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Summary
This is a comprehensive review, with 114 references, of the chemical diversity

found in the fungus Penicillium roqueforti. Secondary metabolites of an

alkaloidal nature are described, for example, ergot alkaloids such as

festuclavine, isofumigaclavines A and B, and diketopiperazine alkaloids such as

roquefortines A–D, which are derived from imidazole. Other metabolites are

marcfortines A–C, PR-toxin, eremofortines A–E, mycophenolic and penicillic

acids, and some c-lactones. Also, recent developments related to the structural

characteristics of botryodiplodin and andrastin are studied—the latter has

anticancer properties. Finally, we discuss the enzymes of P. roqueforti, which

can participate in the biotechnological production of high value-added

molecules, as well as the use of secondary metabolite profiles for taxonomic

purposes.

Introduction

Fungi produce, store and release chemicals that affect

other organisms and determine the existence of chemical

interactions, which give the producer adaptive advantages.

These organic compounds come from secondary meta-

bolic pathways which are closely related to the routes that

give rise to the primary metabolites, that is carbohydrates,

lipids, proteins and nucleic acids (Turner 1971).

The use of new technologies and optimization pro-

cesses has allowed us to characterize these metabolites,

which have theoretical and practical implications of great

importance to current biotechnological industrial devel-

opment and represent a source of compounds that could

be applied to different fields (e.g. nutraceutical, cosmetic

and pharmaceutical).

Thus, the saprophytic fungus Penicillium roqueforti

Thom is ideally placed, because it is widely involved in

the fundamental degradation processes found in nature

and it produces a variety of enzymes and secondary

metabolites based on various types of substrates (e.g. car-

bon sources). It is no surprise that there is a significant

volume of information associated with this organism.

Penicillium roqueforti has been used in biotechnology

for the dairy industry, and its enzymatic system has been

well-characterized biochemically. While it is only

described as a terrestrial fungus, different studies have

shown that P. roqueforti is able to grow in saline solu-

tions and that spore germination is inhibited only at

NaCl concentrations >100 g l�1 (Kubeczka 1968; Godi-

nho and Fox 1981). Indeed, a marine-derived strain with

halotolerant characteristics has been isolated and has

grown successfully in the KMV-modified broth prepared

with sea water at 35 g l�1 salinity (Mioso et al. 2014, in

press).

This fungus also has many other favourable fermenta-

tion characteristics, such as its tolerance for growing at

low pH values and the ability to use both pentoses and

hexoses as substrates, which make it a natural candidate

for industrial biotechnological production. Also, a variety

of genetic techniques are being developed to improve the

productivity of these organisms. Thus, the consolidation

of these and other technologies related to transgenic pro-

duction will generate a technology platform that could be

used in the sustainable manufacture of high value-added

products at low cost (Punt et al. 2002; Ward 2012).
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Chemical diversity of the fungus

Enzymes

Enzymes are molecules of a proteinic nature that are able

to facilitate and accelerate chemical reactions. Their use

in the biotechnology industry, through catalysing bio-

transformation processes, presents a number of advanta-

ges. Due to their high specificity towards the substrate,

they do not contribute to undesirable secondary reac-

tions. They also exhibit high catalytic activity, and regio-

selective and stereoselective reactions occur at low

concentrations and in less aggressive experimental condi-

tions (Sibilla and Dom�ınguez de Mar�ıa 2013; Asgher

et al. 2014).

The current interest that has been generated within the

scientific community in relation to these biological cata-

lysts is due to their variety and distribution in a wide

range of fungal and bacterial micro-organisms. Their

great biotechnological potential is, therefore, applicable in

different fields of research, including the pharmaceutical

and chemical industries (Colen 2006). It is worth noting,

because it relates to P. roqueforti, that their proteolytic

and lipolytic enzymes make them suitable for biotechno-

logical applications (Gobbetti et al. 1998), such as remov-

ing scales from fish, the production of high-quality lipids

from food waste products and the preparation of dairy

drinks (Hassanien et al. 1986; Woloszyn et al. 1988; Szol-

tysek 1999). Also, P. roqueforti is used in preserving meat

products through fermentation processes (Jingxin et al.

2013) and in the production of pectinolytic enzymes

from agricultural by-products such as pumpkin oil cake

(Peri�cin et al. 2007) and coffee husks (Fernandes 2014).

Lipolytic enzymes

Penicillium roqueforti is a filamentous fungus used during

the process for making blue cheese. Some strains play an

important role in the maturation of these cheeses, which

occurs due to the consumption of lactic acid through

beta-oxidation and the strong acid and alkaline lipolytic

action of the extracellular enzymes (Mart�ınez-Rodr�ıguez

et al. 2014). The result of this process is the formation of

two methyl ketones, 2-heptanone and 2-nonanone, which

are considered to be responsible for the odour and

flavour of the blue cheese (Cao et al. 2014).

The enzymatic transformation of lower quality indus-

trial raw materials, such as fats and oils, can also be

improved with the use of lipases (Lobyreva and March-

enkova 1980). A current example is in the biocatalytic

production of biodiesel from animal fat residues (Rivera

et al. 2009).

Many of these lipases of industrial interest are pro-

duced by the submerged culture system of selected strains

(Eitenmiller et al. 1970). The lipases of fungal origin are

preferred to the ones of animal origin, because the for-

mer are thermally stabler and do not denature either at

high temperatures or with changes in pH (Dheeman

et al. 2010). Some lipases are regioselective, reacting with

triglyceride at the sn-1 or sn-3 position. The lipases

obtained from P. roqueforti exhibit specificity, even in

respect to short-chain fatty acids, or in other words, they

are acyl-specific short-chain fatty acids.

Penicillium roqueforti produces several types of active

lipolytic proteins which differ in molecular weight, amino

acid/carbohydrate composition, substrate specificity and

preference for incubation conditions such as temperature

and pH (Lobyreva and Marchenkova 1980; Mase et al.

1995). These lipases are used to modify the physical and

chemical properties of fats and industrial oils through the

catalysis of the interesterification reactions (Lamberet and

Menassa 1983). Lipases can be immobilized in synthetic

polymers, to control the bioconversion. Thus, one can

obtain valuable products from the fats and oils of indus-

trial wastes (Temesvari and Biacs 1996).

Proteolytic enzymes

The enzymatic conversion of industrial raw materials also

occurs through the use of proteases. In biochemical

terms, P. roqueforti presents a complex proteolytic system

consisting of two extracellular endopeptidases (acid pro-

tease and metalloprotease) and exopeptidases (acid car-

boxypeptidase and alkaline aminoprotease), which are

commonly used in the dairy industry (Modler et al. 1974;

Gripon 1977; Gripon et al. 1977; Le Bars and Gripon

1981; Rosenthal et al. 1996; Igoshi et al. 2007).

In terms of bioprocesses, the maturing of Roquefort

cheese is carried out through solid-state fermentation of

strains of P. roqueforti, in which the substrate is the

cheese itself. Thus, the intense proteolytic action of the

enzymes of P. roqueforti causes the release of peptides

such as amino acids, which have both high and low

molecular weights (Fuquay et al. 2011).

Penicillium roqueforti secretes an aspartyl protease,

ASPA, which generates the main extracellular activity

(Gente et al. 2001). Its extracellular endopeptidases are

responsible for degrading the alpha- and beta-caseins.

The acid protease attacks the beta-casein, which results in

peptides being released, even in unfavourable pHs (Zev-

aco et al. 1973; Modler et al. 1974; Gripon et al. 1977).

Similarly, the metalloprotease degrades the beta-casein.

These processes result in high concentrations of amino

acids in the cheese (Gripon et al. 1980).

Decarboxylase and deaminase enzymes

It is known that tryptamine, tyramine and histamine—
which are nonvolatile amines produced by decarboxylation
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of the amino acids tryptophan, tyrosine and histidine,

respectively—are present in Roquefort cheese. This is due

to the presence of decarboxylase enzymes (Hwang et al.

1976; De Boer and Kuik 1987; Gripon 1993). Also, ammo-

nia is present from the deamination of the tryptophan,

tyrosine and histidine, which in turn indicates the presence

of deaminases (Rabie 1989).

Primary metabolites and macroconstituents

In relation to the chemical composition of P. roqueforti, it

is worth mentioning the pioneering works concerning its

fatty acid profile and its lipid metabolism, including those

by Lawrence (1965), and the studies on its ability to form

2-heptanone and other methyl ketones by the oxidative

fission of fatty acids (Gehrig and Knight 1958; Jackson

and Hussong 1958). According to Dartey and Kinsella

(1973), the fungus could use this mechanism as a form of

auto-detoxication. Simultaneously, volatile aldehydes and

secondary alcohols were detected in the cheese manufac-

tured with this fungus (Dolezalek and Hoza 1969).

In a chromatographic study of the total lipidic fraction

of P. roqueforti, Kaufmann et al. (1966) described the

major presence of the palmitic, oleic and linoleic acids

esterified in the form of phospholipids and/or triacylgly-

cerides, as well as free steroids with the structure of

ergosterol. Subsequently, based on the growth phases

(Lawrence 1967; Salvadori and Salvadori 1967; Fan and

Kinsella 1976), new data on the biogenesis of the unsatu-

rated fatty acids were provided, and, more recently, the

fatty acid profile has been reconfirmed (Lomascolo et al.

1994; Mioso et al. 2014).

Shimp and Kinsella (1977a) determined the macronu-

trient content of the mycelium of P. roqueforti and

showed that, under optimal growing conditions, it is pos-

sible to find high levels of carbohydrates, proteins and

lipids. They also explained that the less polar lipids con-

sist predominantly of triacylglycerides, diglycerides and

free fatty acids, while the most polar ones are composed

of phospholipids and glycolipids; the palmitic, stearic,

oleic and linoleic acids are always the most esterifying

fatty acids.

Secondary metabolites and high value-added products

In biological studies, it has been determined that most of

the secondary metabolites defend the producer organism

against predators, competitors and pathogens (Levin

1976; Pawlik 1993; McClintock and Baker 2001). As a

component of ecosystems, fungi also produce secondary

metabolites, which play an important role in the defence

mechanisms by acting as allomones. To remove

these undesirable organisms, the filamentous fungi, in

particular, accumulate and manufacture antimicrobial

and antifouling factors (Toledo Marante et al. 2004; Her-

mosa et al. 2014).

It is not surprising, therefore, that among the various

kinds of fungi, ascomycetes are recognized as producers

of new secondary metabolites with unusual carbon struc-

tures. Consequently, it is clear that these apparently

defenceless organisms were endowed by evolution with

adaptive allomones that bring benefits, and by extrapola-

tion, it is assumed that they could be genuine biofactories

of natural drug sources (Toledo Marante et al. 2004). A

historic example is the case of penicillin and the eradica-

tion of tuberculosis (Fleming 1929).

Under certain culture conditions, P. roqueforti also

shows a pronounced ability to biosynthesize secondary

metabolites (Engel and Teuber 1983), some of which

have antiparasitic, bacteriostatic (Kopp-Holtwiesche and

Rehm 1990; Ruddock 1992; Aninat et al. 2001) and anti-

cancer properties (Nielsen et al. 2005; Overy et al. 2005).

However, these filamentous fungi are able to produce

specific toxic metabolites, which initially restricted their

use in food (Kolousek and Michalik 1954; Kanota 1969;

Scott et al. 1977). In this regard, the structures of some

alkaloids were isolated and clarified, for example, roque-

fortine A (1), which is also referred to as isofumigacla-

vine A; roquefortine B (2), which is also known as

isofumigaclavine B; festuclavine (3); and roquefortine C

(4). All of these alkaloids would come to be known as

neurotoxins (Ohmomo et al. 1975; Scott et al. 1976;

Polonsky et al. 1977).

The alkaloid roquefortine D (5) was subsequently iso-

lated—it was suggested that its biogenesis passes through

mevalonic acid, tryptophan and histidine (Ohmomo et al.

1978). More recently, some evidence supporting this

hypothesis has been provided (Bhat et al. 1993). More-

over, Bellinck (1975) studied the chemistry of the pig-

ments of P. roqueforti and showed that these compounds

are polyphenolic in nature (Fig. 1).

The applicability of fungus in food was even more lim-

ited when Wei et al. (1973, 1975) purified another myco-

toxin from a strain of P. roqueforti, which had been

isolated from toxic foods. This substance was lethal when

administered orally to rats, and its structure was clarified

by chemical and spectroscopic methods such as PR-toxin

(6). These same authors also proved that this mycotoxin

has a strong inhibitory effect on the biosynthesis of DNA,

RNA and proteins.

Moreau et al. (1976) soon discovered three new metab-

olites—the eremofortines A (7), B (8) and D (10)—bio-

synthetically related to PR-toxin. They suggested that the

latter one is the biogenetic precursor of the 9-OH or

6-OH-furo-eremophilanic sesquiterpenes that have

already been found in various organisms (Fig. 2).
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Moreau et al. (1977) subsequently showed the two

structural shapes of the eremofortine C (9a/9b), and

Arnoux et al. (1977) completed the structural description

of eremofortine D (10) (Fig. 3).

Moreau et al. (1980b) linked eremofortines A, B and C

with the appearance of PR-toxin in the toxic strains and

suggested that sesquiterpene eremofortine C is its direct

biosynthetic precursor.

The structures of eremofortines A, B, C, D and E were

completed from a stereochemical viewpoint, by correlation

with the absolute configuration of PR-toxin. Also, the

structure of eremofortine E or PR-amide (11) was eluci-

dated by X-ray diffraction (Moreau et al. 1980a). Wei

et al. (1989) then involved these metabolites in the biosyn-

thetic and degradation pathway of PR-toxin (Fig. 4).

Finally, the chemical and biological activity of these

eremophilanic sesquiterpenes was revised. The factors

related to the culture conditions that affect the produc-

tion of the PR-toxin were described, as well as its degra-

dation in the self-producing P. roqueforti (Scott 1984;

Chang et al. 1991). The metabolites released and accumu-

lated in the medium were eremofortine E (PR-amide,

11), PR-acid (12) and PR-imine (13) (Chang et al. 1993,

1996).

The advances in the description of the secondary

metabolism of P. roqueforti must also highlight: the

description of the absolute configuration of the isofumig-

aclavine A (1) (Arnoux et al. 1978); the structural expla-

nation of marcfortines A (14), B (15) and C (16)

(Polonsky et al. 1980; Prang�e et al. 1981); and the

description of the crystal structure of the aristolochene

synthase (AS) enzyme (Caruthers et al. 2000). The AS is

the first terpenoid cyclase enzyme of fungal origin, and

its structure shows the active centres that presumably are

involved in the cyclization of farnesyl pyrophosphate

(26), leading to aristolochene hydrocarbon (17) which is

the biogenetic precursor of all sesquiterpenes and is

structurally related to the PR-toxin described above. Note

that both compound (26) and (17) have the carbon

structure of the eremophilane (18) (Figs 5 and 6).

Additionally, Olivigni and Bullerman (1978) detected

penicillic acid (19) and patulin (20) in an atypical strain

of P. roqueforti. Lafont and Debeaupuis (1980) described

mycophenolic acid (21), and Brueckner and Reinecke

(1988) identified aminoisobutyric acid by GC-MS

(Fig. 7).
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Chalier and Crouzet (1992) indicated that c-lactones
are responsible for the smell of the blue cheese. They

described 4-dodecanolide (c-C12, 22), (Z)-6-dodecen-4-
olide {(6Z)-c-C12: 1, 23} and the minority 4-hexanolide

(c-C6), as well as the stereochemistry at carbon 4 {S to

22 and also S to 23} that P. roqueforti makes from the

oleic and linoleic acids.

Finally, botryodiplodin (24), which had previously

been found in Botryodiplodia theobromae, was isolated

from a nonproducing PR-toxin strain of P. roqueforti,

(Moreau et al. 1982). The authors determined its absolute

configuration by X-ray diffraction and reported its muta-

genic activity (Fig. 8).

Andrastins (25), which are components of the fungus

P. roqueforti that gives the classic blue colour to the

Roquefort cheese (Fern�andez-Bodega et al. 2009), have

been described previously by Danish (Nielsen et al. 2005;

Overy et al. 2005) and Japanese (Shiomi et al. 1996; Uch-

ida et al. 1996a,b) researchers. Andrastins A–D are potent

inhibitors of the farnesyl transferase which is an impor-

tant enzyme involved in cholesterol biosynthesis (Omura

et al. 1996; Shiomi et al. 1996; Uchida et al. 1996a,b).

Andrastin A exhibits potent antitumor activity by acting

on the oncogenic Ras protein and also in the regulation

of cell proliferation and cell differentiation (Uchida et al.

1996b; Rho et al. 1998) (Fig. 9).

Chemotaxonomy

Traditionally, the taxonomy of the P. roqueforti group

has been based on morphological criteria, its diffusion

capacity in standardized culture media and biochemical

analysis of the profiles—the variety P. roqueforti var.

roqueforti is used in the manufacture of cheese, and

P. roqueforti var. carneum is the producer of patulin (20)

(Pitt 1979; Frisvad 1981; Engel and Teuber 1983; Blom-

quist et al. 1992; Lomascolo et al. 1994). However, the

modern tools of molecular genetics combined with bio-

chemical profiles have highlighted the need to reclassify

the P. roqueforti group, dividing it into three species:
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P. roqueforti, Penicillium carneum and Penicillium paneum

(Boysen et al. 1996, 2000).

Currently, the use of solid-phase microextraction tech-

niques followed by capillary chromatography analysis

with mass detection (GC-MS) allows the detection of vol-

atile sesquiterpenes which are intermediates of various

metabolic pathways in P. roqueforti (Demyttenaere et al.

2002; Jelen 2002). This confirms the hypothesis that the

AS enzyme is responsible for the cyclization of the farne-

syl pyrophosphate (26) to aristolochene (17), which is

considered to be the biogenetic precursor of PR-toxin.

That is why Calvert et al. (2002), Demyttenaere et al.

(2002) and Jelen (2002) proposed the AS enzyme with

germacrene A (27), valencene (28), b-elemene (29), b-
gurjunene (30), a-chamigrene (31), a-panasinsene (32),

b-patchoulene (33), a-selinene (34), di-epi-a-cedrene
(35), b-himachalene (36) and b-bisabolene (37), as the

profile of volatile components, to allow chemotaxonomi-

cal differentiation of the producer strains of PR-toxin

from those that cannot biosynthesize it (Figs 10 and 11).

The authors noted that these chemical markers, detect-

able by GC-MS, were absent in the nontoxic strains of

P. roqueforti that were analysed.

The identification of the secondary metabolites can

help in the taxonomic differentiation, although the results

should be taken with caution (Scott et al. 1977; Shimp

and Kinsella 1977b; Maheva et al. 1984; Hassanien et al.

1986; Gock et al. 2003). That is why Jelen (2002) studied

the influence of the culture conditions (temperature and

water content in the broth), and he concluded that,

although they have an influence on the number of ses-

quiterpenes produced (quantitative analysis), they do not

have an influence on the profile (qualitative analysis)

which is unique and characteristic for the toxic strains.

The reason for this specificity has been justified by struc-

tural studies of the AS enzyme (Caruthers et al. 2000;

Calvert et al. 2002; Deligeorgopoulou and Allemann

2003), providing evidence that the farnesyl pyrophosphate

accommodates itself to the active AS site, having the nec-

essary quasi-cyclic conformation (26) that makes possible

the nucleophilic attack of C1 by the double bond at C10,

stereospecifically producing (S)-germacrene A (27), which

is an intermediary involved in the path of the PR-toxin
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(see Fig. 10), whereas the AS mutation at a single point

(residue 92) makes it an enzyme that diverts the bioge-

netic route to the production of straight-chain terpe-

noids, such as (E)-b-farnesene (39) and (E,E)-a-farnesene
(40), thereby allowing accommodation in the active site

of the farnesyl pyrophosphate with its quasi-linear

conformation (38)—see Fig. 12.

Concluding remarks and perspectives

Penicillium roqueforti is a filamentous fungus which is

very often found in food. Although its origin is unclear,

references and legends associated with this species date

back over 2000 years. It can be considered to be ‘domes-

ticated’ because of its relation to the development of arti-

sanal cheeses. Nowadays, there are various strains known

to us which are used in the food industry for the produc-

tion of dairy products. About a century ago, the biotech-

nological research of the chemical diversity of the

metabolites found in this fungus began to be improved

worldwide. Thus, the comprehensive review of the chem-

istry of this fungus has allowed us to do a retrospective

study of the secondary metabolites (e.g. festuclavine, iso-

fumigaclavines and roquefortines) which are alkaloidal in

nature. Other metabolites are marcfortines, PR-toxin,

eremofortines, mycophenolic acid, penicillic acid and c-
lactones. Similarly, recent developments related to the

structural characteristics of botryodiplodin and andrastin

are addressed—the latter has anticancer properties. In

conclusion, we discussed the use of secondary metabolite

profiles for taxonomic purposes.

In the coming decades, it is expected that this fungus will

be grown, even in marine conditions, to produce enzymes

as products with high added value. Additionally, its appli-

cations in food will be increased, including the production

of nonproducing strains of mycotoxins for foods.
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