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The potential for using whole genome sequencing (WGS) data in microbiological risk assessment (MRA) has
been discussed on several occasions since the beginning of this century. Still, the proposed heuristic approaches
have never been applied in a practical framework. This is due to the non-trivial problem of mapping microbial
information consisting of thousands of loci onto a probabilistic scale for risks. The paradigm change for MRA
involves translationofmultidimensionalmicrobial genotypic information tomuch reduced (integrated) phenotypic
information and onwards to a single measure of human risk (i.e. probability of illness).
In this paper a first approach inmethodology development is described for the application ofWGS data in MRA;
this is supported by a practical example. That is, combining genetic data (single nucleotide polymorphisms;
SNPs) for Shiga toxin-producing Escherichia coli (STEC)O157with phenotypic data (in vitro adherence to epithelial
cells as a proxy for virulence) leads to hazard identification in a GenomeWide Association Study (GWAS).
This application revealed practical implications when using SNP data for MRA. These can be summarized by
considering the following main issues: optimum sample size for valid inference on population level, correction
for population structure, quantification and calibration of results, reproducibility of the analysis, links with
epidemiological data, anchoring and integration of results into a systems biology approach for the translation of
molecular studies to human health risk.
Future developments in genetic data analysis forMRA should aimat resolving themapping problemof processing
genetic sequences to come to a quantitative description of risk. The development of a clustering scheme focusing
onbiologically relevant informationof themicrobe involvedwouldbe auseful approach inmolecular data reduction
for risk assessment.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Microbiological risk assessment is part of an established framework
for risk analysis that consists of the following steps: statement of purpose,
hazard identification, hazard characterization, exposure assessment and
risk characterization (CAC, 1999). In the field of food safety, a ‘farm to
fork’ quantitative risk assessment (QMRA, Quantitative Microbial Risk
Assessment) approach is often applied to assess the public health risk
for a particular pathogen/matrix combination (e.g. Romero-Barrios
et al., 2013). Transmission of the pathogen (e.g. Campylobacter spp.)
through a specific food production chain (e.g. poultry)may be quantified
).
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using a probabilistic QMRA model (e.g. Nauta et al., 2005). Variability
and/or uncertainty in the pathogen prevalence, concentrations and
food production process properties are included as model parameters.
Monte Carlo simulations, or other probabilistic techniques, are used to
predict public health risk and the effect of different intervention strate-
gies can then be calculated to support industrial or governmental deci-
sion making (e.g. Pielaat et al., 2014). Systematic sensitivity analyses
can be used to indicate the value of new evidence but only at the level
of detail that was used during the model construction.

Since the introduction of high-throughput DNA sequencing technol-
ogies, however, food microbiology has moved beyond the assessment
of microbial behavior in different food processes for agents classified
at (sub)species and serovar level. Moreover, with the rapidly dropping
costs of sequencing, whole genome sequencing (WGS) will soon
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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become a standard surveillance technique for the subtyping of isolates
for epidemiological purposes. Although the use of molecular data has
proved to be a powerful tool in decision making during outbreak
investigations (Dallman et al., 2014; Underwood et al., 2013), the
application of this data in microbiological risk assessment is currently an
unexplored area in the public health domain. In recent years, a number of
reviews and opinions have been published exploring the potentials of
‘omics techniques’ for MRA (Abee et al., 2004; Brul et al., 2012; Carriço
et al., 2013; Havelaar et al., 2010; Pielaat et al., 2013a,b) but, evidence
based research, as afirst step to convert theseheuristic approaches intonor-
mative tools for practical use, is still needed.

The difficulties associated with using molecular data for food
safety risk assessment are complex but are related to the prescribed
framework and the current methodology which generally expresses
a large (but closed) joint probability to represent a ‘farm to fork’ haz-
ard domain. For example, where the variability and/or uncertainty of
concentration and prevalence data are relevant in QMRA these can
be described by probability distributions but it is not clear how to
use this approach when the data consists of a genome sequence.
Firstly, new technologies provide information at a completely differ-
ent level of description (genes or their products) that makes their
joint probability, in its simplest form, unmanageable. Secondly,
the new description does not, in the first instance, provide a clear
connection between the observed quantities and the output mea-
sures, such as survival or health impacts, that are the object of risk
assessments. So, for decision support, the biggest challenge facing
genomics is the prediction of phenotypic properties of a particular
pathogen within a food chain based on genotypic data. An under-
standing of systems biology is needed, as the organizational princi-
ple in pathophysiology, to describe the relation between the new
level of genetic sequence data and the health end points of concern.
Whereas in the established framework for risk assessment the
elements of a joint probability are considered to be known, or know-
able, the introduction of a new level of description and a systems
property leads to elements of a joint probability that cannot easily
be formulated and to dependencies that are not easy to identify.
To reduce the numbers of possible relations and translate genetic
sequence into phenotypic properties, an understanding of pathogen
physiology is needed. Currently, such understanding is incomplete
and consequently the mapping of genetic sequences onto a quantita-
tive description of risk is problematic: the number of genes out-
weighs the number of strain samples by many orders of magnitude.
It should be clear that statistical analysis of WGS data is non-trivial,
and that reproducible and meaningful associations between gene
variability and phenotypic properties need to be established before
genetic data can be used for decision making in food safety.

As indicated during EFSA's 20th scientific colloquium (EFSA, 2014),
a diversity of exemplary data analyses need to be developed and shared
within the scientific community to allow for the identification and
appreciation of “best practices” inmoving forward from currentmethodol-
ogy. A (theoretical) methodology for hazard identification is proposed that
usesWGS data analysis to link genomic sequenceswith phenotypic behav-
ior for Shiga toxin-producing Escherichia coli O157 (STEC O157) as a case
study. This is achieved by the integration of genomic (single nucleotide
polymorphism (SNP) genotypes) data with phenotypic (attachment to ep-
ithelial cells) information and with epidemiological data (outbreak strains
and the epidemiological relationship with sporadic cases) in a Genome
Wide Association Study (GWAS).

The aim of this study is to introduce a method for hazard identifi-
cation that links WGS data with results on in vitro adherence to
epithelial cells as a proxy for virulence using a subset of STEC O157
isolates as a case study. An explanation of the concepts, identifi-
cation of the value of the methodology and a relationship with the
public health domain are supported by a thorough discussion of
further research needs. This paper identifies a necessary paradigm
change in public health microbiological risk assessments.
Please cite this article as: Pielaat, A., et al., First step in using molecular d
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2. Materials and methods

2.1. STEC O157 as a case study

STEC is of public health concern because of its ability to cause
outbreaks and severe disease such as hemorrhagic colitis (HC) or hemo-
lytic–uremic syndrome (HUS). Currently, different STEC serogroups are
placed in different risk classes (i.e. seropathotypes) based on their epi-
demiological association with severe disease and outbreaks (Karmali
et al., 2003). However, this system is of limited use for two reasons.
First, it is retrospective, only including known types. Secondly, the path-
ogenicity of STEC cannot be predicted from the serotype alone. Numer-
ous (putative) virulence genes have been associated with increased
disease severity and individual strains of STEC can differ considerably
in their virulence profile and, consequently, in their pathogenic poten-
tial (Delannoy et al., 2013). Gene association studies are normally
conducted by linking the genetic content of the strain to the seropatho-
type or more specific to the clinical symptoms it caused (Andersson
et al., 2011; Persson et al., 2007). However, these association studies
might be confounded by food and host effects. Within serogroup O157
considerable attention has been given to the non-random distribution
of genotypes among bovine and human clinical isolates, showing
considerable genome divergence (Franz et al., 2014). However, ob-
served non-random distribution of clades and lineages among bovine
and human clinical isolates might be the result of a differentiation in
virulence, transmission capacity and survival, or some combination
(Franz et al., 2012). For a better understanding of STEC O157 risks,
these (or other) potential causes should be investigated separately.
Recently it was shown that the environmental exposure route selects
for strains characterized by the absence of mutations in the general
stress response system rpoS, which are subsequently more likely to
survive the human gastric barrier (Franz et al., 2011; van Hoek et al.,
2012).

The evaluation of intrinsic differences in virulence requires a stan-
dardized model system. Several animal models for STEC disease exist
and their value is clearly recognized (Melton-Celsa and O'Brien, 2003).
However, for technical, economic, and ethical reasons, in vitro models
offer a relevant alternative to in vivo studies. Although more distinct
from a human system, in vitro models offer more stability in terms of
reproducibility (Berk, 2008). The combination with WGS information
subsequently allows for genotype–phenotype matching and compara-
tive genomics of strains in order to identify genetic elements that differ-
entiate highly virulent strains from less virulent ones. Analysis at
the SNP level is a straightforward approach to extracting elementary
information on genotype, and will be used in this study.

2.2. E. coli O157 strains

In an earlier study the frequency of E. coli O157 genotypes among
73 bovine, 29 food, and 85 human clinical isolates was determined
in The Netherlands (Franz et al., 2012). The results demonstrated that
O157 lineages (as defined by the lineage specific polymorphism, or
LSPA, assay) were non-randomly distributed among isolates of bovine
and clinical human origin. A selection of in total 38 human and animals
strains from different LSPA lineages was selected for further investiga-
tion in this study (Table 1).

2.3. Genotypic data

Whole genome sequences of the 38 E. coliO157were obtained using
the IlluminaMiSeq platformwith 2 × 150 (human isolates) and 2 × 250
(animal isolates) paired end runs.

The genomic sequence of a human Shiga toxin-producing E. coli
O157:H7 strain isolated during the Sakai outbreak which occurred
in Japan during 1996 was used as a reference. The short sequencing
reads were mapped onto the reference chromosome (accession
ata for microbial food safety risk assessment; hazard identification of
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Table 1
E. coli O157 strains (n = 38) used in this study and some of their genetic characteristics.

Strain Source Year LSPAa stx gene(s) Intimin
(eae)

tir
(A255T)b

clade
8c

SBId

H06 Human 2005 I stx2a + T − nae

H07 Human 2005 I stx2a + T − nae

H09 Human 2005 I stx2a + T − nae

H13 Human 2006 I stx2a + T − 3
H15 Human 2006 I stx2a + T − 3
A42 Bovine 2002 I stx2a + T − 3
H25 Human 2006 I/II stx2c + T − 1
H27 Human 2006 I/II stx2a + T − 1
H42 Human 2007 I/II stx2a, stx2c + T + 1
H44 Human 2007 I/II stx2a + T − 21
H48 Human 2008 I/II stx1, stx2c + T − 16
H49 Human 2008 I/II stx1, stx2c + T − 6
H83 Human 2009 I/II stx1, stx2c + T − 16
A25 Bovine 2008 I/II stx2c + T − 21
A37 Bovine 2007 I/II stx1, stx2c + T − 6
A40 Bovine 2002 I/II stx2a, stx2c + T + 1
A45 Bovine 2007 I/II stx1, stx2c + T − 16
A48 Bovine 2008 I/II stx1, stx2c + T − 6
A51 Bovine 2002 I/II stx1, stx2c + T − 6
A60 Bovine 2003 I/II stx2c + T − 1
A62 Bovine 2008 I/II stx1, stx2c + T − 6
A63 Bovine 2008 I/II stx1, stx2c + T − 6
A69 Bovine 2002 I/II stx2a + T − 1
A72 Bovine 2002 I/II stx2a + T − 1
A76 Bovine 2003 I/II stx2c + T − 5
H02 Human 2003 II stx2a + T − 11
H17 Human 2006 II stx2a, stx2c + A − 1
H19 Human 2006 II stx2c + A − 1
H24 Human 2006 II stx2c + A − 5
H32 Human 2006 II stx2c + A − 5
H51 Human 2008 II stx2c + A − 1
A12 Bovine 2004 II stx2c + T − 5
A13 Bovine 2008 II stx2c + A − 5
A16 Bovine 2006 II stx2c + A − 5
A29 Bovine 2009 II stx1, stx2a, stx2c + A − 16
A30 Bovine 2009 II stx2c + T − 5
A32 Bovine 2009 II stx1, stx2c + A − 6
A34 Bovine 2009 II stx2c + A − 5

Note:
a Lineage-specific polymorphism assay (Yang et al., 2004).
b tir (A255T) polymorphism assay ( Bono, 2009).
c Clade 8 status of isolates assessed by SNP analysis of ECs2357 (Riordan et al., 2008).
d Shiga toxin-encodingbacteriophage insertionsiteassay(ShaikhandTarr,2003;Besseret al., 2007).
e Not applicable, the insertion site assay did not result in a SBI genotype.
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number: NC_002695) and its large plasmid pO157 (accession number:
NC_002128) using the alignment tool BWA (Li and Durbin, 2010). The
SAMtools software package converted the SAM format files to BAM
format and sorted the BAM files (Li et al., 2009). SAMtools mpileup
generated BCF format files and bcftools was used to call the SNPs (be-
tween reference and samples) in VCF format. SNPs were filtered with
the quality threshold set at a minimum read depth of five. SNP data
were transformed to binary, 0/1, data. Those sites where a SNP was
identified in the STEC strains under study (test strains) compared to
Sakai (reference strain) received a 1. A 0 was placed accordingly for
identical nucleotides on the genome of each test strain compared to the
reference strain Sakai. This resulted in a binarym by n matrix, where m
is the number of SNPs and n the number of test strains (n= 38).
2.4. Phenotypic data

The adhesive properties to human intestinal cells were used as a
proxy for virulence in this study. In total, 18 human O157 isolates
(H-numbers) and 20 animal O157 isolates (A-numbers) from lineage
I, I/II and II (see Table 1 for strain properties) were investigated and
compared. Differentiated Caco-2 cells were used as a representative
Please cite this article as: Pielaat, A., et al., First step in using molecular d
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model system for human intestinal cells. They were produced, treated
and seeded as previously described by Oliveira et al. (2011). For adhe-
sion experiments the cells were seeded in 12-well plates at a concentra-
tion of 1.6 × 105 cells/well. Each STEC strain was inoculated in BHI
broth and incubated overnight (ON) at 37 °C to obtain a culture con-
sisting of approximately 109 CFU/ml. Subsequently, three decimal dilu-
tions resulting in a STEC suspension of each strain of approximately
106 CFU/ml were made. From these last suspensions, Caco-2 cells in
12-well plates were inoculated with 40 μl per well, per STEC strain six
wells. Plates were centrifuged (1 min at 175 ×g) and incubated at
37 °C in a humidified atmosphere of 95% air and 5% CO2 for 1 h.

After incubation and three washings with pre-warmed sterile
phosphate-buffered saline (PBS), 1 ml 1% Triton-X100 in PBS (pre-
warmed) was added to each well to detach the cells.

The detached cells were collected and the contents of three wells
were combined. Decimal dilutionswere prepared in peptone physiolog-
ical salt solution, and the dilutions were plated on Brilliance™ E. coli/
coliforms Selective Agar (Oxoid, Badhoevedorp, The Netherlands).

3. Statistical data analysis

3.1. Phenotypic data

The fractional adherence was calculated by dividing the number of
STECs after the adhesion assay by the number of STECs added to the
Caco-2 cells. If cells are assumed to be homogeneously distributed in
the ON culture, then the number of cell counts per dilution is Poisson
distributed with a parameter λ. Based on this assumption, the best esti-
mate for λ, the expected number of cells in a sample, can be estimated
from counts in serial dilutions of the original sample according to

∑k
i¼ jni

∑k
i¼ j10

−i
, where n is the number of counts in the ith dilution. The

point estimate for the fraction of bacteria attached to the Caco-2 cells
isλ2

λ1
, whereλ1 is the expected number of bacteria in theovernight culture

and λ2 is the expected number of bacteria attached to the Caco-2 cells.

3.2. Simple linear regression

The basic idea in this study is to identify SNPs in the test strains
that could be associated with an increased virulence behavior (repre-
sented by relatively high Caco-2 cell attachment fractions compared to
other test strains without these SNPs).

The strength of this association can, in the most basic form, be esti-
mated using the following simple linear regressionmodel for each SNP:

yi ¼ μ þ βxi þ εi ;

whereyi is the fractional Caco-2 adhesion for strain i, μ is the mean
response, β is the SNP effect, xi is an indicator variable with

xi ¼ 0 if the marker here; SNPð Þ score of test strain i is equal to the reference strain
1 otherwise;

�

and the residual errors, εi , have independent normal distributions with
variance σe

2.
For each SNP the null hypothesisH0 : β=0 is tested against an alter-

native hypothesis Ha : β≠ 0 and the P-values and effects β are calcu-
lated and transformed to a − log10 scale.

In Genome Wide Association Studies (GWAS) a corresponding
test is applied for all markers. In terms of hazard identification this sim-
plified model would assign strains to one of two classes of hazards,
with different rates of adhesion, depending on the presence of a single
SNP.

There are several issues in GWAS studies that are more complex
than in standard linear regression. First of all, as the number of SNPs
(m) outweighs the number of test strains (here, n = 38) one has to
correct for multiple testing. If a standard 5% significance threshold per
ata for microbial food safety risk assessment; hazard identification of
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Fig. 1. Frequency distributions of the fractional adhesion for the different STEC strains to
Caco-2 cells (separated for human and animal strains).
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marker is used, there will bemany false positives. One solution is to use
a Bonferroni correction (Kuehl, 2000), using a genomewide significance
threshold ofα/m. A secondproblem inGWAS is that theminor allele fre-
quency (MAF) has to be high enough, i.e. we cannot usemarkers where
almost all the markers are equal to the reference strain (score 0), or
where almost all the markers are different from the reference strain
(score 1). A third problem with a simple linear regression model is
more complicated: there is no correction for population structure. In
the next section a solution for this will be presented by using a more
complicated statistical model called a mixed model.

3.3. Correcting for population structure using mixed effect models

The problem with population structure can be explained with a
simple example: suppose there are two groups of strains, A and B,
with small genetic differences within groups, and a large genetic differ-
ence between groups. Then most SNP scores will follow the same
pattern. That is, SNP scores will be attributable to differences in the
groups rather than the difference in adherence capacity. As a conse-
quence, the linear regressions will also be quite similar. In other
words, in the case where one has two clearly separated groups one
is mainly testing for differences between groups, not within groups.
In such an example with two clear groups A and B, an extra term in
the regression model can be used to correct for group effect, that is

yi ¼ μ þ βxi þ gzi þ εi ;

where the parameter g is the group effect, and zi indicates whether
strain i is in group A or B. With this correction for group effect one can
test for SNP effects along the genome, i.e. testing for each SNP the signif-
icance of parameter β. A similar approach can be used in situations
where there are strains which can be subdivided in several groups
(Kraakman et al., 2004; Pritchard et al., 2000).

In many cases, however, there is not such a clear separation into
different groups. A way to check this is by calculating the similarity
between the strains. For each pair of strains, the fraction of SNPs that
have the same marker score can be calculated, resulting in an n × n
similarity matrix K.

The similaritymatrixmay be used to correct for population structure
(Malosetti et al., 2007; Patterson et al., 2006; Yu et al., 2005). A solution
that is often used is a mixed effect model approach:

yi ¼ μ þ βxi þ Gi þ εi ;

where (G1, G2, …, Gn) follows a multinormal distribution,
Gi ~ N(0, σg

2K), and σg
2 is the genetic variance. This model is used to

test for the significance of the SNP effects, β, along the genome.

4. Results

The fractional adhesion of the STEC O157 strains to Caco-2 cells
is highly variable with a frequency distribution resembling an overall
skewed distribution (average 0.16, median 0.11). Higher fractions are
more rare and concentrated in the human strains (Fig. 1). Mapping of
the individual sequences to the reference genome resulted in the iden-
tification of 27,980 SNPs among the total set of 38 test strains. When
the totality of identified SNPswas used to infer the population structure,
at least three separate populations could be identified (Fig. 2). Fig. 2
shows the principal coordinate plot of the 38 strains, with 12.4% of
the variance explained by the first axis, and 8.9% by the second axis.
The three identified populations in Fig. 2 reflect the LSPA lineages with-
in STEC O157 (LI, LI/II and LII) as described by Franz et al. (2012).

After application of the most basic linear regression model (without
correcting for population structure), 17 SNPs appeared to be significantly
associated with increased adherence to Caco-2 cells (Fig. 3, Table 2).
That is, using aMAF≥0.05 and a significance levelα ~ 10−4, 17 positions
Please cite this article as: Pielaat, A., et al., First step in using molecular d
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on the chromosome of the reference strain show a positive linear rela-
tion between SNPs identified in the test strains when comparing frac-
tional adhesion to Caco-2 cells with that for the Sakai reference.

Table 3 shows the loci and, if known, information on biological func-
tion, associated with the significant SNPs (SNPs having a MAF ≥ 0.05
and, in bold face, MAF ≥ 0.1, i.e. ID 8, 9 and 15) as presented in
Table 2. As explained above, instead of having any biological relevance,
the results in this SNP analysis could also be the product of a type I error.
That is, identifying significant association between genotypic (SNP) and
phenotypic (fraction adhesion) information, where there is none.

Having said this, the 17 SNPs identifiedwarrant further investigation
with respect to their role in virulence and their use as risk markers for
hazard identification. Of these 17 SNPs, eight were non-synonymous
in protein-coding regions (Table 3). These SNPs change the protein-
sequence and thereby potentially the function of the product.

Table 4 showswhich test strains were responsible for the significant
effects (identified in Table 2, Fig. 3) with the corresponding fractional
adhesion to Caco-2 cells. Here the problem associated with a low MAF
(identified in the Statistical data analysis section) becomes visible.
Setting the MAF threshold at 0.05 will result in a significant effect
when two (ormore) test strains appear to share a SNP and are associated
with a relatively high (or low) fraction of attachment compared to the
test strains that do not differ from the reference Sakai strain for that
ata for microbial food safety risk assessment; hazard identification of
/10.1016/j.ijfoodmicro.2015.04.009
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Fig. 2. Principal coordinate plot of the similarity matrix K. For each pair of strains the similarity was calculated as the fraction of SNPs that have the same score. Black, blue and red dots
represent lineage I, I/II and II STEC O157 strains respectively.
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site. The result of a type I error in multiple testing (here 27,980 tests)
and/or not correcting for population structure may be the cause of this
effect.

When correcting for population structure one SNP appears to have a
significant effect in this GWAS (Fig. 4). The identified SNP position is
3,115,507 which is close to ID 11 in Table 3 and also has an intergenic
position, which in many cases might be irrelevant, but could still be re-
lated to promoter sequences.

5. Discussion

Microbiological risk assessment is intended to support decision
making in the farm to fork food production chain. Currently food safety
Fig. 3.GWASplot for trait fractional adhesion to Caco-2 cells. In this plot there is no correction
for population structure, i.e. highly overestimating the number of true significant SNP effects.
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criteria are implemented at many levels down to serovar/serotype level
for some pathogens (e.g. absence of Salmonella Typhimurium and
Salmonella Enteritidis in fresh poultry or STEC O157, O26, O103, O111,
O145 andO104:H4 in sprouts). From this perspective it is difficult to as-
sess how the increasing amount of new (molecular) data will influence
decision making. Does a ‘new’ genotype identify a new hazard and thus
require a change in policy? And, how should the presence/absence of a
virulence gene influence the hazard characterization? There are many
such questions and probably even more possible answers related to
this problem which can, in general, be referred to as disaggregation.
For example, if for a previous ‘generalized’ pathogen (e.g. a serotype)
additional information can be specified to describe two ‘less general’
pathogens there is an increase in the number of hazards. This increase
Table 2
Number of positions (1–17) on the chromosomeof STECO157 strains, locus on the reference
genome (position (bp)), minor allele frequency (MAF), point estimate for the regression
coefficient (β) and − log10 P-value for the SNPs on the test strains compared to the
reference strain having a positive relation with the fraction adhesion to Caco-2 cells. This
table shows the results for the regressionmodelwithout correction for population structure,
i.e. overestimating the effects.

ID Position (bp) MAF β −log10 (P)

1 808,227 0.05 0.31 7.55
2 1,204,977 0.08 0.20 4.01
3 1,265,758 0.05 0.31 7.55
4 1,265,760 0.05 0.31 7.55
5 1,955,401 0.08 0.20 4.01
6 1,963,016 0.08 0.20 4.01
7 1,965,259 0.08 0.20 4.01
8 2,168,378 0.11 0.18 4.17
9 2,168,379 0.11 0.18 4.17
10 2,303,672 0.08 0.22 5.29
11 3,115,509 0.08 0.21 4.64
12 3,480,394 0.05 0.31 7.55
13 3,486,443 0.08 0.21 4.73
14 3,486,494 0.08 0.20 4.14
15 4,929,010 0.11 0.23 7.83
16 5,054,140 0.05 0.32 8.47
17 5,409,931 0.08 0.21 4.64
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Table 3
Biological information regarding the 17 significant SNPs, obtained using a model without correction for population structure (in Table 2); locus on the reference genome (position (bp)),
function of this locus and description of the SNP.

ID Position
(bp)

Locus tag
Sakai

Function SNP descriptiona

1 808,227 ECs0729 RhsC protein Synonymous; C219T
2 1,204,977 ECs1121 Prophage CP-933R tail fiber protein; putative host specificity protein Synonymous; C1741T
3 1,265,758 ECs1203 Antitermination protein Q Synonymous; C12T
4 1,265,760 Encoded by prophage CP-933R Non-synonymous; G14A

(R5Q)
5 1,955,401 ECs1977 Phage capsid and scaffold protein Synonymous; C156T
6 1,963,016 ECs1987 Tail assembly protein Synonymous; G351C/T
7 1,965,259 ECs1990 Prophage CP-933 V tail fiber protein; putative host specificity protein Synonymous; C1062T
8 2,168,378 ECs2164 Minor tail protein encoded by Non-synonymous;
9 2,168,379 Prophage CP-933O T424G, C425A (S142E)
10 2,303,672 ECs2332 L-Arabinose 1-dehydrogenase Non-synonymous; C268A (H90N)

11 3,115,509 Intergenic G− N A
12 3,480,394 ECs3489 Phage tail fiber protein encoded by prophage CP-933P Synonymous; G252A
13 3,486,443 ECs3499 Hypothetical protein Non-synonymous; T98C (L33S)
14 3,486,494 Non-synonymous; T149C (I50T)
15 4,929,010 ECs4864 RhsH protein Non-synonymous; T134C (F45S)
16 5,054,140 ECs4969 Putative portal protein Non-synonymous; G190A (E64K)
17 5,409,931 ECs5283 DNA-binding transcriptional repressor UxuR Non-synonymous; C534A (N178K)

Note:
SNPs having a MAF ≥ 0.05 and, in bold face, MAF ≥ 0.1, i.e. ID 8, 9 and 15.

a SNPs are displayed by type and position in the locus, followed in parentheses by the effect on the amino acid sequence in case of a non-synonymous SNP.
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is exponential because all possible combinationsmay be relevant. Obvi-
ously, when this argument is stretched to the full sequence specifica-
tion, the disaggregation catastrophe is clear. There will never be
enough risk assessments to quantify and predict the full spectrum of
all risks. On the other hand, two different subtypes of a ‘generalized’
pathogenmayhave identical virulence, and their distinction is irrelevant
for public health. So, an ‘organization principle’ as a basis for priority
setting of highly pathogenic strains is a necessary prerequisite for risk
assessment developed fromWGS information. This is why linking geno-
typic with phenotypic properties is essential as it will help to identify
high risk isolates from the full spectrum of strains obtained by WGS. In
addition, methods for clustering may further reduce the total number
of hazards to manageable proportions, for both risk scientists and risk
managers. A decisive factor in specifying the clustering level of WGS
information is having a good definition of the statement of purpose
for the risk analysis. This and insight in the main biological process
underlying the risk (e.g. surviving process conditions, the time to initiate
growth or invasion of gut epithelium) will guide the data requirements
Table 4
Test strains (second row) causing a ‘significant’ effect (MAF≥ 0.05 in Table 3)with accompanyin
H19 compared to all 36 other strains gives a significant effect. For each SNP, only the major fre

ID Fraction adhesion 0.66 0.12 0.07 0.18 0.87

Strain H13 H15 H25 H44 H24

1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1 1
9 1 1
10 1 1 1
11 1 1
12 1
13 1
14 1
15 0 0 0
16 1 1
17 1 1
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(e.g. expression data, (single) cell growth or SNP data for marker
identification).

For this case study, the purposewas to improve hazard identification
for STEC O157. The first obvious step in the ‘organization principle’
was to identify ameasure for virulence, here adhesion to the gut epithe-
lium. The next step in identifying high risk isolates was discovery of
an association between this important virulence factor and genome se-
quences (i.e. SNP data) for different STEC O157 strains. A further biolog-
ical analysis of the identified associations may attribute some part of
the biological variation (here, fractional attachment) to the activity of
the specific genes corresponding to the ‘significant’ SNPs.

5.1. Biological relevance of identified SNPs

A potential biological relevance can be ascribed to the eight non-
synonymous SNPs that are significantly (MAF≥ 0.05 and a significance
level,α ~ 10−4) associatedwith higher in vitro adherence to the epithe-
lial cells using the simple linear regression model (Table 3). ECs2332
g fractional adhesion to Caco-2 cells (first row). e.g, for ID 1 the contrast of strains H24 and
quent allele is shown, the empty cells refer to the minor frequent allele.

0.10 0.11 0.35 0.17 0.11 0.09 0.62

H32 H51 A13 A16 H02 H17 H19

1
1 1

1
1

1 1
1 1
1 1

1 1
1 1

1
1

1 1
1 1

0

1

ata for microbial food safety risk assessment; hazard identification of
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Fig. 4.GWASplot for trait fractional adhesion to Caco-2 cells, with correction for population
structure using a mixed model. There is one significant SNP, at position 3,115,507, with
effect β = 0.09, and −log10 (P-value) = 2.28.
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encodes for a L-arabinose 1-dehydrogenase (family of oxidoreductases).
L-Arabinose is generally well utilized as a sole carbon source by E. coli
O157 strains (Franz et al., 2011) and the intestinal niche occupied by
pathogenic E. coli O157 strain EDL933 has been shown to be largely
defined by the utilization of arabinose for colonization (Fabich et al.,
2008; Maltby et al., 2013). Phenotypic characterization revealed that
mutations in the stringent response system resulted in defective utiliza-
tion of L-arabinose (Oh and Cho, 2014). The ECs5283 locus represents
the DNA-binding transcriptional repressor UxuR which plays a role in
the D-glucuronatemetabolism of E. coli and has been shown to be neces-
sary for maximumability of E. coli to colonize the intestine (Chang et al.,
2004). ECs4969 is a putative phage portal protein, which forms a key
component during viral chromosome packaging. Although the same
locus was found to be significantly upregulated upon exposure of E. coli
O157 to apple juice (Bergholz et al., 2009) the role in pathogenicity re-
mains elusive. Sequence divergence of the phage borne antitermination
gene Q (ECs1203), located upstream of stx2, has been associated with
variation in transcription of stx2 and with a nonrandom distribution
among bovine and human isolates (Franz et al., 2012; Lejeune et al.,
2004). The same locus was shown to be significantly up-regulated in a
lineage (clade 8) of E. coli O157:H7 commonly associated with human
infections (Abu-Ali et al., 2010). Recently, Xu et al. (2012) proposed a
model in which Stx2 promotes epithelial cell colonization. Since the
antitermination gene Q controls the level of Stx2 production, this gene
is a potential candidate for an increased attachment marker. The rhs
genes are rearrangement hot spots within E. coli and appear to be under
strong positive selection (Petersen et al., 2007). Their extracellular nature
may result in a strong positive selective pressure from the host's immune
system andmay therefore be involved in O157 host specificity (Liu et al.,
2009). They have been reported to promote intestinal colonization of
calves (van Diemen et al., 2005).

Bioinformatic analyses support the conclusion that bacterial Rhs
proteins commonly carry toxin domains and it is proposed that contact-
dependent growth inhibition is the primary function of these proteins
(Hayes et al., 2014). However, Rhs also appears to coordinate multicel-
lular behavior and biofilm formation (Poole et al., 2011). Interesting
however is the fact that sequence diversity in rhs is also linked to the
differentiation of STEC O157 into different clades which in turn have
different associations with epidemiology (Liu et al., 2009; Manning
Please cite this article as: Pielaat, A., et al., First step in using molecular d
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et al., 2008). The rhs should be further investigated with respect to
combined relevance for biological functioning, phylogeny and epidemi-
ological relevance.

5.2. Advantages and limitations of the approach

Traditionally, STEChazard identification is based on the seropathotype
(SPT) concept of classifying STEC serogroups into different risk classes
based on their epidemiological relevance (i.e. severity of disease and
involvement in outbreaks) (Karmali et al., 2003). Although informative
as an ex post facto determinant of virulence potential, the dynamic nature
of STEC virulence in time and place exposes a limitation of SPT classifica-
tion as a predictive indicator of microbial risk. The approach described
here, matching in vitro adherence to epithelial cells as a proxy for
virulence with SNP data offers a standardized, reproducible, serogroup
independent method for identifying potential candidate genes to be
included in epidemiological association studies or more refined hazard
identification. Additionally the analysis does not become rapidly unman-
ageable as more strains are included. SNP analysis of a broad spectrum
of isolates (from different sources that are not necessarily associated
with human cases) may lead to a less biased association between geno-
typic and phenotypic strain characteristics. Still, the identification of
significant SNPs associated with in vitro virulence should be treated
with some caution for several reasons.

First, the in vitro adherence of O157 to human epithelial cells was
used as a proxy for in vivo virulence. However, it should be noted
that adherence to epithelial cells is only one aspect of the etiology of
O157 infection in humans. Although the production of Shiga toxins is
the main virulence factor responsible for the more severe symptoms,
adherence to the gut epithelium is an important first step in the etiology
of STEC infections. The production of Shiga toxins (on expression level,
produced toxin level, and/or effect on Vero cells) could be added
to this framework and can be analyzed in the same way (with a focus
on the prophage regions). Second, SNP analysis based on comparing
test strains with one reference strain (here, E. coli O157 strain Sakai)
cannot identify SNPs that might be of relevance for hazard identifica-
tion, but have sequences that are not present in the reference strain.
Reference to the pan genome of STEC O157 or even STEC in general
could account for this omission (Laing et al., 2010). Alternatively, a
“gene-by-gene” approach could be adopted in which the presence/
absence of all genes is scored as well as the allelic variation within each
gene (Maiden et al., 2013).

Third, instead of having any biological relevance, the results in
this SNP analysis could also be the product of a type I error. That is, iden-
tifying a false positive association between genotypic (SNP) and pheno-
typic (fractional adhesion) information, where there is none. This
problem will often occur in SNP analysis for MRA where the number
of SNPs usually outweighs the number of phenotypic observations.
Setting the MAF threshold to a higher level, e.g. 0.1, could alleviate the
problem of the small population size. Table 2 shows that ‘only’ three
positions on the chromosome of Sakai will be identified as being signif-
icant when aMAF≥ 0.1 would be applied in this study. These represent
two loci on the reference genome, i.e. ECs2164 and ECs4864 associated
with ‘minor tail protein encoded by prophage CP-933O’ and ‘RhsH
protein’ respectively (Table 3). These are, however, non-synonymous
SNPs. A further correction for population structure reveals one signifi-
cant SNP position (3,115,507which is intergenic) of potential relevance
for further biological investigation.

Third, although the loci in which SNPs occur are potentially candi-
date marker genes for increased adherence to epithelial cells (and
maybe virulence in general), the molecular postulates have to be ful-
filled in order to prove causal relations (Falkow, 1988).

Finally, the presence of a biomarker (e.g. SNP, gene, metabolite,
protein) may by itself not always be a good predictor for risk, since
the expression is influenced by a large variety of (dependent biological)
factors.
ata for microbial food safety risk assessment; hazard identification of
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Beside practical implications, this case study also gives insight into
which basic statistical elements need to be considered before an associ-
ation can be a subject for further analysis. That is,

1. The power for analysis needs to be sufficient in order to be able to
detect an effect.

2. An optimal number of strains need to be established to get a repre-
sentative view of the whole (molecular) population.

3. One should correct for population structure before proceeding with
further molecular data analysis.

For now, the number of strain samples is very limited for GWAS
purposes, and the aim is to continue combining not outbreak biased
genotypic with phenotypic STEC O157 data to build a valid statistical
model.

Biological confirmation is an essential step before ‘significant’ SNPs
can be identified as the cause of hazardous strains. This process consists
of,

1. Deletion and complementation studies (according to the principle of
Koch's molecular postulates) to establish the causal relationships.

2. Quantification and calibration of how many differences (e.g. SNP
variants) between genomes will lead to treating them as separate
categories needs to be established.

3. Reproducibility of the analysis (both experimental and statistical) is a
prerequisite for assigning any SNP with a biological relevance. This
involves bothbiological and technical replicates to address variability
in the phenotypic response during the statistical analysis.

4. Linking epidemiological data to show the study how disease out-
comes following infection are determined by the pathogen or by
host factors. Human cases caused by any of the isolates with known
phenotype can be used to study the association between phenotype
(e.g. adherence to the gut epithelium, and growth rate) and disease
outcome in humans. The inclusion of outbreak strains facilitates this
construction.

Finally, applying the outcomes of statistical associations (confirmed
by reproducible data) to microbiological risk assessment, raises the
following issues:

1. Integration. A systems biology approach is probably the best way
forward to make a link from single scale in vitro testing to a multiple
scale interpretation of effects.

2. Anchoring. Translation of molecular investigations to human health
risk is still a challenge.

3. Communication. Current policy strategies (e.g. target setting) are
based on serovar/serotype level research. This will only change
when (statistically) validated model systems can be applied in the
domain of public health food safety.

4. Technology. Although not fully expressed in this study, there is a
need for development of ‘open data’ systems to support rapid pro-
gression. The increasing generation of high throughput data on a
global scale needs a central (sentinel) organization to facilitate com-
parison of risk relevant outputs from individual investigations.

6. Concluding remarks

The bottleneck in the application of molecular tools for microbio-
logical risk assessment has shifted fromdata acquisition (costs, time) to
data analysis and systems approaches. The inability to draw systematic
conclusions from this study to STEC in general, represents a bottleneck
in the flow of large volumes of WGS data into food safety knowledge.
This has, in more general terms, been described by Bromberg (2013).
The paradigm change involves the translation of multidimensional
information on genotype level (in the order of over 103 genes, 104

SNPs, etc.) via reduced information on phenotype level (in the order
of 101 biologically relevant characteristics for MRA, like growth rate,
survival, attachment to the gut epithelium, and acid tolerance) to a
Please cite this article as: Pielaat, A., et al., First step in using molecular d
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single measure of risk, such as the number of human cases of illness.
Future computational assessments of genetic data should aim at solving
this mapping problem without losing biologically relevant information
for MRA. Not until then can risk assessors provide reliable answers
from WGS data to the posed health questions of a policy maker in an
accessible manner.
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