 2009; Giusti et al., 2010; Oliveira et al., 2010; Quiroz-
Santiago et al., 2009; Sant’Ana et al., 2011).

Salmonella is the major bacterial challenge for the safety of
a wide variety of foods around the world (Greig and Ravel, 2009),
and it is the main etiological agent of outbreaks in which fresh
produce items are implicated (Tauxe,1997; Harris et al., 2003; Little
and Gillespie, 2008). In Brazil, salmonellae are responsible for
approximately 47% of the notified foodborne disease outbreaks
(Anonymous, 2010). The primary source of Salmonella appears to be
animal feces, while contaminated soil and water used for irrigation
may also contribute to its spread to vegetables (Krtini�c et al., 2010).

L. monocytogenes is a ubiquitous foodborne pathogen with
a known ability to grow under refrigeration temperatures (Hanning
et al., 2008) and to survive and adapt to adverse environments
(Gandhi and Chikindas, 2007). Although it causes fewer foodborne
diseases outbreaks than Salmonella (Greig and Ravel, 2009),
L. monocytogenes represents a major food safety concern due to the
highmortality rate of those sickened with listeriosis (Bennion et al.,
2008).
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In spite of the importance of estimating microbial growth
kinetics in the context of quantitative risk assessment (QRA),
simple addition of modeling data into QRA models might not be
enough for obtaining more accurate models. Several studies have
shown substantial differences in the growth kinetics among
different strains of foodborne pathogens (Guillier and Augustin,
2006; Lindqvist, 2006; Koutsoumanis, 2008; Pal et al., 2008;
Valík et al., 2008; Augustin et al., 2011; Lianou and Koutsoumanis,
2011). It is recognized that intra-species variability of microbial
growth kinetics may influence the accuracy of outputs from risk
assessmentmodels (Delignette-Muller and Rosso, 2000). Therefore,
information on the variability of growth kinetics among different
strains of foodborne pathogens and how these parameters are
affected by variations in the environment should be developed to
help obtain reliable outputs from risk assessment (Lianou and
Koutsoumanis, 2011). That is why, in this study, the growth of
three different strains of Salmonella enterica and L. monocytogenes
in minimally processed lettuce as a function of temperature
(7e30 �C) were modeled separately using both primary and
secondary models.

2. Material and methods

2.1. Strains and preparation of cell suspensions

Three different strains of S. enterica and L. monocytogenes were
used in this study. S. enterica strains were from serotype Typhi-
murium (# 277 and 386) and Enteritidis ATCC 13076 while the
L. monocytogenes strains were of serotype 4b (#: 413, 494 and 581).
Except for the Salmonella ATCC strain, the other two strains used in
this study were isolated from MPV marketed in Sao Paulo, Brazil.

Each strain of S. enterica and L. monocytogenes was grown
separately in 10 mL of Tryptic Soy Broth (Oxoid, Basingstoke, UK)
(TSB) and TSB supplemented with 0.6% yeast extract (Oxoid,
Basingstoke, UK) (TSB-YE), respectively. Broth tubeswere incubated
at 37 �C/24 h, following two successive inoculations. The third
inoculation was carried in 90 mL of the culture medium, following
centrifugation at 2810g at 4 �C for 10 min (Mikro 22R, Hettich
Zentrifugen, Germany) for removing debris and residual culture
media. After centrifugation, the supernatant was discarded and
pellets were washed with sterile 0.1% peptone water. Centrifuga-
tion and washing procedures were repeated three times and cells
were re-suspended in sterile 0.1% peptone water. Final cell
concentrations were adjusted at optical density 0.5 (OD630)
(108 CFU/mL) using an Ultrospec 200 UV/visible spectrophotometer
(Pharmacia Biotech, Buckinghamshire, UK). Each suspension was
separately prepared just before the experiments.

2.2. Minimal processing of lettuce and its inoculation with
pathogens

The two most consumed varieties of lettuce in Brazil (iceberg e

Lactuca sativa var. capitata and crisp e L. sativa var. crispa) were
purchased from produce outlets located in the city of Sao Paulo,
Brazil, and transported to the lab within 1 h. The external, damaged
leaves and core were discarded before washing. The leaves were
individually washed in tap water and were cut into strips of
approximately 2 cm2 width with a disinfected knife. The two
varieties of lettuce were mixed in the same proportion and
shredded leaveswere immersed into a disinfected 20 L plastic basin
containing Sumaveg solution (JohnsonDiversey, Sao Paulo, Brazil)
at 100 ppm for 15 min. Chlorine levels were checked using pH
paper test strips (Hydrion, Micro Chlorine, Johnson Wax Profes-
sional, Sturtevant, USA). Shredded lettuce leaves were then trans-
ferred into a previously disinfected plastic basin containing sterile
distilled water, rinsed and allowed to dry in a laminar flow cabinet
for at least 30 min.

Sterile distilled water (4 L) in pails lined with sterile plastic bags
was inoculated with each suspension to reach a final concentration
of 101e102 CFU/g of each pathogen strain. Shredded lettuce leaves
were inoculated by dipping into solutions containing different
strains of S. enterica and L. monocytogenes for 15 min. Removal of
excess water was done with the aid of a previously sanitized salad
spinner (Model DD1056Y, Casa da Moda, Brazil) in a biosafety
cabinet. Control samples were prepared by repeating the same
procedure above in non-inoculated sterile distilled water.
2.3. Packaging, storage of minimally processed lettuce and
enumeration of pathogens

Twenty-five grams of contaminated, minimally processed
lettuce was packaged in bags made of multilayer films (external
layer: bi-oriented polypropylene; internal layer: blend or co-
extruded structure of low-density polyethylene with linear low-
density polyethylene) under modified atmosphere (5% O2, 15%
CO2 and 80% N2 e White Martins, Osasco, Brazil) using vacuum-
sealing machine AP 500 (Tecmaq, Sao Paulo, Brazil). This plastic
material has been used by several fresh vegetable processing
facilities in Brazil and has 62 mm thickness, O2 permeability of
1.375 m3 m�2 day�1 at 23 �C and water steam permeability of 3.5 g
water m�2 day�1 at 38 �C and 90% relative humidity. Bags of lettuce
were stored at 7, 10, 15, 20, 25 and 30 �C, and samples were
collected at different time intervals and were analyzed for
S. enterica or L. monocytogenes. The time intervals between
sampling varied depending on the temperature of storage and
ended once the microorganisms reached stationary phase.

S. entericawas enumerated by stomaching the vegetables (25 g)
and the diluents, following pour-plate of 1 mL of serial dilutions
prepared in 0.1% sterile peptone water in mannitol lysine crystal
violet brilliant green (MLCB) agar (Oxoid, Basingstoke, UK). MLCB
plates were further incubated at 37 �C for 24h. L. monocytogenes
was enumerated in the same approach, following pour-plate of
1 mL of serial dilutions prepared in 0.1% sterile peptone water in
Oxford agar (Oxoid, Basingstoke, UK) with incubation at 37 �C for
48 h. Approximately 3e5 colonies per point along the growth curve
were selected for further confirmation by polyvalent serotyping
(S. enterica) or biochemical tests as described in ISO 11290-2
(L. monocytogenes) (Anonymous, 1998). The limit of enumeration of
themethod usedwas 101 CFU/g. Experiments were replicated twice
for each strain and temperature studied. Results were expressed as
CFU/g and data were used for primary predictive modeling.
2.4. Modeling growth parameters of three different strains of
S. enterica and L. monocytogenes in minimally processed lettuce

Growth curves for each temperature and strain were built
separately by fitting data to the Baranyi model (Baranyi and
Roberts, 1994) (Equations (1)e(3)) using DMFit version 2.1 Excel�

add-in (www.ifr.ac.uk/safety/DMfit).

lnðNðtÞÞ ¼ lnðN0Þ þ mmaxAðtÞ � ln

"
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eðNmax�N0Þ

#
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Where: ln(N(t)) ¼ log of cell concentration at time t [h] (CFU/g);
ln(N0)¼ log of initial cell concentration (CFU/g); mmax¼ exponential
growth rate (log CFU/g/h); ln(Nmax) ¼ log of maximum cell
concentration; q0 [-] ¼ parameter expressing the physiological
state of cells when t ¼ t0; l ¼ lag time (h).

The Ratkowsky model (Ratkowsky et al., 1982) was used to
describe m and l as a function of storage temperature (Equation
(4)):

ffiffiffi
r

p ¼ bðT � T0Þ (4)

In thismodel,
ffiffiffi
r

p
is the square root of maximum growth rate, b is

the slope of the regression line, T is temperature and T0 is
a conceptual minimum temperature for microbial growth, where T
was given in �C. For l, transformation of data to natural logarithm
(Ln) was needed to describe its relationship with storage
temperature.
2.5. Model evaluation

Computer programs (ComBase Predictor [http://modelling.
combase.cc/] and the Pathogen Modeling Program 7.0 e PMP
[http://pmp.arserrc.gov/PMPOnline.aspxi]) were used to estimate m
and l for further comparison with the data obtained in this study.
The PMP and ComBase models were run with the following
selected parameters: pH ¼ 6.8, initial level of log 3 CFU/mL of the
pathogen, and aw ¼ 0.995 (equal to 0.9 g/dL of NaCl). The pH and aw
values were chosen based on previous measurements carried out in
our laboratory as described by Scott et al. (2001). PMP models used
were “Salmonella aerobic growth” and “L. monocytogenes anaerobic
growth” while ComBase models used were “salmonellae with CO2
(%)” and “L. monocytogenes with CO2 (%)”. The aerobic growth
model for Salmonella was chosen because PMP does not include
anaerobic or modified atmosphere growth models for this path-
ogen. In the case of the ComBasemodels, CO2 was set at 15%, i.e., the
initial % of CO2 used in modified atmosphere. The minimal
temperature used for predictions for the PMP Salmonella models
Table 1
Growth kinetic parameters (m, log CFU/g/h and l, h) of three different strains of S. enteric

Pathogen Growth
parameters

Strains Temperature (�C)

7 10

Salmonella spp. m 277 0.053 � 0.010a 0.0497 � 0.00
386 0.061 � 0.008a 0.042 � 0.00
ATCC 0.0635 � 0.006a 0.045 � 0.00
Average 0.06 � 0.0045A 0.05 � 0.00

L. monocytogenes m 413 0.0165 � 0.003a 0.0225 � 0.00
494 0.0191 � 0.008a 0.0272 � 0.00
581 0.0141 � 0.001a 0.0233 � 0.01
Average 0.02 � 0.002B 0.02 � 0.00

Salmonella spp. l 277 25.2 � 1.2a 12.8 � 2.3a

386 26.5 � 1.6a 11.8 � 3.1a

ATCC 28.4 � 2.1a 14.3 � 0.9a

Average 26.7 � 1.3B 12.9 � 1.0B

L. monocytogenes l 413 45.5 � 11.4a 39.1 � 20.1
494 56.6 � 13.7a 44.6 � 1.8a

581 76.2 � 10.0a 48.7 � 8.2a

Average 59.4 � 12.7A 44.1 � 3.9A

a Different superscript letters in the same column indicate significant differences (p< 0
Duncan’s test.

b Different superscript capital letters in the same row indicate significant differences (p
L. monocytogenes according to Duncan’s test.
were 10 �C as these models did not allow selection of a lower
temperature. Additionally, our data were compared with the m and
l reported in selected literature (Koseki and Isobe, 2005a,b), here
referred to as “Koseki-derived model.” Procedures previously
adopted to transform data obtained in this study for secondary
modeling were also used to deal with the data obtained from
literature and from ComBase and PMP programs.

2.6. Statistical analysis

The m and l of the different strains of Salmonella and
L. monocytogeneswere checked for significant statistical differences
(p � 0.05), employing one-factor analysis of variance (ANOVA)
followed by Duncan’s test. Growth parameters for both pathogens
were also compared to each other. Statistical analyses were carried
out in Assistat version 7.5 free software (Campina Grande, Brazil)
(Silva and Azevedo, 2002). In addition, fitting of the models was
evaluated by the coefficient of determination (R2) and their
performance was checked by the root mean square error (RMSE).

3. Results

S. enterica and L. monocytogenes survived, but did not grow on
minimally processed lettuces stored at 5 �C. Growth curves started
with an initial population of 101e102 CFU/g and final populations of
S. enterica and L. monocytogenes varied between 105e106 CFU/g and
104e107 CFU/g, respectively. The average R2 values for growth
curves of the three different strains of S. enterica and
L. monocytogenes inoculated on minimally processed lettuce leaves
and fitted to Baranyi model were 0.97 and 0.93, respectively
(figures not shown). Control samples did not show growth of
S. enterica or L. monocytogenes during storage at different temper-
atures and periods.

Table 1 shows the average growth kinetic parameters for each of
the three different strains of S. enterica and L. monocytogenes on
packed minimally processed lettuce. At 7 and 10 �C S. enterica
presented lower l in comparison to L. monocytogenes (p < 0.05).
With the rise in temperature, l did not differ among the pathogens
(p > 0.05) except at 20 �C. S. enterica grew faster than
L. monocytogenes over the temperature range (p < 0.05), except at
20 �C. When growth parameters among strains of the same
a and L. monocytogenes on packed minimally processed lettuce stored at 7e30�Ca,b.

15 20 25 30

1a 0.149 � 0.04a 0.148 � 0.04a 0.328 � 0.002a 0.44 � 0.09a

2b 0.124 � 0.01a 0.138 � 0.16a 0.300 � 0.007a 0.32 � 0.03a

1a,b 0.094 � 0.05a 0.149 � 0.01a 0.315 � 0.001a 0.36 � 0.03a

31A 0.12 � 0.022A 0.16 � 0.015A 0.31 � 0.011A 0.37 � 0.05A

6a 0.0656 � 0.04a 0.172 � 0.02a 0.152 � 0.003a 0.24 � 0.01a

9a 0.0605 � 0.05a 0.069 � 0.01b 0.122 � 0.001a 0.20 � 0.02a

0a 0.0495 � 0.01a 0.094 � 0.01b 0.110 � 0.002a 0.19 � 0.01a

2B 0.06 � 0.007B 0.11 � 0.04A 0.13 � 0.017B 0.22 � 0.02B

4.7 � 2.1a 4.4 � 0.1a,b 1.7 � 0.4a 1.5 � 0.2a

7.4 � 2.0a 5.4 � 0.6a 2.2 � 0.7a 2.4 � 1.1a

5.4 � 0.9a 3.8 � 0.5b 1.8 � 0.1a 1.1 � 0.4a

5.9 � 1.1A 4.5 � 0.7A 1.9 � 0.2B 1.6 � 0.6A
a 8.4 � 7.7a 6.9 � 2.6a 4.3 � 0.5a 1.4 � 0.4b

14.4 � 4.4a 5.4 � 0.9a 3.6 � 0.3a 2.5 � 0.3a,b

8.4 � 1.5a 5.7 � 1.4a 3.2 � 0.1a 3.4 � 0.7a

10.4 � 2.8A 5.9 � 0.6A 3.7 � 0.5A 2.4 � 0.8A

.05) for growth rate or lag time of different strains of the same pathogen according to

< 0.05) for average values of growth rate or lag time between Salmonella enterica and

http://modelling.combase.cc/
http://modelling.combase.cc/
http://pmp.arserrc.gov/PMPOnline.aspxi
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pathogenwere evaluated, significant differences were observed for
S. enterica only at 10 �C (growth rate) and 20 �C (lag time) (p< 0.05).
The highest variations in m and l in salmonellae were observed
when the growth took place at 30 �C. The m varied between 0.32
log CFU/g/h and 0.44 log CFU/g/h in S. Typhimurium strains (#277
and 386). In addition, l values varied from 1.1 h for S. Enteritidis
ATCC 13076e2.4 h for S. Typhimurium (#386) (Table 1). It was
found that S. Enteritidis ATCC 13076 presented slightly higher l in
comparison to strains 277 and 386 at 7 and 10 �C, while the strain
386 (S. Typhimurium) presented higher l in the range of 15e30 �C.
S. Typhimurium 277 presented an overall higher m that was more
evident at 25e30 �C.

Significant differences were observed at 20 �C (m) and 30 �C (l)
(p < 0.05) for L. monocytogenes (Table 1). L. monocytogenes strain
581 presented slightly higher lag time at 7e10 �C, while strain 413
presented higher m between 15 and 30 �C.

The relationship between the storage temperature of minimally
processed lettuce and the average growth parameters (m and l) for
each strain of S. enterica and L. monocytogenes is shown in Fig.1. The
relationship between the growth parameters and temperature for
both pathogens followed a linear trend with high R2 values (>0.90).
Certain data points were out of the 95% confidence intervals,
although the mean values are within the 95% CI (Fig. 1).

Fig. 2 presents a comparison of linear regression among the
average growth parameters of S. enterica and L. monocytogenes
Fig. 1. Relationship between average growth parameters (m and l) of Salmonella enterica (A
processed lettuce.
obtained in this study, PMP, ComBase and Koseki. Themodel for l of
S. enterica (Fig. 2A) derived from Koseki was very close to the model
obtained in this study, mainly at the points of 15, 20 and 25 �C. In
this case, the ComBase and PMP-derived models presented higher
slopes. On the other hand, secondary models for L. monocytogenes
derived from ComBase, PMP and Koseki followed a similar pattern,
with most of the data falling within the 95% CI of average data
obtained in this study (Fig. 2-B). Models for m of S. enterica (Fig. 2-C)
derived from ComBase and PMP showed the greatest slope, fol-
lowed by the model derived from Koseki. The secondary model for
m of S. enterica obtained in this study did not follow the same trend
as the three other models. Conversely, the secondary model for
L. monocytogenes derived from Koseki followed the same trend of
the model derived from data obtained in this study, while models
derived from PMP and ComBase presented the greatest slope
(Fig. 2-D).

Equations describing the relationship of growth parameters and
temperature for S. enterica and L. monocytogenes grown in packed
minimally processed lettuce from 7 to 30 �C are shown in Equations
(5)e(6) and (7)e(8), respectively:ffiffiffi
m

p ¼ 0:0178ðT � 6:65Þ (5)

lnðlÞ ¼ �0:118ðT þ 34:84Þ (6)ffiffiffi
m

p ¼ 0:0144ðT � 1:96Þ (7)
and C) and L. monocytogenes (B and D) strains and temperature of storage of minimally



Fig. 2. Comparison of the linear regression models for (m and l) derived from ComBase, PMP, Koseki (symbols) and average data obtained in this study (solid lines).
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lnðlÞ ¼ �0:1445ðT þ 35:3Þ (8)

RMSE values obtained for m and l models of S. enterica were
0.033 and 0.214, respectively. RMSE values for L. monocytogenes
models were 0.015 (m) and 0.271 (l), respectively. It can be noticed
that RMSE values for mmodels were lower than for l, no matter the
pathogen.

4. Discussion

Despite the increasing association of vegetables with foodborne
disease outbreaks in recent years (Lynch et al., 2009), few studies
have focused on predicting the growth of pathogens in fresh
vegetables (Koseki and Isobe, 2005a,b; Crépet et al., 2009; Ding
et al., 2010) when compared to meat and dairy products
(McMeekin, 2007; Poirazi et al., 2007; Vissers et al., 2007; Oscar,
2009; Cornu et al., 2010; Limbo et al., 2010; McMeekin et al.,
2010; Schvartzman et al., 2010; Lindqvist and Lindblad, 2011).
Therefore, there is a need for more data on the growth of foodborne
pathogens in these products.

Studies on the growth modeling of pathogens are built with
a higher starting initial population (i.e., >103e104 CFU/g) (Koseki
and Isobe, 2005a,b; Ding et al., 2010) of pathogens than that of
naturally-contaminated foods, such as fresh vegetables (i.e.,
<101e102 CFU/g) (Sagoo et al., 2003; Little et al., 2007; Cordano and
Jacquet, 2009; Oliveira et al., 2010; Sant’Ana et al., 2011). However,
predictivemodels shouldmatch the complexity of foods of concern,
including low pathogens contamination levels, in order to provide
more realistic outputs (Mejlholm et al., 2010). Therefore, herein the
growth kinetic parameters (m and l) of three different strains of
S. enterica and L. monocytogenes on packed MPV were predicted
with low initial starting populations (101e102 CFU/g). The average
growth curves of three different strains of these pathogens pre-
sented higher R2 values (>0.93) than those found in the separate
curves for each strain (0.83 and 0.90). R2 is defined as the propor-
tion of the variability in the data set that is explained by the
statistical model (Myers et al., 2009). Therefore, the improvement
in curve fitting for the averaged data indicate that when mean
values of data points were calculated, marginal values that caused
lower R2 values in separate curves were pulled into the center
(Figs. 1 and 2). Thus, high R2 were obtained in average growth
curves because the regression line approximated the real data
points.

As shown in Table 1, S. enterica grew faster than
L. monocytogenes in the temperature range tested (7e30 �C) at
which MPV can be exposed from farm to fork (p < 0.05). Overall,
S. enterica presented m 1.5e3.5 times higher than L. monocytogenes.
Koseki and Isobe (2005a, b) reported m of approximately 0.02 and
0.04 log CFU/g/h at 10 �C, respectively, for S. enterica and
L. monocytogenes growing on iceberg lettuce. In our study,
the average m of both pathogens at 10 �C was 0.045 and 0.024
log CFU/g/h, respectively. Marked differences in lwere found at low
temperatures (7 and 10 �C), when L. monocytogenes presented
larger values in comparison to S. enterica (p< 0.05). It is known that
even during minimal processing, microorganisms are exposed to
stressors such as cold, sanitizers, modified atmosphere and the
presence of background microbiota (Capozzi et al., 2009). Even
though both pathogens present several mechanisms to overcome
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hurdles faced during food processing (Gandhi and Chikindas, 2007;
Spector and Kenyon, 2011), L. monocytogenes is noticeably more
prone to inhibition by indigenous microorganisms present in MPV,
such as lactic acid bacteria, than is Salmonella (Liao and Fett, 2001;
Hanning et al., 2008; Dominguez and Schaffner, 2008). Therefore,
considering the similar responses of both pathogens to other
stressors found during minimal processing (i.e., sanitizer and
modified atmosphere), it may hypothesized that the inhibitory
effect of indigenous microbiota on L. monocytogenes supplants the
ability of this pathogen to adapt to chilling temperatures (Gandhi
and Chikindas, 2007; Capozzi et al., 2009). Altogether, these
factors may have substantiated the faster growth of S. enterica
compared to L. monocytogenes, in minimally processed lettuce
under the conditions tested in the present study

Temperature is a major environmental factor affecting microbial
growth kinetics in foods (McMeekin et al., 2008). Regression lines
of secondary models depicted in Fig. 2 were drawn based on the
mean growth kinetics parameters of S. enterica and
L. monocytogenes strains while the data points addedwere obtained
from models of each different strain of the pathogens. It can be
noticed that most data points were generally within the 95%
confidence interval of the averaged values. Modeling of m was
successfully performed using a linear relationship between the
square root of the parameter and temperature as described by
Ratkowsky et al. (1982). However, the natural logarithm trans-
formation of lag time (l) resulted in better fit than the square root
transformation for this parameter and temperature.

Data on secondary modeling obtained herein were compared
to those available in the literature (Koseki and Isobe, 2005a, b) and
to tertiary models such as ComBase (Baranyi and Tamplin, 2004)
and PMP. These tertiary models are the most recognized software
of modeling used to predict growth parameters of several food-
borne microorganisms under a variety of conditions. Literature
data used for comparison were comprised of models previously
described by Koseki and Isobe (2005a, b), since these are the only
papers dealing with the growth kinetics of S. enterica and
L. monocytogenes in MPV in the wide range of temperatures these
products may be subjected from farm to fork. As can be seen in
Fig. 2, secondary models derived from ComBase and PMP basically
follow the same slope pattern regarding m and l. Overall, our l

models for S. enterica and L. monocytogenes were closer to Com-
Base, PMP and Koseki-derived models than our m models (Fig. 2).
Differences among our models, ComBase and the PMP-derived
models can be due to the use of data obtained from culture
media for building tertiary models. When growing in culture
media, microorganisms are not exposed to factors such as the
structure of foods and the presence of background microflora,
among other issues. The differences between foods and culture
media might result in the stress of bacterial cells, leading to faster
m (and greater slopes) when growth takes place in culture media.
This hypothesis can be supported by the fact that m is a charac-
teristic of a microorganism growing in a particular environment,
while l is dependent upon the history and physiological state of
the bacterial cells (Baranyi et al., 1995).

RMSE is a measure of the precision of a predictive model, and
accounts for the differences between predicted and observed
values. The lower the RMSE value for a model, the more precise
the data were described (Ross, 1996). Therefore, the RMSE values
obtained in this study are very close to those found in models
available in the literature, which indicates that the models built
here are generally suitable for modeling the growth of S. enterica
and L. monocytogenes in MP lettuce. In addition, the current study
adds to the available literature data on the growth of foodborne
pathogens in MPV and can be used to build risk assessment
models.
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