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Abstract: Muscle food is one of the most perishable food products because of its vulnerability to microbial spoilage,
which can result in critical food safety problems. Traditional techniques for detection and evaluation of microbial spoilage
in muscle foods are tedious, laborious, destructive, and time-consuming. In recent years, spectroscopic and imaging
technologies have shown great potentials for the assessment of food quality and safety due to their nondestructive, nonin-
vasive, cost-effective, and rapid responsive nature. This review focuses on the applications of several valuable spectroscopic
techniques including visible and near-infrared spectroscopy, Fourier transform infrared spectroscopy, fluorescence spec-
troscopy, Raman spectroscopy, and hyperspectral imaging for the rapid and nondestructive detection of microbial spoilage
in common muscle foods such as meat, poultry, fish, and related products. Combined with chemometric analysis, such
as spectral preprocessing and modeling methods, these potential technologies have been successfully developed for the
determination of total viable count, aerobic plate count, Enterobacteriaceae, Pseudomonas, Escherichia coli, and lactic acid
bacteria loads in muscle foods. Moreover, the advantages and disadvantages of these techniques are discussed and some
perspectives about future trends are also presented.
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Introduction
Muscle foods such as livestock and poultry meat and fish flesh

are a rich nutrient matrix with important dietary components
for people and represent an accessible source of high-quality pro-
tein for consumption (Ikutegbe and Sikoki 2014). However, these
muscle foods also provide a suitable and comfortable environment
for the proliferation of meat spoilage microorganisms and common
food-borne pathogens. Therefore techniques such as refrigeration
(Sun 1997; Sun and Eames 1996; McDonald and others 2001;
Wang and Sun 2004; Kiani and Sun 2011; Zheng and Sun 2004)
and drying (Cui and others 2008; Delgado and Sun, 2002) could
be used to enhance product quality and safety. Spoilage is most
rapid and evident in muscle or proteinaceous foods such as pork,
beef, lamb, chicken, fish, and shellfish. These foods possess a neu-
tral or slightly acid pH and high moisture content that allows
the growth of a wide range of microorganisms (Huis in’t Veld
1996). More specifically, meat spoilage during distribution can be
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considered as an ecological phenomenon because of the fact that
microbial spoilage is by far the most common cause of spoilage,
which may manifest itself as visible growth (slime, colonies), tex-
tural changes (degradation of polymers), or off-odors and off-
flavors during the presence of a particular microbial association,
known as the so-called specific spoilage organisms (SSO) (Borch
and others 1996). Initially, SSO are present in low quantities and
constitute only a minor part of the natural microflora. During
storage, SSO generally grow faster than the remaining microflora
and produce metabolites that are responsible for off-odors, off-
flavors, or slime and finally cause sensory rejection (Gram and
Huss 1996). In fact, meat spoilage commonly depends on an even
smaller group of SSO, called ephemeral spoilage organisms (ESO).
The ESO are the consequence of factors that dynamically per-
sist or are imposed during processing, transportation, and storage
in the market (Nychas and others 2008). The spoilage microor-
ganisms are commonly divided into 6 broad categories: Gram-
negative rod-shaped bacteria, Gram-positive spore-forming bac-
teria, lactic acid bacteria (Lactobacillus, Streptococcus, Leuconostoc, and
Pediococcus spp.), other Gram-positive bacteria, yeasts, and molds
(Dainty 1996).

However, spoilage is often subjectively judged by the consumer,
which may be influenced by cultural and economic considerations
and background as well as the sensory acuity of individuals.
Indeed, when spoilage progresses, most consumers would agree
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that unpleasant discoloration, strong off-odors, and the generation
of slime would constitute the main qualitative criteria for meat
rejection. Therefore, muscle food safety problems caused by
microbial spoilage have attracted increasing attention from food
manufacturers, distributors, and official regulators (Aymerich and
others 2008). To reduce the number of food-borne outbreaks and
control microbial spoilage, some regulatory frameworks and risk
management systems, such as good hygienic practices (GHP),
good manufacturing practices (GMP), good agricultural practices
(GAP), and hazard analysis critical control points (HACCP),
have been developed for the production of safe foods (Balzaretti
and Marzano 2013). Nevertheless, the level of safety that these
food safety systems are expected to deliver has seldom been
well-defined in quantitative terms (Van Schothorst and others
2009). To eliminate consumer concerns over emerging microbial
hazards, microbial spoilage detection technology is desperately
needed to secure the safety of muscle foods. Some sensitive and
possibly specific microbial methods based upon enumeration,
immunological methods, and molecular techniques have already
been conducted for the detection of microbial spoilage. The
culture and colony counting methods such as the plate rubbing
and pouring methods are basic tools widely used for detection
of food-borne pathogens because of their reliability in efficiency,
sensitivity to target organism, and applicability to a wide range of
food matrices (Yeni and others 2014). However, these microbio-
logical methods have major drawbacks being labor-intensive and
time-consuming, and often take 2 to 3 d for initial results, and
up to 7 to 10 d for confirmation. This is obviously inconvenient
in modern food industrial applications (Velusamy and others
2010). In addition, the immunology-based methods, involving
antigen–antibody interactions, have been successfully employed
for the detection of bacterial cells, spores, viruses, and toxins alike.
Methods based on antigen–antibody bindings are also commonly
used for determining food-borne pathogens (Iqbal and others
2000). However, when quantities of the pathogen are too high, the
immunoassay-based methods are indicative of low assay sensitivity,
low affinity of the antibody to the pathogen or other analyte being
measured, and potential interference from contaminants (Meng
and Doyle 2002). The polymerase chain reaction (PCR) method
involving DNA analysis is also a broadly used method for the
detection of pathogens in the food sectors (Nugen and Baeumner
2008). In spite of its advantages, PCR is considered to be
excessively expensive and complicated to be utilized in industrial
settings, based on the industrial point of view, and skilled workers
are needed to carry out the tests (Velusamy and others 2010).

Apparently, these aforementioned analytical methods are de-
structive and not suitable for online and real-time detection of
microbial spoilage in a rapid and nondestructive/noninvasive man-
ner. Furthermore, the meat industry also needs rapid analytical
tools for quantification of these microbial indicators to estimate
the remaining shelf-life of their products. Therefore, spectroscopic
and imaging techniques have gained great significance in the mea-
surement and evaluation of food quality and safety because they
can solve some of the existing problems presented by the tradi-
tional methods and instruments. In recent years, although these
spectroscopic techniques have been developed for measuring mi-
crobial spoilage in muscle foods, no review has been published
to specifically address the applications of these important spectro-
scopic techniques, including visible (VIS) and near-infrared (NIR)
spectroscopy, Fourier transform infrared (FT-IR) spectroscopy,
fluorescence spectroscopy, Raman spectroscopy, and hyperspec-
tral imaging (HSI) technique for the rapid and nondestructive

detection of spoilage microorganisms in common muscle foods.
Therefore, the objective of this paper was to review the applica-
tions of these spectroscopic and hyperspectral imaging techniques
together with chemometric analysis, for inspection and evaluation
of microbial spoilage in muscle foods based on the determinations
of total viable count (TVC), aerobic plate count (APC), Enter-
obacteriaceae, Pseudomonas, Escherichia coli, and lactic acid bacteria
(LAB) loads.

Chemometric Analysis
Chemometric analysis as an effective support means has been

widely developed for multivariate data processing and analysis in
spectroscopy techniques and hyperspectral imaging with the aim
of establishing the calibration and prediction models for practical
applications of classification, identification, quantification, mea-
surement, detection, and assessment of quality and safety of food.
Chemometric methods can build a multivariate model that best
describes the system under analysis. The spectral data can be ana-
lyzed directly after following pretreatments.

Spectral preprocessing methods
After collection of a large number of spectral data in spec-

troscopy, preprocessing of the corresponding spectral data is an
important procedure for improving the subsequent multivariate
regression, classification, model development, or exploratory
research, and it has become an integral part of chemometric
analysis. In a spectroscopic experiment, the process of spectral data
collection can be appreciably affected by nonlinearities caused by
light scattering (Rinnan and others 2009). In addition, because of
the comparable size of the wavelengths in NIR electromagnetic
radiation and particle sizes in biological samples, NIR spec-
troscopy is vulnerable to undesirable scattering effects such as
baseline shift and nonlinearities, which have a significant impact
on the recorded sample spectra (Zeaiter and others 2005; Rinnan
and others 2009). Therefore, applying suitable spectral prepro-
cessing methods to some great extent can reduce and eliminate
these negative effects. The most commonly used preprocessing
techniques in spectroscopy (in both reflectance and transmit-
tance mode) can be divided into 2 groups: scatter-correction
methods and spectral derivatives. The first group consists of
multiplicative scatter correction (MSC) (Maleki and others
2007), inverse MSC, extended MSC, extended inverse MSC,
de-trending, standard normal variate (SNV), and normalization
(Fearn and others 2009). Spectral derivatives mainly include
Norris–Williams derivation and Savitzky–Golay derivation
(Rinnan and others 2009). Derivative pretreatment is able to
eliminate both additive and multiplicative effects in the spectral
data and has been applied in analytical spectroscopy for decades.
Specifically, the first derivative mainly removes the baseline and the
second derivative eradicates both baseline and linear trend (Chang
and others 2009; Sharma and others 2014). In fact, these spectral
preprocessing methods mentioned above show their individual
advantages and their combinations are very helpful and effective
in subsequent modeling analysis. The implementations of these
preprocessing techniques were conducted by the chemometric
software (Unscrambler version 9.7, CAMO, Trondheim, Norway).

Common modeling techniques
The spectral data obtained can be used to develop the multivari-

ate model by utilizing the appropriate chemometric algorithms
such as principal component analysis (PCA), cluster analysis
(CA), linear discriminant analysis (LDA), quadratic discriminant
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analysis (QDA), soft independent modeling by class analogy
(SIMCA), partial least square-discriminant analysis (PLS-DA),
artificial neural network (ANN), support vector machine (SVM),
least square-support vector machine (LS-SVM), multiple linear
regression (MLR), principal component regression (PCR), and
partial least square regression (PLSR) for classification and regres-
sion purposes in spectroscopic and imaging techniques (Forina
and others 2008; Prats-Montalbán and others 2011; Dai and
others 2014). Some commonly and importantly used approaches
for supporting the applications of spectroscopy and hyperspectral
imaging are highlighted and discussed later in the paper.

PCA. Multivariate analysis shows great advantages for dealing
with a large number of complex colinear spectral data and al-
lowing for the reduction and simplification of these data to a
lower dimension that retains the most informative and useful in-
formation. PCA as one of the most popular methods has been
widely carried out to do an initial investigation and to visualize
the spectral data for examining any possible grouping of samples
according to spectral features of the tested meat species (Barbin
and others 2012). It means that PCA can be performed on the
whole spectral data (X) to identify the deviant spectral outliers and
the most important directions of variability in a multivariate
data space (X). As an unsupervised pattern recognition, PCA
transforms the original variables through orthogonal transforma-
tion into new uncorrelated variables, called principal components
(PCs), which are linear combinations of the original spectral data
and ranked in such a way that the first PC covers as much of
the variation in the data as possible and the second PC covers as
much of the remaining variation as possible, and so forth (Abdi
and Williams 2010). This means that only the first few PCs retain
most of the variation present in all of the original variables. Each
PC can be interpreted independently that permits an overview of
the data structure by revealing the relationship between the ob-
jects. The matrix expression of the PCA for the spectral data is
described later:

R = SP + E (1)

where R is the spectral reflectance matrix (n × k); S is the score
matrix (n × p); P is the eigenvector matrix (p × k); E is a residual
matrix (n × k); n is the number of spectra; k is the number of
wavelengths, and p is the number of principal components (Park
and others 2001).

MLR. MLR is a classic, simple, and efficient algorithm for linear
modeling. It makes linear fitting for independent variables (X)
and dependent variables (Y), and obtains an optimal result in a
least-squares sense (Sousa and others 2007). However, the main
disadvantage of this approach is that it requires a larger number of
samples than variables and its performance can be easily affected by
the colinearity between variables (Guillén-Casla and others 2011).
A fixed regressor model of the following form is used,

y = Xb + e (2)

where b is the unknown parameter vector; X matrix and y vector
are the measured calibration data for regressor variables x and
response variable y, respectively; and e is the error vector. The
fitting degree of MLR model is usually evaluated by standard
statistical methodology.

PLSR. Compared with MLR, PLSR is suitable to solve the
multi-colinearity problem. Recently, PLSR has been a widely
used bilinear-modeling and multi-analysis method for quantitative

regression analysis in the food industry, which can be considered
as a standard calibration technique for spectroscopic analysis. It is
especially suitable for situations when the number of variables is
greater than the number of samples, and when there is colinearity
among variables (Mehmood and others 2012; Mahesh and others
2015). During the process of model establishment, PLSR merges
the functions and advantages of linear regression analysis, canoni-
cal correlation analysis, and PCA. Therefore, the results of PLSR
cannot only provide a more reasonable regression model, but can
also perform some other analyses, such as PCA and canonical cor-
relation analysis. It proves that PLSR can provide abundant and
deeper information (Vongsvivut and others 2014). PLSR decom-
poses both independent variables X and dependent variable Y into
several principal components (PCs), where the orthogonal score
T of X is correlated with Y by using the following formulas:

Y = Xb + E = XW∗
a C + E = TC + E (3)

W∗
a = Wa

(
P TWq

)−1
(4)

where b is the regression coefficients; E is a residual error matrix;
Wa is the PLS weights; a is the number of latent variables (LVs)
adopted; P and C are loadings for X and Y, respectively. As indi-
cated above, when regression coefficient b is finally determined for
a specific problem, the Y values for new samples can be predicted
with reasonable errors by multiplying the spectra (X) of these new
samples with the obtained regression coefficients.

LS-SVM. LS-SVM is an evolutionary version of the standard
SVM and has been widely developed to involve equality instead
of inequality constraints and to work with a least squares cost
function for optimal control of nonlinear systems and spectral cal-
ibration (Suykens and others 2001; Bao and others 2014). This
approach utilizes nonlinear map function, projects input features
to a high-dimensional space, and adopts the Lagrange multiplier to
compute the partial differentiation of each feature for converting
the optimization problem into resolving the linear algebraic equa-
tion (Sadik and others 2004; Thissen and others 2004). LS-SVM
not only possesses the advantage of good generalization perfor-
mance as SVM, but also exhibits the simple structure and shorter
optimization time. Given a training set of N samples {yn ,zn}N

n=1,
where zn is the input features and yn is the output pattern, the
classifier of the form based on LS-SVM can be expressed as:

y(z) = sign

[
N∑

n=1

αn K (zn ,z) + β

]
, (5)

where K (zn ,z) is the kernel function, β is a bias term, and αn

is the support weight vector. LS-SVM provides a generic mech-
anism that fits the hyperplane surface to the training data using
a kernel function. The radial basis function (RBF) as a popular
kernel function is normally used in LS-SVM and the grid-search
technique is usually applied to determine the optimal parameters
obtained from the RBF kernel (Suykens and others 2001). RBF
kernel function (denoted as KRBF) is defined as follows:

KRBF(zn ,z) = exp
(−‖zn − z‖2 /2σ 2) (6)

where σ is the width of Gaussian function. Before the application
of LS-SVM, 2 parameters, γ (the regularization parameter) and
σ 2 (the width parameter of RBF kernel) are optimized by the
LS-SVMLab toolbox (Pelckmans and others 2002).
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Table 1–A comparison of common regression algorithms.

Type Algorithm Advantages Disadvantages

Linear PCR Simple and intelligible Too abstract
MLR Easy to fit models Powerless for predicting complex problems
PLSR Easy to determine statistical properties

Nonlinear LS-SVM More efficiency High computational complexity
ANN Suitable for analyzing complex problems Indigestible

ANN. ANN is a frontier field that has been rapidly developed
and widely used in many fields because of its good predictabil-
ity and practicality. It is helpful to solve the problem for trans-
forming the nonlinear regression into linear regression by variable
substitution (Zupan and others 1997; Wang 2003; Guo and oth-
ers 2015). Then linear regression methods are applied to achieve
predictive purposes. In the practical applications of using ANN
for spectroscopic and hyperspectral imaging analysis in food, back
propagation artificial neural network (BP-ANN) is the most com-
monly used algorithm. BP-ANN is a multilayer feed-forward neu-
ral network and can learn and store many input–output model
mapping relationships, without revealing the mathematical equa-
tions that can be used to describe these mapping relationships
(Petritis and others 2003). It is usually composed of 3 neuron
layers: an input layer, one or several hidden layers, and an out-
put layer. The spectral value at each wavelength is first imported
into the input layer, and then the output layer yields the corre-
sponding prediction values after some complicated transformation
among hidden layers (Ramadan and others 2005). The functions
that connect different layers are based on nonlinear mapping. Be-
sides, this method usually has one hidden layer or more, which
shows greater potential for dealing with nonlinear and complex
correlation problems despite the need of more training time (Syu
and Chen 1998). Table 1 illustrates the comparison of common
regression algorithms. As to how to carry out these algorithms,
the common used implementation softwares mainly related to the
chemometric software (Unscrambler version 9.7, CAMO, Trond-
heim, Norway) and Matlab2010a software (The Mathworks Inc.,
Mass., U.S.A.).

Model evaluation. A mandatory check is required to validate
the integrity and applicability of the developed calibration model
in predicting unknown samples to make sure that the model could
work in the future for new and similar data. Full cross-validation,
also called leave-one-out cross-validation, is commonly utilized
to validate the established models. Meanwhile, regardless of the
purpose of qualitative description or quantitative regression, the
analytical procedure of spectroscopy and hyperspectral image data
is subjected to the processes of calibration, cross-validation, and
prediction based upon the above-mentioned chemometric meth-
ods. More importantly, it is necessary to look for effective methods
to evaluate the predictive effectiveness, robustness, reliability, and
accuracy for practical applications. Generally, the evaluation in-
dicator systems are mainly related to the correlation coefficient
(R) or determination coefficient (R2), and the corresponding root
mean square errors (RMSEs) in calibration (R2

C, RMSEC), cross-
validation (R2

CV, RMSECV), and prediction (R2
P, RMSEP), as

well as the integrated index of residual predictive deviation (RPD).
Generally, speaking, a good model should have higher values of R,
R2

C, R2
CV, R2

P, and RPD, and lower values of RMSEC, RM-
SECV, and RMSEP, as well as a small difference between them. In
detail, R2 indicates the proportion of the variance in reference data
that can be explained by the variance in the predicted data. In fact,
the value of R2 in the range of 0.82 to 0.90 usually indicates good

performance of a model, whereas the value of R2 lower than 0.82
reveals inaccurate and relatively poor performance, and the value
of R2 higher than 0.90 shows excellent performance (Williams
2001). The values of RMSEC, RMSECV, and RMSEP are mea-
surements of the RMSEs in the analysis and assessment of the
fitting degree of regression during calibration, cross-validation,
and prediction with lower values implying better predictive
capacity (Hernández-Martı́nez and others 2013). RPD indicates
the relative prediction performance of a model more directly than
situations when either R2 or RMSECV is used separately. The
values of RPD are considered satisfactory, good, or excellent in
the range of 3.1 to 4.9, 5 to 6.4, or 6.5 to 8, respectively (Coz-
zolino and others 2004). The values of RMSEC, RMSECV, R2,
and RPD are defined and calculated below:

RMSEC =
√∑n

i=1 (ycal − yact)
2

n
(7)

RMSECV =
√∑n

i=1

(
ypred − yact

)2

n
(8)

R2 = 1 −
∑n

i=1 (ybcal − yact)
2∑n

i=1 (ycal − ymean)
2 (9)

RPD = SD
RMSECV

(10)

where n is the number of samples; yact is the actual value; ycal is the
calibrated value; ypred is the predicted value; ymean is the mean of
the reference measured value; and SD is the standard deviation of
the reference values.

Applications of Spectroscopic Techniques
Based on the spectral preprocessing and modeling methods de-

scribed above, the applications of some common spectroscopic
techniques for inspection of microbial spoilage in muscle foods
are discussed.

VIS and NIR spectroscopy
VIS spectroscopy is a kind of electromagnetic spectrum that

can be perceived by human eyes. The wavelength of the VIS
spectrum is generally in the range of 380 to 780 nm. In this wave-
length region, absorption spectra are original from the transition
of electrons from their ground state to higher electronic states.
The maximum absorption in this spectral region for some par-
ticular compounds corresponds with the structure, geometry, and
symmetry of the material (Lin and others 2004). In the NIR spec-
tral region (780 to 2500 nm), the occurrence of the overtones
and combinations of fundamental vibration responses is related to
the changes of chemical bonds such as O–H, N–H, C–H, C–O,
and other organic molecules. Based on the basic knowledge of

C© 2015 Institute of Food Technologists® Vol. 14, 2015 � Comprehensive Reviews in Food Science and Food Safety 481



Microbial spoilage in muscle foods . . .

VIS and NIR spectroscopy, diffuse reflectance spectroscopy in the
spectral range of 600 to 1100 nm was used to quantify the APC
of chicken breast muscle samples with PCA and PLSR analysis,
and it was noted that PCA analysis showed clear classification of
samples held for 8 h or longer, compared with the 0 h control,
and the quantitative PLSR model with 8 latent variables pre-
sented good performance for predicting microbial loads with R2

P

of 0.83 and SEP of 0.48 log CFU/g. Similarly, in another study,
VIS/NIR spectroscopy in the wavelength region of 400 to 1000
nm was applied to predict the freshness of packaged sliced chicken
breast based on determination of APC value, and the PLSR-based
prediction model with 13 optimal wavelengths showed tolerable
accuracy with R2

CV of 0.82 (Grau and others 2011). On the basis
of the above studies, although it has been demonstrated that this
spectroscopic technique is feasible to determine the APC value,
the prediction performance is still relatively poor, which could be
because of the fewer tested samples or the effects of the different
storage times and temperatures. In addition, the above-mentioned
spectroscopy technology is also used to detect the microbial loads
of vulnerable fish muscle. For example, Tito and others (2012)
used NIR spectroscopy combined with PCA and PLSR to pre-
dict microbial loads on Atlantic salmon. It was demonstrated that
qualitative PCA analysis showed a clear separation between the
fresh salmon fillets and those stored for 9 d at 4 °C. The PLSR
model was established for the prediction of APC and a competi-
tive performance was obtained (R2 = 0.95 and RMSE = 0.12 log
CFU/g). Sone and others (2011) utilized a VIS/NIR spectroscopy
(400 to 2500 nm) to investigate spectroscopic changes occurring
during storage of Atlantic salmon fillets with and without bacte-
rial growth. PCA was used to detect the spectroscopic changes.
Results showed that VIS/NIR spectral changes occurred in the
control as well as the treated group of samples within a single day
after filleting. After 2 d of storage, the samples obtained were dis-
cernible from those fresh in both groups and it was only after the
microbial spoilage became pronounced (8 to 9 log CFU/g) that
the spectra of the spoiled control samples could be differentiated
from spectra of the treated samples with no bacterial growth. It
could be concluded that VIS/NIR spectroscopy could detect au-
tolytic changes occurring in salmon muscle during the early stage
of storage, which was independent of microbial growth. To ex-
plore the wide application in other fish species, Duan and others
(2014) developed a portable NIR spectrometer for the nonde-
structive determination of total bacteria counts in flounder fillets.
Results revealed that the pretreatment of NIR spectrum by the
wavelet transform could significantly improve the accuracy and
precision of the analysis. Combination of genetic algorithm (GA)
and BP-ANN exhibited much better efficiency, with R of 0.985
and RMSE of 0.095 log CFU/g. Based on these results, it has
been suggested that VIS and NIR spectroscopy in tandem with
chemometric analysis is a promising technique for nondestruc-
tive and onsite monitoring of microbial spoilage in muscle foods.
More importantly, it can be concluded that selection of the suitable
modeling methods and spectral preprocessing approaches plays an
important role in the improvement of prediction performance.

FT-IR spectroscopy
FT-IR spectroscopy in the mid-infrared region (4000 to 400

cm−1) is a biochemical fingerprinting technique. In combination
with multivariate statistical approaches, it has been demonstrated
to be a very rapid and reasonably accurate method for bacterial
detection and enumeration in muscle foods. For instance, FT-IR
spectroscopy combined with machine learning algorithm was used

to detect microbiologically spoiled or contaminated beef at room
temperature for 24 h (Ellis and others 2004). In the study, FT-IR
measurements were collected every hour directly from the sam-
ple surface using attenuated total reflectance (ATR), in parallel
the TVC of bacteria were obtained by classical microbiological
plating methods. PLSR was used to accurately model and esti-
mate the bacterial loads, and GA and genetic programming (GP)
were used to elucidate the wavenumbers of interest related to the
spoilage process. The results obtained demonstrated that FT-IR
spectroscopy combined with machine learning was possible to
detect bacterial spoilage in beef, and the most significant func-
tional groups selected could be directly correlated to the spoilage
process, which arose from proteolysis, resulting in changes in the
levels of amides and amines. FT-IR spectroscopy in tandem with
chemometric analysis was also developed to differentiate fresh and
modified-atmosphere-packaged beef. The wavenumbers (1714 to
1710 cm−1, 1614 to 1211 cm−1, and 1031 to 1000 cm−1) corre-
lated with the spoilage process, and were identified by PCA, and
a good estimate of TVC (R2 = 0.80) from the spectral data was
obtained by PLSR (Ammor and others 2009). To improve the
prediction accuracy, Argyri and others (2010) introduced another
machine-learning strategy of multilayer perceptron neural net-
work based on back-propagation to correlate FT-IR spectral data
with beef spoilage during aerobic storage. Three quality classes of
fresh, semi-fresh, and spoiled samples were determined by sensory
evaluation. The results demonstrated that this machine learning
algorithm was capable of classifying the beef samples with high
accuracy for fresh (91.7%), semi-fresh (81.2%), and spoiled sam-
ples (94.1%). The performance of the network in the prediction of
TVC was also satisfactory, with good correlation of microbial loads
on the beef surface (R2 > 0.92). In another study, the same authors
used FT-IR spectroscopy coupled with PLSR and feed-forward
ANN analysis to classify and predict the microbial spoilage in beef
fillets. Both approaches showed good performance in discrimi-
nating spoiled beef samples. The PLS-DA classification models
showed the correct classification rates (CCR) ranging from 72.0%
to 98.2% and 63.1% to 94.7% in the training and testing dataset.
The ANN model performed equally well in classifying meat sam-
ples with CCR from 98.2% to 100% and 63.1% to 73.7% in the
train and test sessions, respectively (Panagou and others 2011). A
recent study by Argyri and others (2013) utilized PLSR, ANN,
RBF-SVM, GP, and GA to compare and predict the microbial
spoilage of minced beef samples stored under aerobic and modi-
fied atmosphere packaging at 5 °C using FT-IR spectroscopy. It
was observed that FT-IR calibration models showed good per-
formance for predicting TVC and Enterobacteriaceae loads, and the
multivariate analysis methods (RBF-SVM, PLSR) showed similar
performances (R2 > 0.80) and offered better predictions com-
pared to GA-GP, GA-ANN, and GP (R2 < 0.71). Another kind
of neuro-fuzzy network modeling using a prototype defuzzifica-
tion scheme in combination with PCA was applied to explore the
potential of FT-IR spectroscopy for determining beef spoilage mi-
croorganisms during aerobic storage, and results showed that the
adopted methodology was effective to classify the samples with
high CCR for fresh of 95.8%, semi-fresh of 87.5%, spoiled of
100%, and overall CCR of 96% (Kodogiannis and others 2014b).
Similarly, the extended normalized RBF-ANN and the Bayesian
Ying-Yang expectation maximization algorithm were also suc-
cessfully applied in FT-IR spectroscopy (Kodogiannis and others
2014a). In another work, ATR-FT-IR spectral information of in-
tact chicken breast muscle packaged under aerobic conditions and
stored at 4 °C for 14 d was collected and investigated for detection
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of TVC using PCA, PLS-DA, and outer product analysis (OPA)
based on SNV transformed FT-IR spectra. Results indicated that
PCA and PLS-DA methods could not discriminate completely
between days 0 and 4 samples, but could classify correctly days
8 and 14 samples. The performance of OPA on FT-IR spectral
datasets revealed the positive correlations between the spectra and
the effect of proteolysis because of the possible fact that the in-
crease of free amino acids and peptides could be the main factor in
the discrimination of intact chicken breast muscle (Alexandrakis
and others 2012). Similarly, PLSR analysis was employed to esti-
mate TVC, LAB, Pseudomonas spp., Brochothrixthermosphacta, and
Enterobacteriaceae counts based on FT-IR spectral data. Analysis of
an external set of samples allowed an evaluation of the predictabil-
ity of the method, and the R2

P of 0.798, 0.832, 0.789, 0.810, and
0.857 and RMSEP of 0.789, 0.658, 0.715, 0.701, and 0.756 log10

CFU/g were obtained (Vasconcelos and others 2014). Moreover,
PLSR models were also conducted to correlate spectral data from
FT-IR with minced pork meat spoilage during aerobic storage
and good performance in classifying meat samples with the overall
CCR of 94.0% and 88.1% in calibration and validation model
was obtained. Similarly, PLSR models were employed to provide
quantitative estimations of microbial counts during meat storage,
and the calculated values of the accuracy factor showed that the
average deviation between predictions and observations was 7.5%
and 7.9% for TVC and Pseudomonas spp., and 10.7% and 11.3%
for LAB and B. thermosphacta (Papadopoulou and others 2011).
The above studies indicated that FT-IR spectral information in
combination with an efficient choice of a learning-based model-
ing scheme could be considered as an alternative methodology for
the accurate evaluation of meat spoilage.

Fluorescence spectroscopy
Fluorescence refers to the light emission when a fluorescent

molecule or substructure, called a fluorophore, is subjected to
ultraviolet or visible light. Fluorescence spectroscopy is more sen-
sitive and selective in terms of organic and inorganic compounds
and enables valuable analytical information to be obtained for
quantification of fluorescent components and assessment of qual-
ity changes of food during storage (Guzman and others 2015).
Recently, fluorescence spectroscopy has become quite popular as
a tool in biological science related to food technology. The po-
tential of fluorescence spectroscopy was investigated to determine
TVC on pork meat surface stored aerobically at 15 °C for 3 d. Ex-
citation (Ex)-emission (Em) matrix of fluorescence intensity was
acquired and fluorescence from tryptophan (Ex = 295 nm and
Em = 335 nm) and triphosphopyridine nucleotide (NADPH;
Ex = 335 nm and Em = 450 nm) was detected, because of the
fact that tryptophan and NADPH fluorescence changed with the
growth of microorganisms, and thus microbial spoilage on meat
could be detected from fluorescence. For example, Oto and others
(2013) used fluorescence spectroscopy to predict the TVC value
of pork based on PLSR analysis, and TVC was predicted with
satisfactory determination coefficients of R2

C = 0.94 and R2
CV

= 0.88. In another study, to improve the measurement accuracy,
Shirai and others (2014) developed a 2-dimensional Savitzky–
Golay second-order differentiation method to preprocess the
excitation–emission matrix. The plate count on pork meat surface
was predicted with good result of RP = 0.90 to 0.94 and RM-
SEP of (0.68 to 0.79) log10 CFU/g. In addition, better prediction
accuracy was obtained when the sensitivity of the fluorescence
spectrophotometer was set to focus on fluorescence from NADPH
than that from both tryptophan and NADPH. Similarly, the po-

tential of front-face fluorescence fingerprint (FF) spectroscopy
coupled with PLSR analysis was also investigated to develop a
nondestructive method for predicting APC on beef muscle stored
aerobically at 15 °C for 0, 2, 4, 6, and 10 h. FFs were collected in
both excitation and emission wavelength ranges of 200 to 900 nm.
The PLSR model showed high accuracy with a prediction error
of 0.75 log10 CFU/g. Furthermore, the regions where the regres-
sion coefficient of the PLSR model was relatively higher were
consistent with those of the FF peaks of 5 intrinsic fluorophores of
tryptophan, NADPH, vitamin A, porphyrins, and flavins. It was
suggested that changes in the autofluorescence of these intrinsic
fluorophores because of the metabolism of bacterial flora on meat
were reflected in the PLSR model for predicting APC from the FF
dataset (Yoshimura and others 2013). Therefore, FF spectroscopy
coupled with multivariate analysis was considered to be applicable
to the nondestructive determination of APC on the surface of lean
beef.

Raman spectroscopy
Raman spectroscopy focuses on the polarizability response of

molecular vibrations (Scotter 1997) and is also one of the vibra-
tional spectroscopies based upon the interaction of laser radiation
with molecular vibrations in order to obtain relative information
about the material (Celedon and Aguilera 2002; Sowoidnich and
others 2010). One major advantage of this technique is its ability
to provide information about concentration, structure, and in-
teraction of biochemical molecules within intact cells and tissues
(Marquardt and Wold 2004). Raman spectroscopy is a fast and
noninvasive method that has been proven for its usefulness as a
tool for investigating biological matter such as the detection of
bacterial contamination in cell or tissue cultures or of foodborne
microorganisms on food surfaces (Scheier and others 2014). Ra-
man microspectroscopy with Raman excitation wavelengths in the
visible wavelength region is a very promising method to detect mi-
croorganisms on a single-cell level with minimal sample prepara-
tion. Thus, by applying single-cell Raman microspectroscopy, the
time-consuming precultivation step can be avoided and, there-
fore, the detection process of microorganisms can be significantly
accelerated. Therefore, Raman microspectroscopy was applied to
rapidly detect the pathogens in meat and poultry. Meisel and oth-
ers (2014) built a 3-level classification SVM model based on the
entire amount of Raman data, and these different levels of the
classification model achieved accuracies in the range of 90.6%
to 99.5%, leading to the test samples being correctly assigned to
their genus, and for the most part, down to the species level. This
study illustrated that Raman microspectroscopy in combination
with chemometrics could be a promising supplement to currently
established methods.

Applications of Hyperspectral Imaging
Hyperspectral imaging technique, as an innovative and emerg-

ing tool, combines traditional spectroscopy and digital imaging
or computer vision (Sun 2004; Wang and Sun 2002; Sun and
Brosna 2003; Jackman and others 2008; Costa and others 2011)
to acquire both spectral and spatial information from the object
(Mathiassen and others 2011; Elmasry and others 2012; Sone and
others 2012; Huang and others 2014). Figure 1 shows the common
steps of hyperspectral imaging for the detection of food quality.
In recent years, hyperspectral imaging has been widely studied for
quality and safety evaluation of muscle food products (ElMasry and
others 2011, 2012; Barbin and others 2012; Wu and others 2012;
Wu and Sun 2013). For the rapid detection of microbial spoilage,
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Figure 1–Main steps of application of hyperspectral imaging techniques
for the detection of microbial spoilage in muscle foods.

the applications of hyperspectral imaging are mainly related to
the measurement of microbial plate count, Enterobacteriaceae, Pseu-
domonas, E. coli loads, and lactic acid bacteria.

Microbial plate count measurement
TVC of bacteria is one of the most important indexes in the

evaluation of quality and safety of muscle foods. Therefore, NIR
hyperspectral imaging and spectroscopic transforms were used to
determine TVC in chicken breast fillets (Feng and Sun 2013a).
Full wavelength PLSR models were established to correlate the
3 spectral profiles with measured bacterial counts. Based on the
absorbance spectral data, the corresponding PLSR model showed
the best prediction performance, with RC of 0.97, RCV of 0.93,
and RMSEC of 0.37 log10 CFU/g and RMSECV of 0.57 log10

CFU/g, respectively. The simplified model using 7 wavelengths
(1145, 1458, 1522, 1659, 1666, 1669, and 1672 nm) selected by
stepwise regression based on Kubelka–Munck spectra also showed
excellent accuracy and robustness with an indicative high ratio of
performance to RPD value of 3.02, RC of 0.96, RCV of 0.94,
and RMSEC of 0.40 log10 CFU/g and RMSECV of 0.50 log10

CFU/g, respectively. In another work, a pushbroom hyperspectral
imaging system in the NIR range of 900 to 1700 nm was exploited
for determining the TVC and psychrotrophic plate count (PPC) in
pork meat during chilled storage at 0 and 4 °C for 21 d. The PLSR
algorithm was applied to fit the spectral data extracted from the
samples to the measured TVC and PPC values. The best regres-
sions were obtained with R2

P of 0.93 and 0.93 for log (TVC) and
log (PPC), respectively. Similarly, 11 key wavelengths (932, 947,
970, 1034, 1094, 1134, 1151, 1211, 1344, 1621, and 1641 nm)
and 10 optimal wavelengths (947, 1118, 1128, 1151, 1211, 1241,
1388, 1621, 1641, and 1655 nm) were identified as good indicators
by the weighted regression coefficients from PLSR analysis for op-
timal regression models of TVC and PPC. The optimized PLSR
models also presented good accuracy (R2

P = 0.81 and 0.81). The
obtained results were encouraging and showed a promising poten-
tial of hyperspectral technology for detecting bacterial spoilage in
pork and tracking the increase of microbial growth of chilled pork
during storage at different temperatures (Barbin and others 2013).

However, VIS/NIR hyperspectral imaging was also developed to
detect the microbial plate count for the evaluation of muscle foods
spoilage. Peng and others (2011) used spatially resolved hyperspec-
tral scattering imaging in the spectral region of 400 to 1100 nm
for predicting the microbial spoilage of beef refrigerated at 8 °C.
Results revealed that the spectral scattering profiles at individual
wavelengths were accurately fitted by a 2-parameter Lorentzian
distribution function. The MLR model for TVC prediction was
established using 6 optimal wavelengths (596, 822, 838, 841, 889,
and 900 nm) and showed better prediction capability with R2

P

of 0.95 and SEP of 0.30 for log10 (TVC), compared with the
PLSR model (R2

P = 0.92 and SEP = 0.63). It was also demon-
strated that MLR prediction models using only a few wavelengths
were superior to the PLSR model for predicting bacterial spoilage
in beef. In another study, potential of time series-hyperspectral
imaging in visible and near-infrared regions (400–1700 nm) for
the rapid and noninvasive determination of TVC of salmon flesh
during spoilage was investigated. On the basis of full wavelengths,
the LS-SVM model exhibited better predictive robustness with
increase by 0.078 and 2.11 in R2

P and RPD than the PLSR
model with relatively poor performance (R2

P = 0.887 and RPD
= 2.978). Competitive adaptive reweighted sampling (CARS) was
conducted to identify the most important wavelengths that had the
greatest influence on the TVC prediction throughout the entire
wavelength range. The CARS-PLSR model established using the
selected 8 wavelengths (495, 535, 550, 585, 625, 660, 785, and 915
nm) was considered to be optimal for the TVC measurement of
salmon flesh with R2

P of 0.985, and RPD of 5.127 (Wu and Sun
2013b). Similarly, the feasibility of visible and near-infrared hyper-
spectral imaging in the range of 400 to 1000 nm for determining
TVC to evaluate microbial spoilage of fish fillets was investigated.
PLSR and LS-SVM models established based on full wavelengths
showed excellent performances and the LS-SVM model was bet-
ter, with higher RPD of 3.89, R2

P of 0.93, and RMSEP of 0.49
log10 CFU/g. Seven optimal wavelengths were selected by suc-
cessive projections algorithm (SPA) and the simplified SPA-PLSR
was better than SPA-LS-SVM models with RPD of 3.13, R2

P of
0.90, and RMSEP of 0.57 log10 CFU/g (Cheng and Sun 2015a).
Another study reported by Huang and others (2013) developed a
hyperspectral imaging system in the wavelength range of 430 to
960 nm for the rapid detection of TVC in pork meat. Unlike other
studies, the authors combined the spectral and image information
to create data fusion for modeling using back-propagation artificial
neural network (BP-ANN). Results showed that the model based
on data fusion (the spectra were extracted and selected by synergy
interval PLS analysis and the image variables were extracted using
gray level co-occurrence matrix (GLCM) algorithm) was superior
to models generated by individual spectral or image information,
which achieved R2

P of 0.83 and RMSEP of 0.243 log10 CFU/g.
Therefore, data fusion in the processing of hyperspectral image
is a new thought for improving the accuracy and robustness of
prediction and facilitating the development and application of hy-
perspectral imaging technique in the food industry.

To realize real on-line detection, multispectral imaging as an
alternative and efficient tool has been increasingly developed for
the assessment of microbial spoilage. Dissing and others (2012)
used a multispectral imaging system in 18 different wavelengths
ranging from 405 to 970 nm for spoilage degree detection of pork
meat processed by aerobic and modified atmosphere packaging
as well as under different temperatures. In addition, a sensory
evaluation panel was recommended to judge the spoilage de-
gree of all meat samples into 1 of 3 classes (fresh, semi-fresh,
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and spoiled). Results indicated that the multispectral imaging
device to some extent was capable of differentiating the meat sam-
ples with a correct classification rate of 76.13% according to the
defined sensory scale. The TVC value was also successfully pre-
dicted by this technology with SEP of 7.47%. Similarly, another
multispectral imaging system in 19 different wavelengths ranging
from 400 to 1000 nm was exploited to determine APC in cooked
pork sausages stored at 4 °C for 28 d. PLSR algorithm was applied
to establish the prediction model, and satisfactory performance was
presented with R2

P of 0.89 (Ma and others 2014). Based on these
investigations, it is interesting to find that, compared with the full
wavelength models, the simplified models turned out to be more
robust, as indicated by a smaller difference in both correlation co-
efficients and root mean squared errors for both calibration and
cross validation. The improvement in model capability can prob-
ably be attributed to the elimination of the uninformative or even
misleading wavelengths for explaining the spoilage process of mus-
cle foods. In addition, the reduction of spectral multicollinearity
could also be part of the reasons for model enhancement. It has
also been suggested that multispectral imaging could be a promis-
ing tool in developing rapid and nondestructive measurement of
microbial spoilage for the meat industry.

Measurement of Enterobacteriaceae loads
Enterobacteriaceae are a large group of bacteria that are rod-

shaped, Gram-negative, and facultatively anaerobic as well as non-
sporeforming. This group is directly associated with the intestines
and feces of mammals and birds and includes enteric pathogens
such as E. coli, Shigella, Salmonella, and Yersinia. Therefore, the
amount of Enterobacteriaceae is commonly used as a good indicator
for food sanitation by accounting for potential fecal contamina-
tion and existence of pathogenic bacteria. Hyperspectral imaging
technique in the spectral range of 930 to 1450 nm was conducted
for the quantitative and direct determination of Enterobacteriaceae
loads on chicken fillets. PLSR model established using full wave-
lengths performed well with R2

P of 0.82 and RMSEP of 0.47
log10 CFU/g. For the further development of simplified models,
3 characteristic wavelengths (930, 1121, and 1345 nm) were se-
lected by weighted PLS regression coefficient methods, and the
new developed model was competent, and more preferred, for
predicting Enterobacteriaceae loads with R2

P of 0.87 and RMSEP
of 0.44 log10 CFU/g (Feng and others 2013). The results indi-
cated that the selected 3 optimal wavelengths were efficient and
informative to specify the variations of Enterobacteriaceae loads in
chicken meat. To determine and monitor the harmful microbial
contamination occurring in edible salmon flesh, an NIR hyper-
spectral imaging system (900 to 1700 nm) was applied to detect
the loads of Enterobacteriaceae. PLSR models were created based on
3 spectral transforms of reflectance, absorbance (A), and Kubelka–
Munck (KM). Using full wavelengths and absorbance data, the
predictive PLSR model displayed the best predictive ability with
correlation coefficients of prediction (RP) of 0.954, RPD of 3.313,
and RMSEP of 0.481 log10 CFU/g. The simplified PLSR model
based on the 9 influential wavelengths (931, 1138, 1175, 1242,
1359, 1628, 1641, 1652, and 1655 nm) selected by CARS algo-
rithm and absorbance data provided the best prediction accuracy
(RP = 0.964, RPD = 3.715 and RMSEP = 0.429 log10 CFU/g;
He and Sun 2015). These studies demonstrated that hyperspec-
tral imaging combined with chemometric analysis is a poten-
tial tool for determining meat sanitation and detecting bacterial
pathogens on a food matrix without using complicated laboratory
procedures.

Measurement of Pseudomonas loads
Pseudomonas is one of the bacterial genera most often isolated

in high numbers on spoiled meat. Pseudomonas is a genus of rod-
shaped and Gram-negative bacteria that require only simple nu-
trition for growth and such easy-to-survive characteristic have
contributed to its wide distribution in the environment, and it is
closely associated with food waste due to spoilage species causing
food spoilage (Feng and Sun 2013b). Like with other bacteria,
hyperspectral imaging can be used to determine its loads. For
example, a line-scan NIR hyperspectral imaging system (900 to
1700 nm) in tandem with PLSR and GA was exploited for its
potential in direct and fast determination of Pseudomonas loads in
raw chicken breast fillets. The best full-wavelength PLSR model
attained based on spectral images preprocessed with SNV pre-
sented the RP of 0.81 and RMSEP of 0.80 log10 CFU/g. The
simplified models based on 14 wavebands selected by using a pro-
posed 2-step method and GA produced better results than the
original models with RP of 0.88 and RMSEP of 0.64 log10 CFU/g
(Feng and Sun 2013b).

E. coli measurement
E. coli is a common bacterium with the characteristics of being

rod-shaped, Gram-negative, facultatively anaerobic, and nonspore-
forming (Gram and Huss 1996). E. coli O157:H7 is an enteric bac-
terium that has been implicated in food- and water-borne human
illnesses worldwide, including bloody diarrhea, hemolytic ure-
mic syndrome, and hemorrhagic colitis (Gram and Huss 1996). A
lab line-scanning hyperspectral scattering technique in the spectral
range of 400 to 1100 nm was used to detect E. coli contamination in
pork meat. The scattering profiles were then fitted by Lorentzian
distribution function to provide 3 parameters of α (asymptotic
value), β (peak value), and γ (full width at β/2). The best pre-
dictive MLR model was attained based on parameter α with the
highest R2

CV of 0.77 and the lowest of RMSECV of 0.84 log10

CFU/g (Tao and others 2012). In a recent study, to improve the
prediction accuracy, based on the previous investigation, the au-
thors developed a novel method by modified Gompertz function
to extract the scattering characteristics of pork meat from the spa-
tially resolved hyperspectral images. MLR models were established
using both individual Gompertz parameter (α, β, ε, and δ) and
integrated parameters, and the results showed that Gompertz pa-
rameter δ was superior to other individual parameters. The MLR
model using the integrated parameter showed the best prediction
capability (R2

CV = 0.88 and RMSECV = 0.64 log10 CFU/g; Tao
and Peng 2014). It can be obvious to discover that different specific
functions presented their individual advantages for enhancement
of applications of hyperspectral imaging. Similarly, hyperspectral
imaging in the spectral range of 400 to 1000 nm was developed
to measure E. coli loads in grass carp fish for the evaluation of mi-
crobial spoilage. The full-wavelength PLSR model showed good
performance with RPD of 5.47, R2

P = 0.88 and RMSEP of
0.26 log10 CFU/g. Six characteristic wavelengths were selected
by the weighted regression coefficients from PLSR analysis and
used to simplify the models. The simplified MLR model exhibited
more competent prediction capability than PLSR analysis (RPD
= 5.22, R2

P = 0.87 and RMSEP = 0.27 log10 CFU/g) (Cheng
and Sun 2015b). The results mentioned above demonstrated that
hyperspectral imaging technique combined with some effective
functions and multivariate analysis was promising for the rapid and
nondestructive determination and quantification of E. coli con-
tamination on pork and fish muscle.
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Figure 2–Visualization of microbial spoilage distribution of muscle foods. (A) Enterobacteriaceae distribution in chicken fillets; (B) TVC distribution in
salmon fillets; and (C) E. Coli distribution in grass carp fish fillets.

LAB measurement
LAB are the major bacterial group associated with the spoilage of

refrigerated vacuum- or modified atmosphere-packaged cooked,
cured meat products. The genus or species of LAB responsible for
spoilage depends on product composition (product-related flora)
as well as the manufacturing site (Ringø and Gatesoupe 1998).
Generally, LAB are present in the initial microflora in low num-
bers and are therefore rarely responsible for the spoilage of fresh
proteinaceous foods. However, LAB have been identified as the
major spoiling microorganisms of vacuum-packed meat and poul-
try and are also suggested as possible spoilers of lightly preserved
fish products (Ringø and Gatesoupe 1998). Typical lactic acid
bacteria are Lactobacillus, Streptococcus, Leuconostoc, and Pediococcus
spp. (Gram and Huss 1996). LAB spoil foods by the fermentation
of sugars and commonly cause undesirable defects, such as sour
off-flavors, discolouration, gas production, slime production, and
decrease in pH (Smulders and Greer 1998). Therefore, rapid and
real-time monitoring the spoilage by LAB in muscle foods is very
important. The emerging hyperspectral imaging technology (900
to 1700 nm) with chemometric analysis was applied to determine
LAB in farmed salmon flesh during cold storage. LS-SVM algo-
rithm using the full wavelength was used to calibrate NIR-range
spectral data, generating an RP of 0.93 with RMSEP of 0.52 log10

CFU/g. CARS algorithm was employed to reduce the spectral
redundancy and identify the most informative wavelengths across
the entire wavelength range. The optimized model (CARS-LS-
SVM) built by 8 key wavelengths (1155, 1255, 1373, 1376, 1436,
1641, 1665, and 1689 nm) also generated good results with RP of
0.93 and RMSEP of 0.53 log10 CFU/g (He and others 2014). The

results obtained indicated that NIR hyperspectral imaging could
be considered as a rapid, nondestructive, and efficient tool for the
evaluation of LAB spoilage in salmon flesh.

Visualization of microbial spoilage distribution
The great advantage of hyperspectral imaging is its ability

for visualization of the detailed quality distribution in spite
of spatially heterogeneous properties of the tested samples.
Generally, the method used for visualizing the microbial spoilage
distribution is to calculate the microbial index (such as TVC,
APC, and the detailed microbial loads) of each pixel by applying
chemometric analysis with the spectrum of corresponding pixels,
which can be regarded as a linear or nonlinear mathematical
combination of images at the optimal wavelengths selected by
variable selection algorithms (Cheng and others 2014). The finally
obtained chemical images or visualized distribution maps are
usually shown in a linear color bar with different colors (blue color
showing the pixels with low values and red color indicating the
pixels with high values). Different colors in the final distribution
maps represent different values of microbial index in the image
in proportion to the spectral differences of the corresponding
pixels, which is helpful to understand and interpret the microbial
spoilage by inspecting the different color distribution. In addition,
according to the distribution map, it is very useful for the muscle
food processing industry to automatically select the desirable
parts/sections for making the products. It is also effective to avoid
and control the occurrence of food safety problems. Figure 2
shows some examples of visualization of microbial spoilage
distribution in muscle foods.
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Table 2–Applications of spectroscopic techniques for the detection of microbial spoilage in muscle foods.

Muscle food Technique Detection of Method R2/CCR Reference

Chicken VIS/NIR APC PCA, PLSR 0.83 Lin and others (2004)
Chicken VIS/NIR APC PLSR 0.82 Grau and others (2011)
Atlantic salmon NIR APC PCA, PLSR 0.95 Tito and others (2012)
Flounder fillet NIR TVC GA, BP-ANN 0.97 Duan and others (2014)
Beef FI-IR TVC PCA, PLSR 0.80 Ammor and others (2009)
Beef FI-IR TVC ANN > 0.92 Argyri and others (2010)
Beef FI-IR TVC ANN, PLSR 0.95 Panagou and others (2011)
Beef FI-IR TVC PLSR, ANN, RBF-SVM > 0.80 Argyri and others (2013)
Pork Fluorescence spectroscopy TVC PLSR 0.94 Oto and others (2013)
Pork Fluorescence spectroscopy TVC PLSR 0.85 Shirai and others (2014)
Pork Raman spectroscopy TVC SVM 94.3% Meisel and others (2014)

Table 3–Applications of HSI technique for the detection of microbial spoilage in muscle foods.

Muscle food Wavelength range (nm) Detection of Method R2 Reference

Chicken 900–1700 TVC PLSR 0.86 Feng and others (2013)
Pork 900–1700 TVC PLSR 0.93 Barbin and others (2013)
Pork 900–1700 PPC PLSR 0.93 Barbin and others (2013)
Beef 400–1100 TVC MLR 0.95 Peng and others (2011)
Salmon 400–1700 TVC LS-SVM 0.96 Wu and others (2013b)
Salmon 400–1700 TVC PLSR 0.89 Wu and others (2013b)
Pork 430–960 TVC BP-ANN 0.83 Huang and others (2013)
Chicken 930–1450 Enterobacteriaceae PLSR 0.82 Feng and others (2013)
Chicken 900–1700 Enterobacteriaceae PLSR 0.91 He and others (2015)
Chicken 900–1700 Pseudomonas PLSR 0.66 Feng and others (2013)
Pork 400–1100 E. coli MLR 0.77 Tao and others (2012)
Grass carp fish 400–1000 E. coli PLSR 0.88 Cheng and others (2015)
Salmon fillet 900–1700 LAB LS-SVM 0.87 He and others (2014)

Advantages and Disadvantages
It is well-known that traditional microbiological methods are

generally laborious, time-consuming, and require a complex pro-
cess for sample preparation. The obtained microbiological data
cannot provide relevant information about eating quality and
freshness. Compared with traditional microbial analytical meth-
ods, spectroscopic and hyperspectral imaging techniques have been
proved to be rapid, nondestructive, noncontact, objective, and
cost-effective, which can be used as routine procedures imple-
mented in the muscle food industry for automated grading and
detection of the muscle products and other purposes since these
advanced techniques can be applied to realize online and real-time
inspection, to develop labor-saving devices, to create higher eco-
nomic and social benefits, and further to offer guaranteed quality
of food products for human consumption and international trade.
Particularly, hyperspectral imaging can provide the distribution
map of microbial spoilage in muscle foods. Table 2 and Table 3 list
the successful applications of spectroscopic and hyperspectral imag-
ing techniques for detecting microbial spoilage in muscle foods.
However, some disadvantages about the applications of these tech-
niques are still needed to be noted. For quantitative analysis, VIS
and NIR spectroscopy are not independent of the disadvantages
arising from the reference method used for calibration, which
requires a certain number of samples with known analyte con-
centrations. Therefore, to some extent, the predictive accuracy of
NIR spectroscopy depends on the reliability and accuracy of the
reference method. Moreover, due to the limited spatial field of
view, NIR spectroscopy cannot provide spatial information of the
samples which is essential for visualizing the distribution of the mi-
crobial spoilage in muscle foods (Cozzolino 2012). Fluorescence
spectroscopy is easily affected by the interference of the mutual
elements and overlapping peaks which can result in the disappear-
ance of fluorescence (Strasburg and Ludescher 1995; Karoui and
Blecker 2011). Raman spectroscopy also shows some restrictions
such as inherently weaker effect of Raman-scattering, stronger

interference of biological fluorescence, and higher instrumental
costs; and some heat generated by the laser may affect the mea-
surement effectiveness (Afseth and others 2006). In addition, for
Fourier transform spectrum analysis, it usually causes the nonlin-
ear problems of the curve, and the intensity of Raman scattering
is easily influenced by implicit factors such as the optical system
parameters. As to hyperspectral imaging, hyperspectral images usu-
ally contain much unnecessary and redundant information than a
single color image, which shows considerable challenges and re-
quires more time and superior skills to mine the hidden data by
multivariable analysis and to obtain valuable information from the
hyperspectral images (Cheng and Sun 2013). The speed of hard-
ware in a hyperspectral imaging system needs to be improved to
satisfy the rapid acquisition and analysis of the huge hyperspec-
tral data cube (Wu and Sun 2013a). Considering the long time
needed for data acquisition and analysis, hyperspectral imaging is
not suggested for direct implementation in online applications. In
addition, hyperspectral imaging needs accurate reference calibra-
tion and robust model transfer algorithms, and must not have wider
detection limits compared to chemical-based analytical methods.
Moreover, multivariate analysis and variable selection are usually
used to reduce the effect of the problem of multicollinearity in
hyperspectral imaging. Besides, it is more difficult to explore de-
veloped or novel algorithms for eliminating data redundancy and
accelerating online inspection speed."

Conclusion and Future Trends
The applications of some nondestructive and noninvasive spec-

troscopic techniques, including VIS and NIR spectroscopy, FT-
IR spectroscopy, Raman spectroscopy, fluorescence spectroscopy,
and hyperspectral imaging in tandem with chemometrics such as
PCA, PLSR, MLR, LS-SVM, and ANN, have been widely re-
ported and described for their great potentials and analysis of mi-
crobial spoilage in muscle foods. These spectroscopic techniques
have demonstrated great promise in the rapid and nondestructive
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detection of TVC, APC, Enterobacteriaceae, Pseudomonas, Escherichia
coli, and LAB loads for evaluating the quality and safety of muscle
foods, and they have the potential to replace industrial traditional
methods and enhance consumer confidence and acceptability of
muscle foods. However, they also have their own defects regard-
ing model accuracy and robustness and practical online detection
speed. Therefore, further methodology development including
spectral extraction and image analysis algorithms and software to
enhance the sensitivity and accuracy of the technique should be
strengthened. In addition, multispectral imaging should be devel-
oped for true online detection. Multispectral algorithms must be
fairly simple to enhance performance and also to save time. It is
also interesting to investigate the changes of spectral features and
image information of the presence of microorganisms and their
growth in muscle foods, and must figure out the changing infor-
mation of spectra and images, which can clearly reveal the spoilage
condition and growth stage of microorganisms.
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