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Abstract

Staphylococcus aureus has long been associated with livestock. Livestock can be carriers of S. aureus, but can also become infected. The

best-known infection is bovine mastitis. The discovery of methicillin-resistant S. aureus belonging to sequence type (ST)398 boosted

interest in livestock-associated S. aureus. ST398 is pandemic. Whole genome sequencing and other genetic analyses have shown that

livestock-associated strains are distinct from human-derived strains. However, there is also an exchange of strains between the reser-

voirs. Livestock-associated and human-associated strains share virulence factors, but have also distinct virulence factors that appear to

be important in host adaptation. Exchange of genes encoding these virulence factors between strains may expand the host range and

thereby threaten public health. Vaccination of animals may be a solution to this problem, but new avenues for vaccination need to be

explored, because no vaccine is currently available.
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Introduction

Staphylococcus aureus is a well-known commensal and patho-

gen of a large number of animal species, including humans. A

wide variety of infections can be caused by S. aureus, from

superficial skin and soft tissue infections to life-threatening

septicaemia. S. aureus represents a serious public health bur-

den in both hospital and community settings, as well as an

economic and animal welfare problem in dairy farming. In

this article, I focus on livestock-associated S. aureus, and

define livestock as pigs, cattle, and poultry. Interest in live-

stock-associated S. aureus was renewed with the discovery

of the methicillin-resistant S. aureus (MRSA) sequence type

(ST)398 in pigs, and then in veal calves and poultry [1–3].

However, S. aureus was already a major problem in dairy

cows, where it causes mastitis, and infections in chickens

have also caused problems.

Pigs are often carriers, and are only rarely infected [4]. In

chickens, several disease manifestations have been described,

such as comb necrosis [5], bacterial chondronecrosis, which

is a cause of leg weakness/lameness [6,7], and septicaemia [7].

These diseases may affect a significant proportion of a flock.

Staphylococcal mastitis is a major problem in dairy indus-

try, affecting animal health and causing economic losses of up

to €300 per cow per year. Although antibiotic treatment is

an option for individual animals, it is unfavourable because of

costs and the potential risk of the development of antibiotic

resistance, and is unsuitable for addressing the problem of

long-term persistence of pathogenic S. aureus in udder tissue.

In addition, increased awareness of the use of antibiotics in

husbandry and animal welfare is further contributing to the

urgent need to address bovine mastitis in a different way.

Vaccination would be a logical option.

Virulence Factors

Successful infection of both humans and animals depends on

virulence factors produced by S. aureus. A wide spectrum of

secreted and cell surface-associated virulence factors can be
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expressed to promote adhesion to the host extracellular

matrix components, damage host cells, and fight the immune

system [8]. At least 25 different toxins, 15 microbial surface

components recognizing adhesive matrix molecules, which

are important for adhesion to tissues, 20 immune evasion

molecules and several other virulence factors are known.

The majority of these virulence factors have been identified

in isolates of human origin, and only a few studies have

investigated virulence genes in non-ST398 S. aureus from

chickens and cows. However, some novel virulence factors

have recently been identified in mastitis and livestock-associ-

ated S. aureus [9,10].

Data on the presence of virulence genes in livestock-asso-

ciated S. aureus are summarized in Table 1. Smyth et al.

investigated the presence of the superantigen genes sae–see,

seg–seo, and seq, as well as the toxic shock syndrome toxin 1

gene, in isolates from a number of animals, including 15

chicken and 99 cow isolates (Table 1) [11]. The majority of

the chicken isolates carried seg, sei, sem, sen, and seo,

whereas, among others, the genes for the classical superantigens,

TABLE 1. Presence of virulence genes in Staphylococcus aureus isolates from different sources

Gene Product

Smyth et al. [11]
Monecke et al.
[99]

Ikawaty et al.
[12]

Huber et al.
[100] Hallin et al. [101]

No positive/% No positive/% No positive/% No positive/% No positive/%

Chicken
(n = 15)

Cow
(n = 99)

Cow
(n = 20)

Cow
(n = 76)

Cow
(n = 6)

Pigs
(n = 10)

ST398
(n = 16)

tst Toxic shock syndrome toxin 1 0/0 19/19 3/15 21/28 – – 0/0
sea Enterotoxin A 0/0 0/0 3/15 0/0 0/0 0/0 0/0
seb Enterotoxin B 0/0 0/0 1/5 0/0 0/0 0/0 0/0
sec Enterotoxin C 0/0 19/19 3/15 19/25 0/0 0/0 –
sed Enterotoxin D 0/0 6/6 3/15 – 0/0 0/0 –
see Enterotoxin E 0/0 0/0 0/0 – 0/0 0/0 –
seg Enterotoxin G 13/87 22/22 9/45 58/78 0/0 0/0 0/0
seh Enterotoxin H 1/7 0/0 1/5 1/1 0/0 1/17 –
sei Enterotoxin I 13/87 32/32 9/45 61/80 0/0 0/0 0/0
sej Enterotoxin J 0/0 6/6 2/10 – 0/0 0/0 0/0
sek Enterotoxin K 1/7 0/0 0/0 0/0 0/0 0/0 0/0
sel Enterotoxin L 0/0 18/18 3/15 15/20 0/0 0/0 0/0
sem Enterotoxin M 13/87 32/32 9/45 52/68 0/0 0/0 0/0
sen Enterotoxin N 13/87 32/32 9/45 55/72 0/0 0/0 0/0
seo Enterotoxin O 13/87 32/32 9/45 0/0 0/0 0/0 0/0
sep Enterotoxin P – – – 0/0 – – 0/0
seq Enterotoxin Q 1/7 0/0 0/0 0/0 0/0 0/0 0/0
eta Exfoliative toxin A – – 0/0 0/0 – – –
etb Exfoliative toxin B – – 0/0 0/0 – – –
hla a-Haemolysin – – 20/100 – 10/100 6/100 –
lukE Leukocidin component E – – – 15/20 0/0 1/17 0/0
lukF Leukocidin component F – – 20/100 – 10/100 6/100 –
lukS Leukocidin component S – – 20/100 – 10/100 5/83 –
lukM Leukocidin component M – – 8/40 – 0/0 0/0 –
PVL Panton–Valentine leukocidin – – 0/0 0/0 0/0 0/0 0/0
hlgA c-Haemolysin component A – – 20/100 – 10/100 6/100 –
chp Chemotaxis inhibitory protein

of S. aureus
– – – 1/1 – – –

scn Staphylococcal complement
inhibitor

– – – 1/1 – – –

sak Staphylokinase – – – 1/1 – – 0/0
fnbA Fibronectin-binding protein A – – – 73/96 – – 16/100
fnbB Fibronectin-binding protein B – – – 33/43 – – 0/0
clfA Clumping factor A – – – 16/21 – – 16/100
sdrE Serine aspartate repeat protein E – – – 25/33 – – –
cna Collagen-binding protein – – – 37/49 – – 16/100
ebps Elastin-binding protein – – – 76/100 – – 0/0
efb Extracellular fibrinogen-binding

protein
– – – 76/100 – – –

cap5A Type 5 capsular polysaccharide – – – 3/4 – – 16/100
cap8 Type 8 capsular polysaccharide – – – 73/96 – – 0/0
icaB Polysaccharide intercellular

adhesin operon
– – – 64/84 – – –

icaC Polysaccharide intercellular
adhesin operon

– – – 63/83 – – –

icaD Polysaccharide intercellular
adhesin operon

– – – 65/86 – – –

sspA Serine protease – – – 76/100 – – –
sspB Cysteine protease – – – 76/100 – – –
slpA Serine protease-like protein – – 18/90 – – – 0/0
slpB Serine protease-like protein – – 18/90 – – – 0/0
map MHC class 2 analogue protein – – – 14/18 – – 16/100
ACME Arginine catabolic mobile

element
– – – 0/0 – – –
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sea–see, and also the toxic shock syndrome toxin 1 gene

were lacking. Among cow isolates, no particular gene was

dominant, but sea, seb, see, seh, sek, and seq were lacking in

this collection. Ikawaty et al. studied a larger collection of

virulence genes in 76 S. aureus isolates from clinical cases of

bovine mastitis from all over The Netherlands (Table 1)

[12]. This study also showed variation in the presence of the

genes encoding the different superantigens. In addition, the

presence of the genes for a number of additional virulence

factors, including adhesins, proteases, and capsule type, was

investigated. For the adhesins, the genes for fibronectin-bind-

ing protein A, elastin-binding protein and extracellular fibrin-

ogen-binding protein were almost always present, as was the

gene for capsule type 8 (96%). Only one isolate encoded

staphylococcal complement inhibitor, chemotaxis inhibitory

protein of S. aureus, and staphylokinase. This suggests that

the isolate may have a human origin, because these virulence

factors show activity only against the human innate immune

system [13]. The sec3/sel/tst signature of the bovine staphylo-

coccal pathogenicity island (SaPIbov) was present in only 20%

of the isolates; 10% of the isolates lacked one of the genes,

and thus appeared to contain an incomplete or variant SaPI-

bov. The isolates could be clustered into six major groups

on the basis of their virulence gene content. This clustering

agreed with typing performed with multilocus sequence typ-

ing and pulsed-field gel electrophoresis.

The whole genome sequence of bovine strain ET3 provides

additional detail about the virulence factors [14]. In fact, SaPI-

bov was discovered in this strain [15]. Part of this island was

duplicated, and so was part of a second island in this strain

called SaPIbov3. In addition, several new other islands carrying

genes previously unknown in S. aureus were present. These

included mSaBov and a phage. Another interesting but unex-

plained observation was that several adhesin-encoding genes

are pseudogenes, owing to the introduction of stop codons.

Examples of the proteins affected are clumping factor A and

protein A. Mutations in genes involved in iron uptake suggest

that iron metabolism, at least in this clone, may differ consid-

erably from that of sequenced human strains. The differences

in adhesins and iron uptake support, according to the authors,

the idea that a transition to an intracellular lifestyle has been

made by this strain [14]. It is well known that S. aureus can

survive intracellularly, and this would constitute a perfect

means of escape from phagocytes and antibiotics. However,

evidence for the importance of intracellular survival for infec-

tion is still limited. For a review, see [16].

Population and genetic analysis of S. aureus in broiler

chickens from different continents showed that the majority

of the isolates are most likely derived from the transfer of a

human ST5 isolate to chickens somewhere between 64 and

30 years ago. The whole genome sequence of one represen-

tative isolate showed that it became adapted to the new

host. Several virulence factor genes, such as the human-spe-

cific immune evasion cluster and several other genes encod-

ing human-specific proteases, are lacking, whereas at least

five avian-specific mobile genetic elements have been

acquired. These elements encode several proteins that may

play a role in virulence in chickens. The clearest example is a

protease that has been implicated in the pathogenesis of

poultry infections. It should be noted that the second largest

cluster of isolates belonged to a clonal complex (CC) that

has not been detected in humans, and several sequence

types linked to human isolates were also found [17]. Thus,

chickens are not carriers of a single clonal lineage.

The whole genome sequence of an MRSA ST398 isolate

obtained from a human case of endocarditis in an immuno-

compromised patient showed the complete absence of

enterotoxin genes. The strain did contain a novel staphylo-

coccal pathogenicity island (SaPI) that appeared to be a com-

posite of sequences from SaPibov, SaPI5, which is found in

strain USA300 (the most important community-acquired

clone in the USA), and previously undescribed genes. The

novel part encoded a staphylococcal complement inhibitor

variant and a variant of von Willebrand factor-binding pro-

tein [9]. The first protein may be active against complement

from other species than humans, in contrast to the protein

from human isolates, which is human-specific [13]. The von

Willebrand factor-binding protein has been implicated in

host specificity. Strains carrying SaPibov2, which is widely

disseminated among ruminant isolates, are able to coagulate

ruminant plasma, in contrast to isolates lacking this pathoge-

nicity island. The coagulation activity is attributed to the var-

iant of von Willebrand factor-binding protein encoded on

this island [10]. Therefore, SaPIpig (or SaPI-S0385) may also

contribute to the spread of ST398 among different animal

species. Although not directly involved in virulence, S0385

has two other interesting features. First, mSab lacks the

characteristic restriction-modification system. This system

may protect an isolate from (unwanted) DNA that is intro-

duced into the cell. The lack of this system may make it

more prone to accept foreign DNA. This may include both

virulence factor and antibiotic resistance genes. Second, the

genome contains three integrative conjugative elements.

One of them is located within SCCmec. Their precise func-

tion is not known, but most likely these elements can trans-

fer DNA to other strains, and possibly also play a role in

acceptance of foreign DNA. This could make these strains

intermediates for the transfer of genes between different

strains. Alternatively, the system could function as a protein

secretion mechanism [9].
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Panton–Valentine leukocidin (PVL) has been reported in

several Chinese ST398 isolates [18,19]. This toxin is com-

mon among community-associated MRSA strains. For exam-

ple, the dominant community-associated MRSA strains in the

USA and Europe, USA300 and ST80, encode PVL, and it has

been suggested that PVL contributes to the wide dissemina-

tion of these strains [20–23].

An additional level of complexity for many infections with

S. aureus, possibly including mastitis, is the formation of bio-

films [24]. Outside the laboratory, most bacteria grow as

communities attached to surfaces known as biofilms. Biofilms

consist of bacteria embedded in polysaccharides, proteins,

extracellular DNA, and combinations of these compounds

[25–27]. Biofilm formation is a potent immune evasion strat-

egy, both through physical blocking of access [28,29] and

through active immune evasion because of secreted immune

evasion components [8]. Bacteria in biofilms are also less

sensitive to treatment with antimicrobial agents [30–32]. This

helps to maintain chronic infections.

The proteins involved in biofilm formation are microbial

surface components recognizing adhesive matrix molecules,

but other proteins play roles, as well as polysaccharide inter-

cellular adhesin, the product of the icaABCD operon, also

plays a role [33]. These proteins are of great interest for

biofilm prevention and removal. Several livestock strains har-

bour the ica genes, which encode products involved in bio-

film formation (Table 1). Also free DNA helps to build

biofilms in combination with b-toxin encoded by the hlb

gene, which acts not only as a toxin, but also as a DNA-

binding protein in biofilm formation [34]. In human-derived

strains, the hlb gene is often disrupted by phages encoding

human-specific immune evasion proteins [13]. Therefore, it

appears that, in human infections, the bacterium has to make

a trade-off between expression of immune evasion factors by

maintaining the phage encoding these factors in the hlb gene

and biofilm formation using b-toxin by losing the phage and

thereby restoring the hlb gene.

ST398 and ST398 Transmissibility

The first report on ST398 in pigs was by Armand-Lefevre

et al. [1]. They found both methicillin-sensitive S. aureus

(MSSA) and MRSA in pigs and humans, but ST398 isolates

constituted only a minor proportion of the types found. Fur-

thermore, they noted that pig farmers were more often car-

riers of S. aureus than non-pig farmers. MRSA ST398 was

first recognized as a problem by Voss [35], and a follow-on

study showed MRSA ST398 transmission between pigs and

humans [36]. Since then, MRSA ST398 has been documented

in many countries, and has become pandemic. The preva-

lence of MRSA ST398 varies widely from country to country.

Prevalences of up to 85% for pigs, 70% for farms and 45%

for personnel have been reported, but ST398 may also be

absent from countries, or at least not found [37–40]. There

are indications that, in some farms, the rates of MRSA may

be lower, or that MRSA may even be absent [41]. It remains

to be seen whether these lower rates result from different

isolation methodology, or whether these farms mainly oper-

ate outside the mainstream of pig farming. Differences in

year of isolation, sampling site, type of farm, time-point of

production (age and location) and methods used for isolation

could explain some of the differences found in the different

studies [42]. In addition, antibiotic usage and the type of anti-

biotic used before sampling will also influence results. The

type of pigs may play also a role [40].

ST398 proved to be not limited to pigs, but was also

detected in healthy poultry [2], veal calves [3], and cases of

bovine mastitis [43,44], and contact with these animals

appears to be a risk factor for becoming a carrier [45]. Fur-

thermore, MRSA ST398 has been shown to be a cause of

bovine mastitis [43]. Mastitis caused by MRSA ST398 was

detected in 10% of tested Belgian farms [46]. ST398 has also

been isolated from horses and horse handlers [47,48], dogs

[49], and rats. It was suggested that, considering the behav-

iour of rats, they may play a role in spread [50]. ST398 is

not a homogeneous lineage, as shown by spa typing [51],

SCCmec typing [52], pulsed-field gel electrophoresis typing

[53,54], and microarray analysis [50].

In Southeast Asia, MRSA isolates belonging to CC9 appear

to be more frequent than ST398. In Malaysia, ST9 with

SCCmec type V was present in 1% of the pigs and in 5.5% of

the pig handlers. No MRSA ST398 was found [55]. In Hong

Kong, 16% of nasal swabs taken from carcases on markets

were MRSA ST9-positive [56]. ST9 is also geographically

widespread present in China. Sixty isolates from four prov-

inces were recovered. These isolates all had spa type t899

and SCCmec type III, and belonged to only two resistance

patterns. The isolates were obtained from animals and farm

workers [57]. Although these isolates (and others) have been

reported as having SCCmec type III, they were shown to

most likely have SCCmec type V when they (as the above

isolates were) were typed with the method of Zhang et al.

[58], because this method associates a particular PCR prod-

uct with SCCmec type III, but this PCR fragment is also

obtained with SCCmec type V from ST398 [52]. Another

study also found MRSA ST9 on Chinese farms, but also

found MSSA, and both belonged to spa type t899. In addi-

tion, an MSSA ST398 isolate was found [59]. Besides ST398

and CC9 isolates, MRSA isolates belonging to other lineages
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have been detected. These lineages were usually isolated

from either humans or bovines [43].

An unexpected discovery was a novel type of mecA deter-

minant called mecALGA251 in livestock. The novel determinant

showed only 63% homology at the amino acid level and 70%

at the DNA level. This determinant leads to MICs ranging

from 0.75 to 32 mg/L. The new mec gene was initially

detected in 15 isolates from dairy cows in England. The iso-

lates belonged to three different lineages according to mul-

tilocus sequence typing, but it was also found in 51 human

mecA-negative isolates showing resistance to methicillin. Most

of them had the same spa type as found in cows [60]. The

oldest isolate was from 1975, indicating that this mec gene

has been present but unnoticed for a long time. It also sug-

gests that its spread is slow, although it is present in three

lineages. The main problem is detection. The MIC may be

below the cut-off point for resistance. Its (apparently) low

prevalence makes testing every isolate by PCR a costly prop-

osition. The future evolution of this gene and isolates carry-

ing it is impossible to predict, but, through mutation, these

isolates may become more resistant or they may acquire

additional virulence factors, making them better adapted to

new hosts [61].

Trade between farms has been shown to be a possible

transmission route [52]. As trading of pigs between farms

(usually from farrowing farms to finishing farms) is a common

practice, it may play an important role in MRSA transmission.

Nevertheless, the spread of MRSA ST398 among livestock

throughout the world within a few years is not understood.

In general, it is well accepted that antibiotic use selects for

resistant organisms, but this explanation is too simple. Also,

no worldwide change in antibiotic policies appears to have

occurred. Therefore, it is unlikely that antibiotic usage alone

can explain the spread. Resistance to zinc has been suggested

as a contributory factor. The zinc resistance gene crzC is

found on SCCmec type V (and was first wrongly annotated as

a copper resistance gene), and nearly all isolates with

SCCmec type V display zinc resistance [9,62,63]. A controlled

study with naturally contaminated piglets housed with ST398-

negative piglets showed an increase in bacterial load in piglets

receiving tetracycline or zinc as a food additive, but an effect

on transmission could not be established. However, it should

be noted that this was a small-scale study [64]. Nevertheless,

antibiotic use correlated with MRSA carriership in veal calves,

whereas farm hygiene correlated with a lower prevalence [3].

Transmission of MRSA ST398 has been investigated both

in piglets and in humans. In piglets, transmission rates of

3.92–52.54 were found [65]. However, a controlled study

where a mixture of four MRSA strains of the two dominant

lineages, ST398 and ST9, was used showed that nasal and

gastrointestinal inoculation of piglets did not result in stable

colonization. In contrast, vaginal inoculation of a pregnant

sow shortly before farrowing led to stable colonization, indi-

cating that vertical transmission may be a more effective

means of spread [66]. However, this is a model system in

which four strains directly compete with each other, and

also the mode of delivery of the bacteria during inoculation

differs from natural conditions, so it cannot be excluded that

nasal gastrointestinal colonization is much more effective

under natural conditions.

In 2007, 30% of all human isolates sent to the National

Institute of Public Health and the Environment in The Neth-

erlands were MRSA ST398 [67], but it should be noted that

The Netherlands is a country with low MRSA prevalence

(<3%). However, in general, ST398 appears to account for

only a small proportion of MRSA isolates from humans. Most

findings have been from Austria, Belgium, Denmark, and The

Netherlands [68]. In a Dutch study, the presence of animal

contact was the most important risk factor. However, the

rapidly decreasing MRSA prevalence during absence of animal

contact indicates that CC398 isolates are poor colonizers of

humans [69]. This suggests that the majority of carriage in

animal handlers results from continuous exposurem and not

stable colonization. Another factor that may contribute to

the poor ability to colonize humans is the presence of alter-

native immune evasion molecules for some human-specific

immune evasion molecules and the lack of most toxin-

encoding genes. This may significantly broaden the host

range as compared with most human-derived isolates

[70,71].

For the same reason, MRSA ST398 does not appear to be

highly infectious for humans, but several case reports have

been published, e.g. skin lesions [72], bacteraemia [73], and

endocarditis [74].

A Dutch study showed that MRSA ST398 isolates were

nearly six times less transmissible than other types. This led

to the suggestion that less stringent transmission control

measures may be possible for MRSA ST398 [75]. This would

only be true if nothing changed in the ability of the circulat-

ing strains to be transmitted between patients. However, the

introduction of novel genes, e.g. immune evasion molecule-

encoding genes, which seem to make these isolates better

adapted to humans, may change this.

MSSA ST398 has been found to be commonly present in

pigs but not in other livestock animals [76]. It is not clear

whether is this is generally true. However, MSSA ST398 is not

limited to pork, and has also been indentified among S. aureus

isolates obtained from humans. It has been identified both in

patients without contact with livestock [77] and in healthy

humans [78].
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S. aureus in Meat Products

Although contact with animals seems to be the most impor-

tant risk factor for human ST398 carriage, meat products

may also be a source. A recent Dutch study showed that

35% of 40 broiler flocks were MRSA-positive, with the

majority of isolates belonging to ST398, but slightly more

than one-quarter belonged to ST9 and a single spa type.

Nearly 8% of individual broilers were MRSA-positive upon

arrival in the slaughterhouse, but, during the day, this

increased to 35%, owing to contamination. Twenty per cent

of employees involved in hanging the animals on the slaugh-

ter line were MRSA-positive, as compared with 1.9% for

other personnel in contact with the broilers, and 0.1% of the

general population [79]. A study from the pre-MRSA era

showed no evidence of human nasal carriage of S. aureus

poultry types [80]. When this is true, it is suggestive that

MRSA ST398 behaves differently from other S. aureus strains

present in poultry.

Because of these findings, it is not surprising that meat is

also contaminated with S. aureus and MRSA. Percentages

reported for chickens vary between 0% and 68% [81–83],

but the levels of S. aureus can be even higher. Almost two-

thirds of chicken meat samples tested in a Japanese study

were positive for S. aureus [84]. The majority of the MRSA

isolates present in meat samples belong to ST398, but ST9

and more human-related sequence types have also been

identified [82,83,85–87]. The human-related types in meat

may be derived from livestock contaminated by these strains

or during handling from slaughter to retail.

In pork, S. aureus rates vary greatly. Recovery in 5% of the

samples has been reported [88,89], but more than half of all

fresh pig meat samples have also been reported to be posi-

tive [90]. Varying rates of MRSA in pork have also been

reported. The rates for beef seem to be lower. A Danish

study reported only 1.4% MRSA-positive samples [89].

In Canada, pork, beef and chicken may all carry MRSA.

However, these isolates all belong to the Canadian epidemic

MRSA-2 (ST5) [86]. It should be remembered that S. aureus

in meat products is not a recent phenomenon. It has always

been a source of food-poisoning.

Co-resistance

MRSA isolates from livestock usually show also resistance to

other antibiotics, and the resistance patterns of isolates can

be highly variable. A German study found 22 different types

[91]. ST398 isolates appear to be universally resistant to tet-

racyclines, owing to the presence of the tet(M) gene on a

chromosomally located transposon, often in combination with

the plasmid-encoded tet(K) gene [9,39]. However, high rates

of resistance to other antibiotics have been reported for

ST398 from pigs. For example, a Belgian study showed that,

among 643 MRSA isolates, 97% were resistant to trimetho-

prim, 73% to lincosamides, and 32% to fluoroquinolones [39].

However, rates may vary according to several factors, includ-

ing country, type of farm, and age of the animals.

Several novel resistance genes have been discovered in

MRSA ST398. These include: the apramycin resistance gene

ampA [92], vga(C), which encodes resistance to streptogram-

in A, pleuromutilin, and lincosamides [93], dfrK, which

encodes resistance to trimethoprim [94], and vga(E), which

encodes resistance to streptogramin A, pleuromutilin, and

lincosamides. The last of these genes is integrated in the

well-known transposon Tn554 [93]. The dfrK gene was also

seen as part of a new combination of plasmid-borne resis-

tance genes that also included erm(T), which encodes macro-

lide–lincosamide–streptogramin A resistance, and tet(L),

which encodes resistance to tetracycline [95]. It is likely that,

sooner or later, these genes will also be transferred to

human-specific lineages, thereby further compromising our

ability to treat S. aureus infections.

Vaccination

The disease burden and the number of fatalities caused by

S. aureus are high in both humans and livestock. Initially, the

need for an S. aureus vaccine was mainly determined by the

economic loss in dairy farming resulting from mastitis in

cows. Infections could be readily treated with antibiotics,

although a vaccine would be an important addition to the

armamentarium. The problem of S. aureus infection has

increased with increasing levels of methicillin resistance. Vac-

cination could help to reduce the burden of mastitis in cows.

The need to clear MRSA ST398 from livestock is less clear.

The disease burden resulting from ST398 appears to be low,

certainly in pigs. Also, the danger to humans is rather lim-

ited. However, with the development of more human-

adapted strains this may well change, in particular when

these more human-adapted strains are also still well adapted

to livestock and widespread among livestock. ST398 in live-

stock will then become a public health hazard, and vaccina-

tion of animals may then reduce this risk.

However, the development of a vaccine against S. aureus

has proved problematic. Three decades of extensive

research did not result in a protective vaccine on the mar-

ket. Numerous vaccination studies have been initiated, with
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a variety of different approaches. These include whole cells,

individual proteins or polysaccharides, modified toxins, fusion

proteins, and DNA vaccination. Many were tested in combi-

nation with adjuvants. The results of nearly all studies

showed that an antibody response was obtained. A number

of studies provided additional in vitro data, such as enhanced

opsonophagocytosis by polymorphonuclear leukocytes, and

T-helper and cytokine responses. However, challenge experi-

ments have shown a less favourable response. The reasons

why these prototype vaccines failed may be multiple, and dif-

ferent reasons may apply to different studies. Vaccination

studies have been reviewed recently [24,96].

Concluding Remarks

There is a tendency to declare livestock-associated MRSA syn-

onymous with ST398. However, multiple STs belonging to dif-

ferent CCs are livestock-associated, e.g. CC97 and CC151 in

bovine mastitis [97]. These include both MRSA and MSSA iso-

lates. In addition, human-associated isolates are also found

among livestock, just as livestock-associated MRSA can be

found among humans. Nevertheless, among livestock-associated

MRSA, ST398 seems to dominate, followed by ST9. ST398 is

not clonal, but consists of a highly variable set of strains.

The most important danger is when host-adapted strains

acquire virulence factors that enable them to colonize and

infect new hosts. The biggest threat in this respect is further

adaptation of ST398 to humans, because of its pandemic nat-

ure and the huge reservoir of livestock animals. The first signs

of potential adaptation are indicated by the acquisition of PVL,

which is thought to be a major toxin in community-acquired

MRSA, and phages encoding human-specific innate immune

evasion factors. During the final preparation of this manu-

script, Price et al. provided whole genome sequence-based

evidence that ST398 originated in humans, adapted to humans,

and is now adapting back to humans by the acquisition of

phage carrying human-specific immune evasion factors [98].

The presence of increasing numbers of multiresistant iso-

lates among livestock limits treatment options. Vaccination

would be a logical solution, but three decades of research

have not resulted in an effective vaccine on the market. New

approaches have recently been suggested [96]. This may help

to solve this issue and the problem of livestock-associated

S. aureus.
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