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Identifying the major sources of risk in disease transmission is key
to designing effective controls. However, understanding of trans-
mission dynamics across species boundaries is typically poor,
making the design and evaluation of controls particularly chal-
lenging for zoonotic pathogens. One such global pathogen is
Escherichia coli O157, which causes a serious and sometimes fatal
gastrointestinal illness. Cattle are the main reservoir for E. coli
O157, and vaccines for cattle now exist. However, adoption of
vaccines is being delayed by conflicting responsibilities of veteri-
nary and public health agencies, economic drivers, and because
clinical trials cannot easily test interventions across species bound-
aries, lack of information on the public health benefits. Here, we
examine transmission risk across the cattle–human species bound-
ary and show three key results. First, supershedding of the path-
ogen by cattle is associated with the genetic marker stx2. Second,
by quantifying the link between shedding density in cattle and
human risk, we show that only the relatively rare supershedding
events contribute significantly to human risk. Third, we show that
this finding has profound consequences for the public health ben-
efits of the cattle vaccine. A naïve evaluation based on efficacy in
cattle would suggest a 50% reduction in risk; however, because
the vaccine targets the major source of human risk, we predict
a reduction in human cases of nearly 85%. By accounting for non-
linearities in transmission across the human–animal interface, we
show that adoption of these vaccines by the livestock industry
could prevent substantial numbers of human E. coli O157 cases.
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In the 30 years since Escherichia coli O157 was identified as
a source of serious gastrointestinal illness, it has emerged

globally. Infection can lead to death or life-long kidney damage,
and it is a major cause of acute renal failure in children (1). In
addition to devastating personal losses, the economic costs can
be substantial—in the United States, the costs of healthcare,
social care, and lost productivity come to around $600 million
per year (2), whereas costs to the food industry from product
recalls and reduced trade can run to tens of millions of dollars.
Newly developed cattle vaccines could help tackle this problem
at its source.
Cattle are the main reservoir for E. coli O157 and harbor the

pathogen in their gastrointestinal tract without developing clin-
ical disease. Although direct person-to-person spread can occur,
people are usually infected by either consuming contaminated
food and water or contact with livestock feces in the environ-
ment. Reducing occurrence in cattle is one route to control, but
a lack of effective interventions before slaughter means that
control currently relies heavily on good hygiene practices by food
producers and individuals in the domestic kitchen and the simple
personal hygiene measure of hand washing. Several preslaughter
interventions have been tried, including altered diets, adding

probiotics to feed, spraying cattle with bacteriophage, and vac-
cination (3). Of these interventions, vaccines have proven to be the
most effective; in vaccine trials, both experimentally and naturally
infected cattle show significant reductions in the frequency, dura-
tion, and intensity of E. coli O157 excretion in their feces (4–8).
Two vaccines are now available: one vaccine in Canada, where

it is fully licensed but with little uptake by farmers, and two
vaccines in the United States, where restricted licenses permit
only limited use (9). The delay in fully licensing these vaccines
highlights two challenges to control planning that are posed by
zoonotic infections. First, there are conflicting responsibilities of
the medical and veterinary agencies. The bodies charged with
licensing vaccines in animals must typically certify that controls
are not just safe but improve animal health; this remit poses
a problem for the control of zoonotic pathogens that are benign
in their reservoir hosts and demands a coordinated approach from
medical and veterinary agencies (9–11). Second, controls applied
in animals are not easily tested against the key outcome—the
reduction in human illnesses—and this lack of data on impact
hampers effective decision-making.
In Canada, the issue is gaining political momentum and media

attention—a recent outbreak prompted their media to cite the
failure to vaccinate as “irresponsible if not worse” (12). In the
United Kingdom, the 2009 Godstone Farm (13) outbreak that
caused 93 cases, most of whom were children, prompted interest
in vaccination on open or petting farms. A special treatment
certificate is now available, allowing open farms to apply for
permission to vaccinate. However, whether vaccination would
ever be widely used in the United Kingdom, North America, or
the wider world will depend on the number of illnesses and deaths
prevented; the cost of vaccination; and whether costs could be
shared between the public, government, and food industry to help
make vaccination a viable option for the farming community.
Disease control planning (when costs and benefits are dis-

tributed across several stakeholder groups) is a challenging prob-
lem but one that occurs frequently for zoonotic disease (14).
A one health approach that integrates the understanding and
management of human and animal disease has gained momen-
tum in the last decade and been used to show that certain
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interventions in livestock are not only effective but also cost-
saving when costs and benefits are combined across multiple
sectors (14–17). Narrod et al. (10) propose a five-step framework
for estimating the costs and societal benefits of controlling
zoonoses. Underpinning this framework are integrated models of
disease transmission within the animal reservoir, disease trans-
mission from reservoir to humans, and the impact of risk man-
agement strategies on the disease dynamics. Here, we focus on
the understanding of disease ecology and cross-species trans-
mission dynamics of E. coli O157 to tackle the question of the
number of human cases prevented by vaccination.
In the absence of direct data, mathematical models of trans-

mission across the human–animal interface provide tools to
predict the success of interventions. However, few such models
for zoonotic infections exist (18), a consequence of the difficulty
in mapping the distribution of disease in the animal reservoir to
incidence in the human population. The models that have been
developed previously frequently assume linear relationships be-
tween prevalence in the animal host and human cases (15, 16).
Zinsstag et al. (17), however, provide an example of transmission
route heterogeneity captured in an animal to human rabies
transmission model. In general, heterogeneities need to be
captured when variation in host infectiousness, pathogen strain,
and transmission route mean that crude prevalence in the animal
reservoir may not be a good predictor of risk to humans. For
E. coli O157, this issue is key. Cattle vaccines reduce the fre-
quency of shedding by around 50% (6, 7), but how this translates
into the reduction in human cases requires investigation of the
cross-species transmission step to identify the factors promoting
transmission across the species barrier.
Genetic and genomic studies have sought to identify the fea-

tures of E. coli O157 strains in the cattle reservoir that appear
most frequently in human cases (19, 20). These studies show that
certain genetic markers, including variants of the Shiga toxin
2-producing genes (stx2 and stx2c), are differentially associated
with occurrence in humans (21). However, what is not delivered
by these studies is an understanding of the epidemiological traits
associated with these markers.
Determining how strains differ epidemiologically has impor-

tant implications for the design and efficacy of control measures
applied in cattle. If strains differ only in clinical severity after
they have crossed the species barrier into humans, controls that
reduce frequency of occurrence in cattle will produce propor-
tionate reductions in numbers of human illnesses; if, however,
strains differ in human risk because high shedding intensity boosts
their capacity to cross the species barrier, then controls that reduce
occurrence in cattle by reducing high-concentration shedding will
be disproportionately effective at reducing human cases.
Consequently, a key issue is whether the Shiga toxin 2-pro-

ducing gene variants are responsible for differences in epide-
miology in the cattle reservoir or the severity of infection within
the human host. Currently, their roles remain unclear. Although
some studies have found associations between stx2c and more
severe infections in people (22, 23), when examined in vitro, stx2c
is found to produce a smaller quantity of less potent toxin than
stx2 (24). It has been argued, however, that, because humans play
a small role in the epidemiology of the bacterium, the role of
Shiga toxin may be to confer a selective advantage for the or-
ganism in cattle. Shiga toxin has been shown in mouse models to
aid bacterial adherence and also dampen innate response sig-
naling (25, 26). Another hypothesis is that Shiga toxin kills off
predatory protozoa in the cattle gut (27). Consequently, the
more frequent occurrence in humans of strains with particular
stx2 gene variants may be driven by differing epidemiology in the
cattle host, affecting pathogen shedding and risk of transmission
across the human–animal interface, rather than differing severity
in humans after the species barrier has been crossed, affecting
the likelihood of infections being reported.

In parallel with the genetic and genomic studies, epidemio-
logical studies in the cattle reservoir have shown marked dif-
ferences between strains in shedding intensity (the level of
excretion of the pathogen in feces) (28, 29). Shedding at high
intensities is important, because despite being relatively rare, it
seems to be the major source of deposition into the environment;
in our cattle data, shedding below 103 cfu/g feces was found in
86% of samples but accounted for less than 1% of the total
bacteria shed (Fig. 1B). Such high-intensity shedding or super-
shedding is not confined to certain animals (30, 31) but viewed as
an occasional phenomenon with the potential to occur in any
individual animal, and it has been to shown to have an important
role in amplifying cattle-to-cattle transmission (32–34). How-
ever, despite the attention that supershedding has received as
a source of transmission between cattle, there are two important
gaps. First, although phenotypic markers (phage type) exist, no
genetic marker for supershedding has been found. Second, there
has been no assessment of whether and to what extent super-
shedding might increase transmission risk to humans and how
this phenomenon might be exploited for control.
This paper addresses both these gaps, with the goals of ex-

posing the cross-species transmission dynamics and determining
the public health benefits of cattle vaccination. We use extensive
veterinary, human surveillance, and molecular data to quantify
the relationship between pathogen shedding in the cattle reser-
voir and human risk, and we show that only the relatively rare
supershedding events contribute significantly to human risk.
Using this information, we show that, because the currently
available vaccines target the high shedding densities—the major
drivers of cross-species transmission—it produces a much greater
reduction in human cases than would be predicted from its ef-
ficacy in the cattle reservoir.

Results
E. coli O157 strains from primary human cases and a large-scale
cattle survey were used to ask whether supershedding strains were
disproportionately frequent among human clinical isolates and
determine the relationship between shedding density in the
cattle reservoir and human risk. Strains were grouped by phage
type (PT), a classification associated with shedding density. We
have shown previously that the two most common E. coli O157
PTs in Scottish cattle have distinct shedding patterns: PT 21/28
is significantly more likely to be found in supershedding cattle
(a supershedder strain), whereas PT 32 is significantly less likely
(a non-supershedder strain) (29).
The distribution of PTs among human primary cases (Fig. 1A)

showed the supershedder strain, PT 21/28, to be more common
than expected given its frequency in cattle (P < 0.001) and the
non-supershedder strain, PT 32, to be less common than ex-
pected (P < 0.001). These differences allowed us to quantify the
relative risk to humans posed by different shedding concen-
trations. We compared three relationships (Materials and Methods),
with the best fit to the data being provided by a threshold re-
lationship. This relationship predicted that the distribution of strains
among primary human cases was best explained by the frequency
of strains in cattle shedding above a threshold of 1,300 cfu/g feces
with a 95% confidence interval of 600–2,300 cfu/g feces. This
threshold relationship provides a strikingly good fit to the human
data (P > 0.6), suggesting that high shedding dominates human risk
(Fig. 1A).
The prediction that high-concentration shedding of the path-

ogen in cattle dominates human risk is consistent with the ob-
servation that, although supershedding is relatively rare, it domi-
nates the contamination of the environment by cattle; in our
data, shedding below 103 cfu/g feces was found in 86% of sam-
ples, but it accounted for less than 1% of the total bacteria shed
(Fig. 1B).
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Insight into the mechanisms underlying the differences be-
tween the PTs was provided by our recent study (35), which
showed that the stx2 variant was more frequent among human
PT 32 strains than cattle PT 32 isolates (P = 0.01) (Fig. 1C). In
this study, we additionally show that, among cattle isolates, the
stx2 variant is more common in PT 21/28 than PT 32 (P < 0.01)
(Fig. 1C). These observations show that the presence of the stx2
variant, whether alone or combined with stx2c, is associated with
occurrence in human clinical isolates.
We, therefore, examined all PTs in the cattle data for the

presence of the stx2 variant to identify associations with shedding
level. Shedding at high concentrations (Fig. 1D) was significantly
associated with the presence of the stx2 variant (odds ratio =
14.2, P < 0.001 for shedding > 104 cfu/g feces; odds ratio = 6.54,
P < 0.001 for shedding > 1,300 cfu/g feces), indicating that oc-
currence in humans may arise as a result of high cattle shedding
levels associated with this toxin type.
Together, these results support two key conclusions: first, the

stx2 variant is likely to be a critical factor in the shedding phe-
notype and appearance in human clinical isolates, and second,
supershedding of the pathogen by cattle seems to heavily in-
fluence risk to humans.
Cattle vaccines that reduce high-concentration shedding should,

therefore, be highly effective at reducing human cases. To assess
their impact, we simulated the effect of vaccination on shedding
frequency and concentration in cattle and predicted the re-
duction in human cases based on the frequency of shedding
above the threshold of 1,300 cfu/g feces—the threshold model of
human risk. In our simulations, eliminating just the 12% highest
shedding densities produces a 50% drop in the frequency of
shedding in cattle (Fig. 2, black line) but an 83% (95% confi-
dence interval = 76–93%) drop in human cases (Fig. 2, red line).

An efficacy of 50% in cattle is consistent with data from vac-
cine trials, which have been recently summarized in two inde-
pendent metaanalyses (6, 7). Although the associated reduction
in shedding density has typically been assessed for experimental
challenge rather than natural infections, Fox et al. (5) report
a reduction in frequency of fecal shedding of 46% (consistent
with the metaanalyses) and a corresponding reduction in the
number of days spent as a high shedder (shedding > 103 cfu/g
feces) from 0.65 to 0.10 d. This finding is consistent with the
effect of vaccination captured in our simulations. Using the
threshold relationship directly, this reduction in days spent as
a high shedder would predict a reduction in human cases of 85%.
These predictions support our third key conclusion: currently

available vaccines that reduce the intensity of shedding should
produce substantially greater reductions in human cases than
would be predicted from reductions in frequency of shedding in
cattle alone.

Discussion
Despite the attention received by supershedding in the cattle
reservoir, the relationship with human infection has been un-
clear. This study shows and quantifies a link between super-
shedding (high-concentration excretion of E. coli O157 in cattle
feces) and transmission risk to humans. We use this under-
standing of the cross-species transmission step to show that the
benefit to humans of cattle vaccination should be substantially
greater than anticipated from the observed efficacy in cattle.
Specifically, we show that vaccines producing a 50% reduction in
shedding frequency in cattle (consistent with reported efficacies)
could reduce human cases by nearly 85%. We conclude that
vaccination of cattle, the major reservoir for E. coli O157, could
be an especially effective public health control against a serious
disease, but studies that do not account for nonlinearities in
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Fig. 1. (A) The distribution of PTs among cattle and
primary human cases and the link with high-
concentration shedding of E. coli O157 by cattle.
Using the threshold relationship to define high
shedding, the distribution of high shedders (>1,300
cfu/g feces) provides a good fit to the distribution of
PTs among human cases (P > 0.6), suggesting that
supershedding dominates human risk. Bootstrapping
confirmed the robustness of these results (Materials
and Methods). (B) Most E. coli O157 bacteria shed
into the environment by cattle arise from infrequent
high-concentration shedding events. Shedding den-
sity classes are shown by frequency of occurrence
(black bars) and contribution to total bacteria shed
(red bars). Most shedding is at low densities (black
bars), but the majority of bacteria shed arises from
high shedding (red bars). (C) The distribution of
toxin-encoding genes among PTs and in cattle and
human isolates. In cattle, PT 21/28 strains were sig-
nificantly more likely to contain the stx2 variant than
the PT 32 strains (P < 0.01). PT 32 strains from humans
were more likely (P = 0.01) to contain the stx2 variant
than the PT 32 cattle isolates. These observations
show an association between the presence of the stx2
variant and occurrence in human clinical isolates. (D)
High shedding density and an association with the
stx2 variant. The presence of the stx2 variant is as-
sociated with shedding above the threshold of 104

cfu/g feces (odds ratio = 14.2, P < 0.001). Strains were
grouped into two categories according to whether
they were stx2c only (blue) or either stx2 only or stx2
and stx2c (magenta).

Matthews et al. PNAS | October 1, 2013 | vol. 110 | no. 40 | 16267

PO
PU

LA
TI
O
N

BI
O
LO

G
Y



cross-species transmission may substantially underestimate the
efficacy of interventions against zoonotic pathogens (36).
Zoonotic infections pose particular challenges to public health

planning, especially when controls are available in the animal
reservoir but the benefit is to the human population. One of the
key challenges, which we address here, is predicting how suc-
cessful controls in animals will be at reducing human illness—
a task that is typically hampered by difficulties in mapping
transmission across the human–animal interface (18). Our data,
which capture both the abundance and strain diversity of E. coli
O157 in the Scottish human and cattle population across the
same time period, are uniquely able to offer insights into the
epidemiology of strains that drive human risk.
By examining the drivers of transmission across the species

boundary, we offer insights into the selective advantage that
Shiga toxin may provide in the cattle reservoir. We show that the
Shiga toxin-encoding stx2 gene variant is likely to be a critical
factor behind occurrence in human clinical cases but that this
link seems to arise from high levels of pathogen shedding in feces
by cattle rather than greater pathogenicity in humans. This ob-
servation is medically and epidemiologically important, and it
underpins our conclusions about the public health benefits of
vaccination. Because the currently available vaccines reduce
high-concentration shedding of the pathogen by cattle, which we
show to heavily influence transmission across the species
boundary, they should be especially effective at reducing the
number of human illnesses. Alternatively, if the excess of certain
strains in humans had been strongly driven by their pathogenicity
in the human host, then vaccines would deliver only pro-
portionate reductions in human cases rather than the very sub-
stantial benefit that we predict.
Because the combination of E. coli O157 strains present may

differ from country to country, the benefits of vaccinating cattle
may also vary. However, supershedding is a ubiquitous feature of
E. coli O157 infection in cattle, and consequently, the capacity
for vaccines to deliver substantial reductions in human cases
should be robust to changes in geographic setting.

Although E. coli O157 is often described as a foodborne
pathogen and has been dubbed the burger bug, infections in
people arise from a variety of sources: eating contaminated food,
drinking from contaminated water supplies, person-to-person
transmission, and direct contact with livestock feces (for exam-
ple, at an open farm or during outdoor pursuits) (37). In Scot-
land, over one-half of outbreaks are thought to come from
environmental exposures (38); in North America, about one-
third of cases are attributed to ground (minced) beef, one-third
of cases are attributed to produce (e.g., salad vegetables), and
one-third of cases are attributed to other sources (2, 39). By
tackling E. coli O157 at its major source, vaccination could be
a very valuable addition to current control measures pre- and
postslaughter, because it has the potential to protect people from
illness from food and water consumption, exposure at open, pet-
ting, or private farms, or living, working in, or visiting rural areas.
A recent study examined the effect of vaccination on human

illnesses through ground beef consumption alone (36) and pre-
dicted that the reduction in human cases from this source would
be less than the observed efficacy in cattle. In contrast, by cap-
turing the nonlinearities across multiple transmission routes, we
are able to show that the overall reduction in human cases would
be substantially greater (nearly 85%) than the observed efficacy
in cattle (∼50%). This finding shows the importance of fully
accounting for nonlinearities in transmission across the human–
animal interface and shows that studies neglecting these phe-
nomena may underestimate the efficacy of interventions.
For zoonoses such as E. coli O157, which are do not cause

disease in the livestock reservoir, the challenges to the design,
evaluation, and delivery of effective interventions are added to
by the conflicting responsibilities of veterinary and public health
agencies and the lack of economic incentives for food producers.
Estimating the costs and societal benefits of vaccination could

provide the basis for an integrated approach by veterinary and
public health agencies and help pave the way to cost-sharing
solutions. However, there are major challenges in estimating the
public health burden of E. coli O157, and we are aware that
differences in surveillance systems, hospitalization rates, and
funding structures for a nation’s health system as well as differ-
ences in livestock systems will have major impacts on the cost
estimates of human disease and conclusions concerning the value
of vaccination.
The major costs of E. coli O157 infection are caused by he-

molytic uremic syndrome (HUS), end stage renal disease, and
death (40). In the United States, the total annual societal costs of
E. coli O157 are estimated at around $600 million (2), with the
individual burden and costs per case reaching $6–7 million for
individuals progressing to HUS and end stage renal disease or
death (40). Societal costs are consequently sensitive to the value
given to human life, and a Netherlands-based study that com-
pared economic approaches found US estimates to be nearly
double those estimates for HUS in The Netherlands (41). Al-
though direct health costs dominate the estimates, substantial
costs arise in other sectors, with the costs of public inquiries and
legal action running to millions of dollars (1).
The substantial societal costs, the multiple routes of trans-

mission, and the difficulties for consumers in making well-
informed decisions combine to make improved E. coli O157
control a public good to be sought (42–45). Cattle vaccination
has the potential to provide an important step toward this public
good. Estimating the societal costs and benefits of control and
determining whether the economic benefits exceed the costs of
control will ultimately relate to factors such as vaccine cost, ef-
ficacy, and duration of protection, and they are aims that would
comprise a substantive separate study.
So far, Canada, where one of the vaccines was developed, is

the only country to have granted an E. coli O157 vaccine a full
commercial license. Uptake, however, is poor, with the vaccine
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reaching less than 5% of the market—a likely consequence of
the fact that, currently, farmers would bear the cost of vaccina-
tion but receive no direct perceived benefit, because the cattle
harbor the organism without succumbing to clinical disease. In
the United States, two vaccines are available but have not been
granted full licenses. Delays in this process arise in part from the
separation of licensing bodies for human and veterinary medi-
cines; consequently, licensing a vaccine for use in animals that
improves public health would not only save lives but also es-
tablish an important public health precedent.
Whether vaccination would ever be widely used in the United

Kingdom, North America, and the wider world depends on the
costs and benefits of vaccination. We are aware that, currently,
the costs would be borne by the farming community with little
direct benefit aside from the protection of their immediate families.
The challenges facing E. coli O157 control show how an in-

tegrated one health approach can help develop effective man-
agement strategies for zoonotic disease. An essential step is
coordinated data collection in animal and human populations
(16, 17). Here, such coordination has provided insights into the
dynamics of cross-species transmission and the health benefits to
humans of interventions in the animal reservoir. However, de-
spite key studies that show the power of a one health approach
(16, 17), greater integration across sectors is needed (14). At the
policy level, a coordinated approach would help close the current
gap in remit between the separate agencies licensing human and
veterinary interventions and provide a starting point for assessing
how the costs of interventions might be borne across the
multiple stakeholders.

Materials and Methods
Human and Cattle Case Data. The Health Protection Scotland enhanced sur-
veillance system collects data on all culture-positive human cases (46). This
analysis included Scotland-acquired primary cases with known PTs identified
by the Scottish E. coli O157/VTEC Reference Laboratory (SERL). Health Pro-
tection Scotland defines primary cases as those symptomatic cases likely to
have acquired infection from a food, water, or environmental source of
E. coli O157 rather than person-to-person spread. Over the study period,
from February of 2002 to February of 2004, 237 human cases matched the
inclusion criteria. Four isolates not sent to SERL for typing were excluded.

Over the same period, cowpat samples were collected on 481 Scottish
cattle farms and examined for E. coli O157 presence using immunomagnetic
separation (47). Of 12,693 samples, 512 (4%) samples were found positive
for E. coli O157. SERL phage and toxin typed the isolates. Bacterial counts
were obtained for a subset (440) of the positive samples.

PCR to Identify stx2 and stx2c Gene Variants. From 440 cattle isolates with
bacterial counts, PCRs to identify stx2 and stx2c gene variants were conducted
ona reduced setof 143 isolates selected to avoidduplicationof pulsedfield gel
electrophoresis (PFGE) type/farm combination; 38 of these cattle isolates and
24 human isolates were analyzed by us previously (35). Purified genomic DNA
was provided by the Scottish Agricultural College (now SRUC), Inverness via
GenePool, University of Edinburgh. Primer sequences were taken from the
work byWang et al. (48), and PCRswere conducted using 2×DreamTaq Green
PCR Master Mix (Thermo Scientific Fermentas) according to the manu-
facturer’s instructions; amplified products were separated in 1.3% (g/100ml)
agarose gels and imaged using standard procedures.

Relationship Between Human Risk and Shedding Density in Cattle. We com-
pared three alternative relationships between pathogen shedding density in
cattle and risk to people as illustrated in the schematic (Fig. 3).

The best-fit relationship was defined as the one that best reproduced the
distribution of E. coli O157 PTs among the human cases. Underpinning the
analysis is that different E. coli O157 PTs have different typical shedding
distributions (in the text); consequently, different relationships between
shedding density and human risk will produce different frequencies of PT
occurrence in the human population.
Threshold relationship. Under the threshold relationship, the expected number
of human cases of each PT is assumed to be proportional to the number of
bacterial counts of that PT exceeding a certain threshold.
Log-linear relationship. Under the log-linear relationship, the contribution to
human infection risk from a given shedding density in cattle, denoted count,

is assumed to be proportional to (count)α. Therefore, the expected number
of human cases of each PT is proportional to the sum Σi(counti)

α, where
i indexes bacterial counts for a given PT.
Logistic dose–response relationship. Under the logistic dose–response relation-
ship, the expected number of human cases of each PT is proportional to
the sum ΣiF(log(counti)), where F(x) is given by

FðxÞ= 1
1+ expð−ðx −mÞ=sÞ;

m and s are the midpoint and scale parameters of the logistic function,
respectively.
Selecting the best-fitting relationship. Each of the three relationships between
risk and shedding density (threshold, logistic, and log-linear) was assessed on
its ability to reproduce the proportion of human cases in the PT groupings:
PT 21/28, PT 32, PT 2, PT 8, and all other PTs. Maximum likelihood was used
to estimate the parameters for each relationship, and the likelihood ratio
test or Akaike information criterion (AIC) was used to compare alternative
relationships. The robustness of the final relationship was assessed by
bootstrapping.

All three risk relationships were compared against a baseline relationship
that assumed no relationship between shedding density and risk to humans,
and all three relationships provided a better fit to the data at least 99% of the
time, showing the baseline model to be inappropriate. The best-fitting lo-
gistic dose–response relationship was indistinguishable from the threshold
relationship, and therefore, it was not considered further. The threshold
relationship was identified as the best relationship in providing a better fit
than the log-linear relationship over 96% of the time.

Simulating the Impact of Cattle Vaccination on Human Case Numbers. The
impact of vaccination was assessed by combining an epidemiological model
of transmission in a cattle herdwith the threshold relationship for human risk.
The first step was to capture the effect of vaccination on the prevalence
and intensity of shedding in a cattle herd. To do this first step, we extended
the results of a previous analysis of heterogeneity in cattle-to-cattle E. coli
O157 transmission (32). This study quantified the relationship between
shedding density and cattle-to-cattle infectiousness, thus generating a re-
lationship between the distribution of shedding densities in a cattle herd
and the basic reproduction ratio, R0.

Here, we used this relationship to translate a change in the shedding
density distribution (through the prevention of high shedding densities by
vaccination) into a reduction in R0. The corresponding reduction in preva-
lence in the cattle herd was then simulated using a susceptible–infected–
susceptible framework:

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

P
o

t
e
n

t
i
a
l
 
h

u
m

a
n

 
r
i
s
k
 
r
e
l
a
t
i
o

n
s
h

i
p

s

Cattle shedding density, log cfu/g 

Threshold Logistic

Log−linear

Fig. 3. Schematic of potential relationships between cattle shedding den-
sity and human risk. Illustrative curves for the three alternative relationships
between shedding density and risk to people are shown: a threshold re-
lationship (black line), a logistic dose–response relationship (gray line), and
a log-linear relationship (dashed line).
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dI
dt

= β
SI
N
+ eS− σI,

where S, I, and N denote the numbers of susceptible and infected cattle and
the total herd size, respectively; σ is the recovery rate, e represents infection
from external sources (an environmental reservoir plus movement on of
infected animals), and β is the mean cattle-to-cattle transmission rate.
Parameters were chosen to correspond to a default R0 of 4.5 (in the absence
of vaccination) and an external infection rate of 0.007 as previously esti-
mated for PT 21/28 (32).

Using this model, we simulated the impact of vaccines that prevent high
shedding by running scenarios in which we assumed a percentage of the-
highest shedding densities to be replacedwith low shedding densities from the
tail of the shedding density distribution. The altered shedding distribution
determined the reduction in R0. The model was used to simulate the reduction

in prevalence in the cattle population. The predicted prevalence and the ad-
justed shedding distributions were substituted into the threshold relationship
to predict the corresponding reduction in human infections.
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