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The increasing frequency of zoonotic disease events underscores
a need to develop forecasting tools toward a more preemptive
approach to outbreak investigation. We apply machine learning to
data describing the traits and zoonotic pathogen diversity of
the most speciose group of mammals, the rodents, which also
comprise a disproportionate number of zoonotic disease reser-
voirs. Our models predict reservoir status in this group with
over 90% accuracy, identifying species with high probabilities
of harboring undiscovered zoonotic pathogens based on trait
profiles that may serve as rules of thumb to distinguish res-
ervoirs from nonreservoir species. Key predictors of zoonotic
reservoirs include biogeographical properties, such as range size,
as well as intrinsic host traits associated with lifetime reproductive
output. Predicted hotspots of novel rodent reservoir diversity
occur in the Middle East and Central Asia and the Midwestern
United States.

machine learning | disease forecasting | prediction |
pace-of-life hypothesis | generalized boosted regression trees

nfectious agents transmitted from animals to humans account

for most outbreaks of novel pathogens worldwide (1-3). With
over 1 billion cases of human illness attributable to zoonotic
disease each year, identifying wild reservoirs of zoonotic patho-
gens is a perennial public health priority (4). Until now, in-
vestigations of disease outbreaks have mostly been reactive, with
surveillance efforts targeting a broad host range (5), but because
human activities precipitating these events continue to accelerate
(4, 6), a more proactive approach is necessary (7, 8). Identifying
which wildlife species are most likely to serve as reservoirs of
future zoonotic diseases and in which regions new outbreaks are
most likely to occur are necessary steps toward a preemptive
approach to minimizing zoonotic disease risk in humans. To this
end, trait profiles inferred from large datasets that distinguish
reservoirs from nonreservoir species can play a major role in
guiding the search for novel disease reservoirs in the wild.
Identifying these distinguishing, intrinsic features of zoonotic
reservoirs also has the potential to generate testable hypotheses
that can explain why some host species are more permissive to
zoonotic infections.

To accomplish these goals, we applied generalized boosted
regressions (9, 10), a type of machine learning that builds en-
sembles of classification/regression trees to identify variables that
are most important for prediction—in our case, predicting zoo-
notic reservoir status and hyperreservoir status (species known to
carry two or more zoonotic infections). These methods and
similar methods have particular use for comparative ecological
studies because they accommodate multiple data types as cova-
riates, nonrandom patterns of data missingness, and hidden,
nonlinear interactions. The explanatory power of decision tree
methods is unaffected by variations in data coverage that may
arise because of sampling bias or when species share a particular
trait because of shared evolutionary history (11, 12). We ex-
amined intrinsic traits of host species, which are inherently less
susceptible to sampling biases common in large-scale epide-
miological analyses—for example, important differences in
gross domestic product, research productivity, or diagnostic
capacity that are certain to influence detection of zoonotic
disease reservoirs among countries are unlikely to influence
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biological or life history characteristics of the wild species
found in these countries. Machine learning methods generally
do not assume an underlying model, a priori designation of
interacting variables, or independence among data points,
thereby precluding the need for phylogenetic corrections (11,
13). Such model-free approaches allow the data to speak for
themselves and enable statistical learning algorithms to achieve
superior predictive accuracy (10) and identify prominent pat-
terns in the data that spark novel hypotheses.

Results and Discussion

Of 2277 extant rodent species, 217 species are reservoirs har-
boring 66 zoonoses caused by viruses, bacteria, fungi, helminths,
and protozoa (Figs. 1 and 24 and Dataset S1). Of these, 79
species were hyperreservoirs, carrying between 2 and 11 zoono-
ses (Fig. 34). We examined 86 predictor variables describing
intrinsic features of rodent life history, ecology, behavior, phys-
iology, and biogeography (14) (listed and defined in Dataset S2).
From these data, our models predicted zoonotic reservoir status
with ~90% accuracy (Dataset S3) and identified over 50 po-
tentially new zoonotic reservoir species in the 90th percentile of
model predictions (Fig. 2B and Dataset S4). We also identified
over 150 new hyperreservoirs (Fig. 3B and Dataset S4) predicted
to harbor additional zoonoses beyond the single disease that they
are currently confirmed to carry (Fig. 3B). A model trained on
the number of zoonoses per rodent species (pseudo-R2 =
0.21) (Dataset S3, column 1) produced a trait profile and species
predictions similar to the model predicting the binary response of
reservoir status (Fig. 4 and Datasets S3 and S4).

Significance

Forecasting reservoirs of zoonotic disease is a pressing public
health priority. We apply machine learning to datasets de-
scribing the biological, ecological, and life history traits of ro-
dents, which collectively carry a disproportionate number of
zoonotic pathogens. We identify particular rodent species
predicted to be novel zoonotic reservoirs and geographic re-
gions from which new emerging pathogens are most likely to
arise. We also describe trait profiles—complexes of biological
features—that distinguish reservoirs from nonreservoirs. Gen-
erally, the most permissive rodent reservoirs display a fast-
paced life history strategy, maximizing near-term fitness by
having many altricial young that begin reproduction early and
reproduce frequently. These findings may constitute an im-
portant lead in guiding the search for novel disease reservoirs
in the wild.
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Fig. 1. A bubble plot showing the types of pathogens and parasites (top
axis) recorded to infect rodent species in the wild. Of the rodents that harbor
one zoonosis (row 1; 138 species), the majority of the etiologic agents are
viruses (n = 57), and the minority are fungi (n = 4). However, among res-
ervoirs carrying numerous zoonoses, the distribution of viral, bacterial,
helminth, and protozoan etiologic agents is more even. Fungal diseases are
underrepresented overall.

From previous studies in wildlife, it is clear that infection
patterns can be the result of complex relationships between hosts
and parasites that depend on the lifecycle and transmission mode
of the parasite as well as the life history strategies, tradeoffs, and
ecological context of host species (15-17). By simultaneously
considering all rodent species and the zoonotic infectious agents
that they are known to carry, our models identified trait profiles
suggesting that rodent reservoirs are distinguished from other
rodent species by a fast-paced life history strategy (Fig. 4, Fig. S1,
and Dataset S3). Rodent reservoirs reach sexual maturity and
begin producing offspring at higher rates earlier in life compared
with nonreservoirs. Neonates are born in mid- to large-sized
litters after relatively short gestation periods. (Short gestation
periods and frequent litters may point to fast postnatal growth
rates as a hallmark of reservoir species, but postnatal growth rate
was a relatively unimportant predictor for models predicting
reservoir status and zoonosis counts. Postnatal growth rate was
an important predictor of hyperreservoir status.) Taken together,
this profile suggests that, in general, rodent species with the
highest likelihood of carrying many zoonotic diseases are those
able to maximize near-term fitness by having many altricial
young that begin reproduction early and reproduce frequently.
Interestingly, these functional trait covariates are far more im-
portant in predicting reservoir status and number of zoonoses
than taxonomic labels, despite the fact that such traits are fairly
well-phylogenetically conserved. It is possible, therefore, that
rodent reservoirs may be particularly well-suited to balancing the
fitness consequences of parasitism relative to closely related
nonreservoir species. For example, species exhibiting the classic
fast-paced life history strategy may run a higher risk of acquiring
acute, lethal infections in the short term but may also be adept at
outrunning this risk by producing many offspring more quickly,
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despite the costs of infection, perhaps by using less costly
nonspecific immune defense strategies (18) or through unique
mechanisms of disease tolerance that do not impair reproductive
output (19).

Zoonotic diseases are expected to pose a greater risk in
regions where humans are experiencing increasing contact
with wildlife (4, 20-22), especially in biodiverse developing
nations in the tropics (2). Our results link zoonotic reservoirs
to large geographic range areas with relatively low species
density and human population densities of at least 50 people/km*
(Fig. 4). We report current hotspots of rodent reservoir di-
versity occurring in North America, the Atlantic coast of South
America, Europe, Russia, and parts of Central and East Asia,
with a majority of both reservoir and hyperreservoir species
occurring in upper latitudes (maximum latitude of species’
geographic ranges >40° N) (Figs. 24, 34, and 4). Using the 90th
percentile as a cutoff, we also identify 58 species predicted to
be novel reservoirs and 159 species predicted to be novel
hyperreservoirs (Dataset S4). Predicted hotspots of novel ro-
dent reservoirs occur broadly, spanning arctic, temperate,
tropical, and desert biomes, regions that exhibit a wide range
of mammal species richness, and middle- to high-income econ-
omies (23-25), with hotspots occurring in the Middle East and
Central Asia (China and Kazakhstan) and the Midwestern
United States (Kansas, Nebraska). Interestingly, many of the
rodent reservoir hotspots are located in regions where human
emerging infectious disease events (both zoonotic and non-
zoonotic) are the most concentrated (~40° N) (supplementary
figure 1 in ref. 2) and areas where we find higher diversity of
rodent-borne zoonoses and more human outbreaks of rodent-
borne diseases at the country scale (Fig. S2). Moreover, the
partial plot for this covariate (Fig. 4) shows that zoonotic res-
ervoirs tend to have disproportionately low mammalian species
densities within their geographic ranges compared with the
majority of rodent species [log species (1 per kilometer?)] (Fig.
4), although we note that these results should be considered
in light of decelerating species—area curves for species with
smaller geographic ranges. Collectively, these results may evi-
dence a larger-scale pattern in which synanthropic wildlife
species are more likely sources of zoonotic disease in humans
(21, 22). The majority of current and predicted hyper-
reservoir species occurs in ecoregions that experience an
appreciable degree of seasonality, which concurs with find-
ings from other vertebrate systems that physiological trade-
offs between immunity and reproductive output in temporally
dynamic environments may underlie the biogeographical and
life history patterns that we find in the most permissive rodent
reservoirs (26, 27).

Clearly, the process of disease emergence from wild reser-
voirs into human hosts is complex, depending on many
interacting factors (4, 8, 20-22, 28-33). Our methods use a
trait-based approach focusing on intrinsic biological traits
together with ecological and geographical traits shared among
hosts that currently carry zoonotic disease to capture a char-
acteristic profile for zoonotic reservoirs. The predictions gener-
ated by our models contribute an important baseline for designing
surveillance and field studies for particular regions and species
and bringing into focus testable hypotheses about what enables
some species to maintain and transmit zoonotic infections to
humans (34). Our study shows that it is now possible to predict
with a remarkable degree of accuracy the wild species that carry
zoonotic infections. We also show that machine learning ap-
proaches can be a valuable tool for generating concrete rules of
thumb to characterize new, undiscovered reservoirs in the future
and a valuable way to generate hypotheses about intrinsic fea-
tures that may be playing a key role in promoting hosts’ per-
missiveness to zoonotic infections. Moving forward, sorting out
which reservoirs pose the greatest risk to humans, identifying
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Fig. 2. A map showing global hotspots of (A) rodent reservoir diversity and (B) novel reservoir species predicted by our models to be in the 90th percentile
probability of harboring one or more undiscovered zoonoses (58 species). Warmer colors are the overlapping geographical ranges of multiple species, and
these areas are magnified in Insets to show that hotspots occur in the Midwestern region of the United States (Kansas and Nebraska) and across the Middle
East and Central Asia (Kazakhstan and northern China). B also outlines (black and maroon) the geographic ranges of three species with the highest prob-

ability (~70%) of being undiscovered zoonotic reservoirs.

the mechanisms leading to observed reservoir hotspots, and
understanding the biological underpinnings of reservoir trait
profiles will require empirical ground-truthing that depends on
detailed field work, experimentation, and continued surveillance
by an interdisciplinary scientific community.

Methods

Data. Rodent trait data were obtained from PanTHERIA (14), a species-level
database of life history, ecological, and geographical traits of the world'’s
mammals. We calculated four additional traits: postnatal growth rate
(weaning body mass/neonatal body mass), relative age to sexual maturity
(sexual maturity age/maximum longevity), relative age at first birth (age
at first birth/maximum longevity), and production [mean mass of off-
spring produced per year normalized by adult body size (35)]. We also
included families as additional binary variables to explore the likelihood
of zoonotic reservoirs arising from particular rodent families. Using ter-
restrial mammal range maps from the International Union for the Con-
servation of Nature (IUCN) (36), we calculated species density (the
richness of mammal species found within a species’ geographic range
divided by the geographic range area in units of n per kilometer?). We
collected data on reservoir status and the number of unique zoonoses
carried by each rodent species. In contrast to other ecological definitions
of reservoir (37), we apply the term more generally to encompass wild
species capable of carrying infections transmissible to humans. Predicted
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reservoir species are undiscovered potential sources of zoonotic in-
fections that are known to be transmissible to humans. These data were
collected from the primary literature guided by the Global Infectious
Disease and Epidemiology Network [GIDEON; a real-time database
geared toward medical practitioners to aid in the diagnosis and treat-
ment of human infectious disease (38)], the Web of Science (WOS) and
PubMed scientific indexing services, and web search. We refer to any
species confirmed by peer-reviewed primary literature using standard
diagnostic procedures to carry a zoonotic infectious agent in either wild
or captive settings but not as a result of inoculation. Our dataset includes
429 unique rodent-pathogen combinations comprised of 66 zoonoses
and 217 reservoir species. Although there are more than 217 rodent
species that have been found with zoonotic infections, we have restricted
our analyses to a conservative subset of host species and diseases recog-
nized by GIDEON as having prominent zoonotic relevance for human
populations. Rodent species names were standardized using the work by
Wilson and Reeder (39), and a translation table connecting PanTHERIA tax-
onomy to current IUCN taxonomy can be found in Dataset S5. Data for these
analyses are available from the Dryad Digital Repository, datadryad.org
(10.5061/dryad.7fh4q).

Analyses. We derived three response variables from our data. To predict
probable rodent reservoirs of zoonotic disease, each rodent species was
assigned a binary code according toits current reservoir status. To capture
the trait profile of rodent reservoirs, we quantified the number of
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Fig. 3. A map showing global hotspots of (A) current rodent hyperreservoir diversity and (B) 159 new hyperreservoirs predicted to be in the 90th percentile
probability of harboring additional zoonoses beyond the single disease that they are currently confirmed to carry. B also outlines (black and maroon) the
geographic ranges of three species with the highest probabilities (62-69%) of being zoonotic hyperreservoirs.

zoonoses for which each species was confirmed to be a reservoir. Also, we
assigned binary scores to further distinguish the traits of hyperreservoirs
(species carrying two or more zoonotic parasites) from reservoirs carrying
only a single zoonosis (results of these analyses are summarized in Dataset
S3). For each of these three response variables, we used boosted re-
gression trees (9, 40) with either Bernoulli- or Poisson-distributed error
for binary or count responses, respectively. Boosted regression trees
generate a series of recursive binary splits for randomly sampled pre-
dictor variables. This process is repeated several thousand times to create
an ensemble regression or classification model. We built 800-10,000
trees for each analysis and present the most important variables for
predicting the response. Datasets were partitioned into training (80%
of all 2,277 species) and test (the remaining 20%) sets before analysis.
We applied 10-fold cross-validation during model building to prevent
overfitting and permutation procedures to generate relative importance
scores for each predictor variable (Dataset S3 also summarizes tuning
parameters, performance metrics, and complete trait profiles). In these
analyses, unknown reservoirs (2,061 species) were designated nonreservoirs.
In the absence of repeated experimental inoculations, a large number of
individuals of each species must be sampled before consensus can be reached
that a given species is unable to harbor infection. Thus, we adopted a more
conservative designation to develop predictive models, with baseline classi-
fication performance that can only improve with ongoing discoveries of
novel zoonotic reservoirs.

To control for the potential effects of sampling bias on our results, we
tallied the number of primary literature citations in the WOS for each rodent
species in our dataset as a proxy for sampling intensity. Because WOS hits

7042 | www.pnas.org/cgi/doi/10.1073/pnas.1501598112

increased monotonically with the number of zoonoses that they harbored,
we tested whether the trait profiles that we identified were predictive of
“studiedness” rather than zoonotic reservoir status using the same boosted
regression tree models with WOS counts as the response variable (Dataset
S3). We found that the best-fitting model poorly predicted studiedness
(pseudo—R2 = 0.07), even when data were restricted to consider only species
with 10 or more citations (n = 503, pseudo-R? = 0.17). Thus, although sam-
pling bias is clearly in evidence, regression analyses indicate that the trait
patterns of well-studied rodents and those of rodent reservoirs are not co-
incident. As a follow-up, we included WOS counts as an independent vari-
able and found that, although it had the highest relative importance
for correctly predicting the number of zoonoses carried by rodent species,
the profile of intrinsic traits was consistent with a fast-paced life history
strategy—rodent reservoirs tend to reach sexual maturity early and pro-
duce large litters more times per year, and the mean mass of offspring
produced per year [normalized by adult body size; production (35)] is also
greater (Fig. S3). Analyses were performed using the gbm package (40)
in R (41).

Maps. To identify reservoir hotspots, we mapped the geographic ranges of all
known reservoir and hyperreservoir species as well as the species in the 90th
percentile of model predictions for reservoir and hyperreservoir status
(Dataset S4). All geographic ranges were obtained from the IUCN database
of terrestrial mammals (36) and compiled in a geographical information
system (ArcGIS) (42). We also compiled the number of unique zoonoses and
the number of rodent-borne human infectious disease outbreaks per
country since 1990 from the GIDEON database (38) in ArcGIS (42).
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Fig. 4. Marginal plots of the top 15 predictor variables from a generalized boosted regression analysis on the number of zoonoses carried by rodent res-
ervoirs showing the marginal effect of each trait (shown in order of importance) on the probability of harboring one or more zoonotic pathogens. In general,
trait values associated with fast life history strategies have the strongest influence on whether the model correctly predicts the number of zoonoses carried by
reservoirs. In addition to traits compiled from the PanTHERIA database (14), three derived variables were important: relative sexual maturity age [age at
sexual maturity/maximum longevity (days)], relative age at first birth [age at first birth/maximum longevity (days)]l, and production (35) (mean mass of
offspring produced per year normalized by adult body size). The definitions for all variables can be found in Dataset S1.
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