
REVIEW PAPER

Next-generation sequencing as an approach to dairy
starter selection

Philip Kelleher1 & James Murphy1 &

Jennifer Mahony1 & Douwe van Sinderen1,2

Received: 26 January 2015 /Revised: 25 March 2015 /Accepted: 2 April 2015
# The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Lactococcal and streptococcal starter strains are crucial ingredients to man-
ufacture fermented dairy products. As commercial starter culture suppliers and dairy
producers attempt to overcome issues of phage sensitivity and develop new product
ranges, there is an ever increasing need to improve technologies for the rational
selection of novel starter culture blends. Whole genome sequencing, spurred on by
recent advances in next-generation sequencing platforms, is a promising approach to
facilitate rapid identification and selection of such strains based on gene-trait matching.
This review provides a comprehensive overview of the available methodologies to
analyse the technological potential of candidate starter strains and highlights recent
advances in the area of dairy starter genomics.
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1 Introduction

The first origins of fermented dairy products can be traced back over 7000 years to the
pottery sieves used by some of the first farmers in Europe (Curry 2013). While the
dairy industry has evolved since then, the same two basic ingredients remain its
cornerstone: milk and lactic acid bacteria (LAB). LAB produce lactic acid from the
degradation of hexose sugars and have a long history of safe use in food fermentations,
and consequently, many LAB have been granted the so-called generally regarded as

Dairy Sci. & Technol.
DOI 10.1007/s13594-015-0227-4

This paper is part of the Special issue dedicated to the 9th International Cheese Symposium held in Cork, Ireland
and organized by Teagasc in collaborationwithUniversity College Cork and INRA, 12th& 13thNovember 2014.

* Douwe van Sinderen
d.vansinderen@ucc.ie

1 School of Microbiology, University College Cork, Cork, Ireland
2 Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Cork, Ireland



safe (“GRAS”) status (Wegmann et al. 2007). LAB encompass an array of bacterial
genera including Abiotrophia, Aerococcus, Carnobacterium, Enterococcus,
Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus,
Tetragenococcus, Vagococcus and Weissella (Makarova et al. 2006). The most
frequently employed starter cultures in dairy fermentations are strains of Lactococcus
lactis and Streptococcus thermophilus, while strains of Lactobacillus spp. are primarily
employed as adjunct cultures for flavour development (Leroy and De Vuyst 2004).

The earliest dairy fermentations occurred through the activity of the autochthonous
organisms present in milk, thus causing spontaneous fermentation. The success of such
natural fermentations is variable and depends on the particular natural blend of
microorganisms present in each batch. The first attempt to control these fermentations
was borne out by the “back-slopping” technique which involves inoculating milk with
a small amount of a successful fermentate thus seeding the milk with favourable
bacteria. This practice is still commonly applied to produce certain artisanal cheese
products, and in such cases, the starter culture mixes are termed undefined starters. In
industrial dairy fermentations, starter cultures may be defined or undefined. Defined
starter cultures are those which consist of a specific number of known strains of bacteria
which had been isolated from undefined starter cultures, while undefined are those of
which the constituent strains are unknown (Smid et al. 2014). In Italian artisanal
cheeses where back-slopping is employed, starter cultures are said to be undefined
starters, while most cheddar-type cheeses are produced with a defined set that consist of
two to four strains. The application of defined starter culture blends and rotations aims
to ensure consistency of the fermentation process and particularly the quality of the
final product in terms of flavour, appearance, aroma and safety.

This review will focus on L. lactis and S. thermophilus as the dominant starter cultures
employed by the dairy industry (Beresford et al. 2001). In particular, it will focus on the
methods used to characterise these strains and on the role of next-generation sequencing
(NGS) technologies in facilitating rational starter culture selections and rotations.

L. lactis is a Gram-positive, catalase-negative, non-motile and coccoid bacterium
(Schleifer and Kilpper-Bälz 1987). Genetically, a typical L. lactis chromosome ranges in
size from ~2.2 to 2.5 Mb and is often accompanied by a rich plasmid complement
(Ainsworth et al. 2014c). L. lactis species can be further defined as subsp. cremoris,
subsp. lactis or subsp. lactis biovar. diacetylactis, the latter capable of metabolising citrate.
Both citrate metabolism and lactose utilisation are plasmid-encoded traits in L. lactis.
Notably in dairy isolates of L. lactis, genome decay and redundancy have been widely
reported (Makarova et al. 2006; Goh et al. 2011; Ainsworth et al. 2013), along with the
presence of prophages and a host of transposable elements (Chopin et al. 2001).

S. thermophilus strains are Gram-positive, catalase-negative and non-motile cocci
(Schleifer and Kilpper-Bälz 1987), which contain chromosomes that are comparably
smaller than their L. lactis counterparts (1.8Mb compared to 2.5Mb), and normally, about
59% of strains carry one or two small plasmids (<10 kb) (Turgeon and Moineau 2001).

2 Traditional methods for screening/selection of starter strains

There is a wide variety of microbiological techniques that have been used in the dairy
industry to screen and define starter cultures. Traditionally, the majority of these
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methods have, unsurprisingly, placed significant emphasis on the technological pheno-
types of the cultures and include growth performance or activity testing, phage
robustness, flavour testing and matrix formation analysis.

2.1 Strain differentiation

For dairy lactococcal strains, an early characterisation step is to assign a subspecies, lactis or
cremoris. The major phenotypic differentiator between L. lactis ssp. lactis and cremoris is
their adaptive stress response. There are a number of protocols to differentiate between the
two sub-species based on temperature, salt tolerance, pH tolerance, maltose fermentation
and arginine deamination. One such protocol, based on arginine deamination, is the
arginine broth assay described by Harrigan (1998) in which the sub-species identity is
determined based on a pH-dependent colour change. L. lactis ssp. lactis strains are typically
capable of metabolising arginine, a process that causes the release of ammonia and
concomitant increase in pH, thereby producing red coloured colonies on arginine broth
plates (due to a pH indicator). In contrast, L. lactis ssp. cremoris strains, which normally do
not metabolise arginine, produce yellow coloured colonies on this medium because,
compared to L. lactis ssp. lactis strains, their growth results in a lower pH (Villani et al.
2001; Murphy et al. 2013). A number of studies have focused on the response of strains of
either sub-species to salt, temperature and pH,where L. lactis ssp. lactis strains can typically
tolerate 4% salt, pH 9.2 and temperatures of up to 40 °C, while L. lactis ssp. cremoris
growth is typically inhibited by these challenging conditions (Schleifer et al. 1985).

2.2 Performance testing

An important aspect of selecting strains for use as starter cultures is performance
testing, in which the growth rate, acid production and responses to temperature and
salt are assessed. These criteria are an early indicator of how the strains will behave in a
fermentation process. The “Pearce activity test” is commonly used in the dairy industry
as an indicator for growth and temperature-induced autolysis of starter strains (Feirtag
and McKay 1987). The test replicates the temperature cycles of the relevant cheese
production process, while monitoring cell counts and pH. The change in pH indicates
the acidification activity of the strain, while the point of temperature-induced autolysis
is determined via a decrease in cell count after a temperature shift. This test can be
employed to assess the level of autolysis, as was done for two dairy starter strains,
L. lactis subsp. cremoris HP and L. lactis subsp. cremoris AM2, and to determine the
resulting proteolytic enzymes released during such autolysis (Wilkinson et al. 1994).
Furthermore, the intracellular enzyme lactate dehydrogenase (LDH) can be used as an
indicator of autolysis in dairy starter strains (Horvath and Barrangou 2010; Karginov
and Hannon 2010), using a method proposed by Wittenberger and Angelo (1970),
where LDH is measured by a decrease in absorbance at 340 nm as a result of pyruvate-
dependent oxidation of NADH.

2.3 Flavour capabilities

The contribution of lactococcal and streptococcal starter strains to cheese flavour
development is predominantly through the metabolism of lactose, lactate, citrate, lipids,
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proteins and free amino acids (McSweeney 2004). A number of approaches have been
employed to assess the contribution of particular starter strains to the relevant pathways,
ranging from simple culture techniques to biochemical profiling of key enzymes, and
quantitative analysis of sample products using various experimental approaches and/or
sensory panels.

Proteolysis is the most complex and possibly the most important of these processes
in terms of primary flavour development in cheese. Additionally, it is responsible for
the liberation of peptides and (then) amino acids, thereby supplying substrates for
various secondary pathways of amino acid catabolism (McSweeney 2004). To assess
the proteolytic capabilities of starter cultures, a frequently used simple, direct test is to
determine the degree of hydrolysis (DH) of peptide bonds, which provides a measure
for amino acid availability and corresponding catabolism in milk (Mosher et al. 2013).
Three commonly used methods for the determination of the degree of hydrolysis
involve the application of trinitrobenzenesulphonic acid (TNBS) and o-
phthaldialdehyde (OPA), which both react with the amino groups released by the
hydrolysis of peptides, and pH stat, a titration method where the protons released
during peptide bond hydrolysis are used to quantify the DH (Quail et al. 2012). These
methods give an overall evaluation of the proteolytic capability of the strains. An
alternative method to determine the activity of specific intracellular peptidases was
developed by Kato et al. (1978). The method utilises substrates labelled with 7-amino-
4-methyl coumarin (AMC), which when cleaved fluoresces at excitation and emission
wavelengths of 370 and 440 nm, respectively. The intensity of the fluorescence is used
to determine the peptidase concentration. This method has been employed in a number
of studies involving lactococci and lactic streptococci with particular emphasis on X-
propyl and post-proline dipeptidyl aminopeptidase activity (Mills et al. 2010; Millen
et al. 2012; Schloss et al. 2015).

LAB produce aroma compounds through amino acid catabolism, which contribute
to cheese flavour, and the activity of glutamate dehydrogenase (GDH) in these strains is
closely related to their ability to produce such compounds (Tanous et al. 2002). GDH
produces α-ketoglutarate, a compound required for amino acid transaminations by
LAB, which is an important step for the synthesis of various amino acids
(McSweeney 2004). GDH activity in dairy LAB is usually assessed using a
colourimetric assay which measures the glutamate-dependent reduction of NAD+ and
NADP+ in a coupled reaction with diaphorase (Kieronczyk et al. 2003). Amino acid
transferases catalyse the transamination of amino acids to α-ketoacids using α-
ketoglutarate as an α-ketoacid acceptor (Tanous et al. 2002). These analyses applied
in-parallel can provide a detailed biochemical profile of the flavour capabilities of
particular strains, though they are limited in providing information that explain the
(genetic and/or biochemical) reasons for strain-specific flavour properties.

2.4 Matrix formation

Exopolysaccharides (EPS) produced by LAB are polysaccharides that are deposited
outside the cell wall. EPS may remain attached to the cell as capsular EPS or secreted in
an unattached form (Hassan et al. 2003). Dairy strains are generally described as “ropy”
or “non-ropy”, a term which describes the threads drawn with a needle from the surface
of the colonies or fermented liquid (Hassan 2008). The EPS produced by some dairy
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LAB can impact on the protein matrix of fermented dairy products by affecting the
casein gel structure and acting as a filler (Hassan et al. 1995). A common assay for the
differentiation of ropy and non-ropy colonies utilises ruthenium red stain in milk agar
plates. Ruthenium red stains the cell wall, thereby producing red colonies for non-ropy,
non-EPS producing cells, yet is less well capable of staining cell walls of ropy, EPS
producers, which thus remain predominantly white (Borucki et al. 2003).

2.5 Phage robustness

While the technological attributes of dairy starter cultures are essential to achieve the
desired flavours and characteristics in the final product, the phage robustness of these
strains is also an important consideration. Since the discovery of lactococcal
(bacterio)phages (i.e. viruses that infect bacterial cells) by Whitehead and Cox in
1935, phage infection has been recognized as the main cause of fermentation problems
within the dairy industry with concomitant economic problems (Whitehead and Cox
1935). Selecting the correct starter culture traditionally involved assessing their sus-
ceptibility to phage infection, but with the advent of modern sequencing technologies,
strain suppliers can now also screen strains to determine the presence of prophages as
well as the arsenal of plasmid- and/or chromosomally encoded phage resistance
mechanisms (Allison and Klaenhammer 1998; Ainsworth et al. 2014a, b).

The phage life cycle may take one of two possible routes, i.e. the lytic or the
temperate/lysogenic life cycle, depending on the phage and the environmental circum-
stances. Ultimately, all phage species must enter the lytic cycle to harness the host
machinery, replicate and release progeny phages by lysing the host cell. However,
conditions may not favour lytic replication, and as a result, some phages may engage in
a lysogenic life cycle by incorporating their genomes within that of the host, allowing
phage replication in situ with that of the host’s genome. This process allows the phage
to replicate ‘silently’ each time the bacterium undergoes cell division by binary fission.
Under certain conditions, the lysogenic phage will excise from the host genome and
enter the lytic cycle. When selecting appropriate starter cultures for the production of
various dairy products, it is important to determine if a particular strain harbours any
prophages as these pose the risk of becoming active during the fermentation process
leading partial or complete culture lysis. The presence of prophages can be determined
by phage induction assays whereby the bacterium is placed under particular stressful
conditions (chemical treatment or exposure to UV-light) in order to stimulate excision
of the integrated phage which will subsequently turn on its lytic life cycle and lyse the
host cell (Chopin et al. 2001).

2.6 Bacteriocin production

Bacteriocins are a diverse group of ribosomally synthesized peptides, produced by
some bacteria and archaea, which convey a bactericidal or bacteriostatic effect on other
bacteria when secreted (Dobson et al. 2012). Bacteriocin production is a double-edged
sword, and consideration should be given in selecting starter cultures, as producing
strains may inhibit other desirable strains in mixed starter cultures or adjunct cultures
added later in the fermentation process. However, they also offer the benefit of
inhibiting the growth of spoilage bacteria in food products. Traditionally, a range of
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culture-based methods have been used in screening for bacteriocin producers, most
commonly based on the principles of diffusion in agar plates and cell-free supernatants
(Kékessy and Piguet 1970; Barefoot and Klaenhammer 1983; Yang et al. 1992).

3 Modern methods for screening/selection of starter strains

Culture-based techniques are an excellent foundation for the study of LAB strains but
are both labour- and time-intensive. While these methods have limitations, they can still
be applied on selected strains, yet are impractical for screening large strain collections.
Current approaches to identify, classify and characterise industrial starter cultures for
application in the dairy industry is increasingly reliant on molecular techniques because
phenotypic traits alone are not sufficiently discriminative since some strains of L. lactis
ssp. cremoris display the characteristics of L. lactis ssp. lactis (Urbach et al. 1997;
Tailliez et al. 1998). Molecular tools possess several advantages over classical approaches
including a shorter assay period, higher throughput and a greater ability to discriminate at
the species level. Up until recently, the gold standard of molecular typing of bacterial
isolates was pulsed field gel electrophoresis (PFGE). Other methodologies rely on a
polymerase chain reaction (PCR) which employs oligonucleotide primers to amplify
DNA fragments. Such techniques include PCR-restriction fragment length polymorphism
(PCR-RFLP), repetitive sequence-bases PCR (REP-PCR), PCR-ribotyping, amplified
fragment length polymorphism (AFLP), random amplified polymorphic DNA (RAPD)
PCR and multilocus sequence typing (MLST). As such methods have been discussed
extensively, we will only provide a brief overview of the advantages and/or disadvantages
of each technique in the context of selecting industrially important dairy starter cultures.

3.1 Restriction endonuclease-based methods

The use of PFGE allows for the separation of large DNA fragments, produced by one
or more suitable restriction endonucleases (REases), employing alternating electric
currents resulting in the generation of a strain-specific genomic fingerprint (Cantor
et al. 1988; Mathew et al. 1988; Tanskanen et al. 1990). PFGE has been used
extensively to characterise members of both L. lactis and S. thermophilus (Boutrou
et al. 1995; Ward et al. 2004; Kelly et al. 2010; Zinno et al. 2010). PFGE is highly
discriminatory in comparison to other methods, but the procedure is time-consuming,
technically challenging, and the lack of fingerprint databases limits its widespread use
in the dairy industry. Similar to PFGE, AFLP involves the digestion of chromosomal
DNA with restriction endonucleases. Following digestion, oligonucleotide adapters
containing a core sequence and a sequence homologous to the sticky ends produced
by the endonuclease are added to the DNA fragments creating a target site for the
AFLP-specific primers. These primers are designed to match the core sequence and the
restriction enzyme-specific sequence (Vos et al. 1995; Vuylsteke et al. 2007). Two to
three additional non-specific bases may be added to the 3′-end of the primer to increase
the selectivity of the protocol. The AFLP method can be automated by the use of
fluorophore-labelled primers, coupled to fragment separation by denaturing gel elec-
trophoresis and subsequent detection of AFLP fragments using an automated sequencer
(Gancheva et al. 1999). While initially labour-intensive, the development of a particular
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protocol can be used to characterise hundreds of bacterial strains using only small
amounts of template DNA as well as allowing for faster processing of samples and a
high-throughput analysis of strains without any prior knowledge of the genome (Paun
and Schönswetter 2012). However, such approaches require an automated DNA
sequencer which can be expensive to purchase, run and maintain. To date, there has
been no reported use of AFLP in characterising L. lactis strains used as dairy starter
cultures. Analysis of dairy S. thermophilus strains using AFLP indicated that this
approach provides a higher degree of differentiation at both the species and strain level
compared to other methods such as RAPD PCR (Lazzi et al. 2009).

3.2 PCR-based methods

RAPD PCR is a fingerprinting technique which uses ten nucleotide (10-mer) primers to
amplify random segments of the bacterial genome without the requirement of having
previous sequence knowledge of the genome (Williams et al. 1990). Diversification or
discrimination at the intraspecies and interspecies level as well as the identification of
mutations within a genome is based on whether or not the primer will amplify a
segment of DNA resulting in the generation of unique DNA banding patterns. The
use of RAPD PCR has been extensively applied to the characterisation of members of
the LAB, as well as lactococcal and streptococcal phages (Rossetti and Giraffa 2005;
Rodríguez et al. 2008; Chouayekh et al. 2009). RAPD PCR has been shown to
differentiate the lactococcal sub-species and also members of the same subspecies,
particularly where members of a particular subspecies display different phenotypic
characteristics (Tailliez et al. 1998; Samarzija et al. 2002). PCR-RFLP, which utilises a
combination of PCR and a REase-based approach, is a genotyping technique that relies
on the presence of single nucleotide polymorphisms (SNPs) or multi-nucleotide poly-
morphisms (MNPs) within a specific region of targeted homologous DNA (Saiki et al.
1985). The presence of SNPs or MNPs within the amplified region of interest can alter
the recognition site of the REase resulting in different banding patterns, allowing the
discrimination of different (sub)species within a bacterial genus/species, or members of
the same species. PCR-RFLP has been employed to discriminate between L. lactis ssp.
lactis and L. lactis ssp. cremoris by targeting different genes such as those specifying
N-acetylmuramidase (acmA), the 16S rRNA and glutamate decarboxylase (gadB)
(Buist et al. 1995; Ward et al. 1998; Nomura et al. 2002). Recently, two additional
gene targets, the genes encoding a serine protease (htrA) and a non-proteolytic protein
peptidase family M16 member (yueF) were found to be more suitable for differentiating
between the two subspecies cremoris and lactis when used in combination with the
REases TaqI and AluI, respectively (Khemariya et al. 2013). Both RAPD and PCR-
RFLP target specific DNA regions, whereas rep-PCR employs sets of primers that
target non-coding repetitive short polynucleotide sequence tracts that can be found
scattered across the bacterial genome (Stern et al. 1984; Versalovic et al. 1991).
Amplification of these repeating sequences results in the generation of fragments of
various lengths depending on the length of the DNA located between these repetitive
elements generating strain-specific patterns when separated by gel electrophoresis.
Several short repetitive elements can be used as targets for amplification including
the repetitive extragenic palindromic (REP) elements; enterobacterial repetitive
intergenic consensus (ERIC) sequences (127-bp imperfect palindromes) and BOX
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elements (modular DNA segments encompassing three subunits, A-C, which can exist
in various combinations) (Koeuth et al. 1995; Tobes and Ramos 2005; Wilson and
Sharp 2006). While it has been demonstrated that rep-PCR is comparable to RFLP and
RAPD, several limitations such as poor resolution and band separation have been
observed for rep-PCR (Olive and Bean 1999). To overcome these limitations,
fluorophore-labelled oligonucleotides can be used where the amplified sequences are
separated using a DNA sequencer similar to the AFLP approach (Versalovic et al.
1995), and this approach has been used to characterise S. thermophilus strains and
establish links between S. thermophilus strains and their geographical origin (Brusetti
et al. 2008). There have been mixed reports on the differentiating ability of rep-PCR.
While Urbach et al. (1998) applied rep-PCR for the characterisation of L. lactis strains
and reported it as a useful and reproducible technique at differentiating strains, subse-
quent studies have shown that rep-PCR cannot distinguish between ssp. lactis and ssp.
cremoris (Prodělalová et al. 2005).

3.3 Multilocus sequencing typing (MLST)

MLST is a technique that targets the internal region (400–500 bp) of several house-
keeping genes and is now by many considered to represent the gold standard for
species differentiation (Maiden et al. 1998). MLST has been used to characterise both
L. lactis and S. thermophilus strains, including wild-type and industrial starters. MLST
has been shown to effectively discriminate collections of lactococcal strains into
subgroups or clusters, as well as differentiating the sub-species based on housekeeping
genes such as peptidase N and X-prolyl dipeptidyl aminopeptidase (Fernández et al.
2011). MLST can be used to separate lineages among the sub-species of L. lactis,
although some lineages were found to include representatives of both subsp. lactis and
cremoris, suggesting that MLST is not completely discriminatory at the sub-species
level (Rademaker et al. 2007). In a recent study, the MLST scheme for L. lactis was
revised based on additional genes that were not necessarily housekeeping genes,
particularly genes that act as indicators of species divergence (Passerini et al. 2010).
MLST has also been applied to differentiate isolates of S. thermophilus using primers
that target eight housekeeping genes, previously applied for MLST purposes on strains
of Streptococcus salivarius (Delorme et al. 2007, 2010).

3.4 Cell wall polysaccharide (CWPS) operon typing

The (Gram-positive) lactic acid bacterial cell envelope represents a complex structure
composed of a thick peptidoglycan layer, teichoic acids, cell wall polysaccharides
(CWPS) and various surface carbohydrates (Chapot-Chartier 2014). Recently, it has
been demonstrated by a multiplex PCR approach that, based on the genetic composi-
tion of their CWPS-encoding gene cluster, (most) lactococcal dairy strains can be
assigned to one of three types (types A, B and C) (Mahony et al. 2013). Strains
possessing the CWPS C type can be further divided into five subtypes (designated
C1 through to C5), which can also be identified by multiplex PCR (Ainsworth et al.
2014b). These PCR-based approaches are important and rapid in classifying the
CWPS biosynthesis cluster, in particular from phage sensitivity prediction and strain
blend derivation perspectives.
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4 Next-generation sequencing (NGS) approaches

Sanger sequencing was first described in the 1970s by Frederick Sanger and colleagues
(Sanger et al. 1977) and became the dominant method of sequencing DNA for the
remainder of the 20th century. It was used to sequence the complete human genome
(Lander et al. 2001; Venter et al. 2001) and is a highly accurate method of sequencing.
However, Sanger sequencing, referred to as a “first generation” sequencing method, is
expensive and impractical for large sequencing projects, and in recent times, this
method has partly been replaced by “next-generation” sequencing (NGS) methods
(Metzker 2010).

NGS methods are high-throughput DNA sequencing technologies permitting the
sequencing of millions of DNA strands in parallel generating large volumes of se-
quence data in a relatively short period of time (Pettersson et al. 2009). There are
currently a number of methods in use (Table 1), but for the purposes of this review, we
will briefly compare four of the most commercially viable methods, namely Roche
454-pyrosequencing, Illumina-Solexa, Life Sciences Ion-Torrent and Pacific
Biosciences Single-molecule real-time sequencing (SMRT). For more in-depth infor-
mation on each of these technologies, see Loman et al. (2012a, b).

4.1 Comparison of NGS approaches

There are a number of next-generation techniques available with associated advantages
and disadvantages to each technique depending on the desired application (Table 1).
For the study of lactococcal or streptococcal starter cultures, any of the
aforementioned techniques may be applied to obtain finished genome sequences
due to the small genome size of these species: strains of L. lactis typically
possess a ~2.5 Mb chromosome, whereas S. thermophilus strains have a smaller
genome of around 1.8 Mb.

454-Pyrosequencing is a next-generation, high-throughput sequencing methodology
based on the sequence by synthesis approach and is useful due to its longer read length
compared to read lengths generated by the current Illumina or Ion-torrent platforms:
700 bp compared to 300 and 400 bp, respectively. While 454-pyrosequncing has been
used extensively over the last 10 years, it was announced in 2013 that Roche will phase
out this sequencing platform by mid-2016.The reasons for this discontinuation of 454-
pyrosequencing include the advent of lower cost, high(er) throughput sequencing
technologies, along with increasing read lengths of the alternative NGS technologies
(Chaisson et al. 2009). Errors in homopolymer sequence tracts have also been reported
with the 454-pyrosequencing method (Gilles et al. 2011) and ion torrent technology
(Loman et al. 2012b).

The Ion-Torrent PGM represents a low-cost and rapid sequencing methodology
generating around 80 million sequence reads in a single run of approximately 90 min.
The Illumina approach has been one of the most widely used sequencing approaches in
recent years and can generate a large volume of sequencing data (Metzker 2010),
although the average read length is relatively low, in particular when compared to the
newer PacBio SMRT platform. Current Illumina sequencing-by-synthesis (SBS) in-
struments are capable of generating over 1 terabase of data in a single run and are
capable of sequencing bacterial genomes in a matter of hours. These properties,
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combined with low sequencing costs, have in recent years made Illumina become the
dominant sequencing technology.

The PacBio SMRT approach has the advantage of the longest read lengths of any
sequencing technology currently in use (Chin et al. 2013), with Pacific Biosciences
reporting N50 read lengths of >14,000 bp and maximum read lengths of >40,000 bp,
which is extremely useful for covering repetitive regions of genomes, particularly so in
lactococcal genomes where a large number of insertion sequence (IS) elements cause
problems during sequence read assembly (Daveran-Mingot et al. 1998; Chopin et al.
2001; Kok et al. 2005). The SMRT sequencing approach also moves beyond traditional
detection of the four DNA bases as it is the first high-throughput approach to directly
detect DNA base modifications (Flusberg et al. 2010). This allows SMRT sequencing
to differentiate between unmodified bases and those with m6A, m4C or m5C base
modifications (Clark et al. 2012). One drawback of the PacBio SMRT platform
which should be considered is the reports of higher error rates compared to
other NGS platforms. Since launching the SMRT platform, Pacific Biosciences
have addressed this issue by incorporating circular consensus sequencing
(CCS), which has led to greatly reduced error rates (Hodkinson and Grice
2015) and achieving a higher consensus accuracy, currently reported at
99.999% by Pacific Biosciences. In comparison to early studies which reported
a sequencing inaccuracy rate of ~13–18% (Quail et al. 2012; Mosher et al.
2013), more recent studies have reported a large reduction in these rates
(Schloss et al. 2015).

As discussed, the PacBio SMRT platform currently possesses a number of
unique advantages over other NGS methods. However, a noteworthy new
single molecule sequencing method currently in development is nanopore
sequencing which may challenge PacBio’s dominance in this area. Nanopore
sequencing is predicted to deliver long read lengths and base modification
data, while the simple sample preparation and possibility of label-free DNA
sequencing are expected to reduce sequencing costs dramatically (Clarke et al.
2009).

Genotypes of lactococcal and streptococcal strains derived from genomics (Table 2)
can provide a myriad of information about industrially important traits. There is an
impressive array of tools available for post-sequencing and comparative genome
analyses, and readers requiring more information should refer to Edwards and Holt
(2013). Here, we discuss some of the key genetic markers derived from genomic
analysis which can be used for strain selection with particular emphasis on phage
resistance and flavour development.

4.2 Practical implications of genomics-driven characterisation of dairy cultures

4.2.1 Metabolic capabilities

Dairy LAB encode a number of key metabolic pathways that are necessary for the
production of cheese and other fermented dairy products. These include genes required
for lactose utilisation, degradation of peptides and amino acids, citrate metabolism and
lipolysis, all of which can be characterised at a genetic level given the availability of
sequencing data.
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4.2.2 Lactose and lactate metabolism

The gene products of the lac operon facilitate and govern lactose utilisation in LAB and
provide dairy strains with the ability to rapidly ferment lactose required for growth in
milk. In L. lactis, the plasmid-bourne lac operon consists of the genes lacABCDEFGX
and is regulated by a repressor, encoded by the adjacent lacR gene (van Rooijen and de
Vos 1990; van Rooijen et al. 1992). Loss of the lac operon has been reported due to the

Table 2 Sequencing methods used for finished quality lactococcal and streptococcal genomes available from
the NCBI (correct January 2014)

Organism GenBank accession Sequencing
technology

Year Reference

L. lactis

ssp. lactis IL1403 GCA_000006865.1 Sanger 2001 Bolotin et al. 2001

ssp. cremoris SK11 GCA_000014545.1 Sanger 2006 Makarova et al. 2006

ssp. cremoris MG1363 GCA_000009425.1 Sanger 2007 Wegmann et al. 2007

ssp. lactis KF147 GCA_000025045.1 Combined
454-pyrosequencing
& Illumina

2009 Siezen et al. 2010

ssp. cremoris NZ9000 GCA_000143205.1 Illumina 2010 Linares et al. 2010

ssp. cremoris A76 GCA_000236475.1 Sanger 2011 Bolotin et al. 2012

ssp. lactis CV56 GCA_000192705.1 454-pyrosequencing 2011 Gao et al. 2011

ssp. lactis IO-1 GCA_000344575.1 Sanger 2012 Kato et al. 2012

ssp. cremoris UC509.9 GCA_000312685.1 Combined
454-pyrosequencing
& Illumina

2012 Ainsworth et al. 2013

ssp. cremoris KW2 GCA_000468955.1 454-pyrosequencing 2013 Kelly et al. 2013

ssp. lactis KLDS
4.0325

GCA_000479375.1 Illumina 2013 Yang et al. 2013

ssp. lactis NCDO
2118

GCA_000478255.2 SOLiD, Ion PGM &
Ion Torrent PGM

2014 Oliveira et al. 2014

ssp. lactis SO GCA_000807375.1 Ion Torrent PGM 2014 McCulloch et al. 2014

ssp. lactis AI06 GCA_000761115.1 454-pyrosequencing 2014 Unpublished

S. thermophilus

CNRZ1066 GCA_000011845.1 Sanger 2004 Bolotin et al. 2004

LMG 18311 GCA_000011825.1 Sanger 2004 Bolotin et al. 2004

LMD-9 GCA_000014485.1 Sanger 2006 Makarova et al. 2006

ND03 GCA_000182875.1 Combined
454-pyrosequencing
& Illumina

2010 Sun et al. 2011

JIM 8232 GCA_000253395.1 Sanger & SOLiD 2011 Delorme et al. 2011

MN-ZLW-002 GCA_000262675.1 Combined
454-pyrosequencing
& Illumina

2012 Kang et al. 2012

ASCC 1275 GCA_000698885.1 454-pyrosequencing 2014 Wu et al. 2014
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instability of the large extra-chromosomal element on which it is encoded (McKay et al.
1972; Ainsworth et al. 2014c), resulting in spontaneous mutants that are incapable of
growth in milk. Interestingly, the plasmid-cured laboratory strain L. lactis MG1363,
which does not harbour the lac operon, is capable of growth on lactose-supplemented
media following prolonged adaptation due to the activity of a cellobiose-specific
phosphotransferase system (PTS), which can act as an alternative lactose utilisation
pathway (Solopova et al. 2012). Another example of an alternative lactose metabolic
pathway is found in the slow lactose fermenter L. lactis NCDO2054 which metabolises
lactose via the Leloir pathway (Bissett and Anderson 1974). This occurs as a result of
lacA, which encodes a galactoside acetyltransferase, and lacZ, which encodes a
β-galactosidase, being integrated into the gal (galactose) operon (Vaughan et al.
1998). Such data suggests that phenotypic growth on lactose may not be an absolutely
reliable indicator for the presence of the lac operon within lactococcal strains. Further
studies have suggested that certain PCR-based techniques may also be somewhat
unreliable in indicating the true lactose genotype.

A recent study by Ferrario et al. (2012) reported on the screening for isolates of
L. garvieae in the dairy environment using primers targeting the lacG gene. They found
that lacG is variably present among L. garvieae isolates from the meat environment and
is not limited to dairy isolates, demonstrating the need for complete genome sequences
for the correct identification of dairy isolates.

Lactose metabolism by S. thermophilus differs from that observed in Lactococcus
ssp.: lactose is transported into the cell by the secondary transport system LacS in
antiport with galactose (Delcour et al. 2000). The lacS gene is organised in an operon
with the β-galactosidase-encoding gene, lacZ, similar to the system in
Lactobacillus delbrueckii (Schroeder et al. 1991). The lacZ gene in
S. thermophilus is well conserved and has been used for PCR-based identifi-
cation purposes of S. thermophilus from fermented dairy products (Lick et al.
1996) and for the isolation of folate-producing S. thermophilus strains from
Indian fermented milk products (Iyer et al. 2011).

4.2.3 Citrate metabolism

Citrate metabolism in dairy fermentations conducted by citrate-positive (Cit+)
lactococci and Leuconostoc spp. is important as it leads to the production of a
number of volatile flavour compounds (McSweeney and Sousa 2000). Citrate uptake
and subsequent diacetyl production are governed by the plasmid-encoded citQRP
operon in lactococcal species (Drider et al. 2004). It has been demonstrated that the
citP gene is well conserved amongst LAB with approximately 98% amino acid identity
making it a useful screening target for Cit+ starters (Drider et al. 2004).
Lactococci capable of metabolising citrate are classified as L. lactis subsp.
lactis biovar diacetylactis (Kelly et al. 2010), a classification that has led to
confusion since plasmid-encoded characteristics such as citrate and arginine
metabolism can be transferred to subsp. cremoris strains leading to incorrect
characterisation based on phenotype (Kelly et al. 2010). It is also noteworthy
that recent studies have indicated potential adverse health effects associated
with diacetyl production, which may lead to the future removal of diacetyl-
producing LAB from starter cultures (Shibamoto 2014).
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4.2.4 Proteolysis

Proteolysis and the degradation of casein from milk are one of the most important
contributors to flavour development in cheese (McSweeney 2004). Lactococcal strains
contribute to proteolysis through the hydrolysis of casein by peptidases and proteases
and the catabolism of peptides and amino acids from casein breakdown (Steele et al.
2013). There are a number of genes which contribute to this function, such as various
and mostly chromosomally specified peptidase-encoding genes (e.g. pepC, pepN,
pepX, pepP, pepA, pepF2, pepDA1, pepDA2, pepQ, pepT, pepM and pepO1), the
plasmid-encoded opp operon, which specifies an oligopeptide-uptake system, and the
plasmid-bourne gene that specifies the L. lactis cell wall-associated protease PrtP,
required for the proteolytic phenotype (Yu et al. 1996). The majority of the genes
mentioned above are monocistronic (e.g. pepC, pepN and prtP) or co-transcribed, such
as opp and pepO1, while pepF2, pepM and pepT are transcribed with genes that are
(apparently) unrelated to proteolysis (Guédon et al. 2001). There are also a number of
uncharacterised proteins which contain peptidase-associated domains, many of which
are strain-specific and their roles may become clearer as more genome sequences
become available (Siezen et al. 2005).

As discussed, proteolysis contributes greatly to cheese flavour development; how-
ever, high levels of proteolysis can also cause bitterness in cheese (Broadbent et al.
2002). The L. lactis extracellular cell wall proteinase (lactocepin) has been shown to be
directly involved in the bitter flavour defect in cheddar cheese varieties, specifically
starters which produce lactocepin of the so-called group a, e or h (Broadbent et al.
2002). Broadbent et al. (2002) concluded that the bitterness defect in cheese could be
altered through gene exchange or replacement in the starter culture. These findings
highlight the benefits of subsp. cremoris strains in lactococcal starter cultures in
comparison to subsp. lactis.

A recent study by Liu et al. (2010) indicates that our knowledge of the proteolytic
system in LAB can be enhanced by systematic genome-wide studies of the regions
encoding proteins involved in proteolysis. These authors indicated that comparative
genomics can be used to distinguish various sub-groups within protein super-
families involved in proteolysis where the generated information predicts the
proteolytic ability of LAB strains. A major finding from this study was the
confirmation of proteolytic diversity among ssp. lactis and ssp. cremoris strains
and the provision of a genetic basis for this diversity, linked to distinct patterns
in the presence or absence of genes encoding proteolytic functions (Liu et al.
2010).

4.2.5 Lipolysis

Lipolysis involves the breakdown of milk fats and hydrolysis of triglycerides into lipids
and fatty acids, activities that are considered to be crucial for flavour development in
cheese production, particularly in the production of cheddar varieties (McSweeney and
Sousa 2000). In LAB, lipolytic enzymes involved in lipolysis are mainly esterases and
lipases belonging to a class of enzymes called the carboxylic ester hydrolases (Verger
1997). Apparently, estA is the only esterase-encoding gene in L. lactis, being capable of
hydrolysing short chain fatty acid esters (Nardi et al. 2002). However, this research area
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of cheese flavour development remains considerably under-represented in lactococcal
studies compared to those related to proteolysis (McSweeney and Sousa 2000).

Therefore, a genomics approach may be beneficial in broadening our scope of
knowledge on lipolysis in lactococcal and streptococcal strains as demonstrated in
other LAB.

4.3 Phage robustness

4.3.1 Prophages

As mentioned previously, it is possible to determine the presence of prophages by
phage induction assays (Chopin et al. 2001). However, such approaches are time-
consuming and require the assessment of large collections of strains. In addition, ‘true’
prophage induction can only be determined using additional methods such as confir-
mation of the presence of prophages by performing phage sensitivity assays upon
identification of a sensitive host strain, PCR or flow cytometry (Sozhamannan et al.
2006). Whole genome sequencing can readily identify the presence of temperate
phages within the host genome. Furthermore, the availability of programmes such as
Phage_Finder as well as gene annotation tools aid in the determination of the presence
of intact or cryptic prophage elements (Fouts 2006). The presence of prophages is more
common in L. lactis than S. thermophilus with some of the former harbouring six
prophages (Chopin et al. 2001; Wegmann et al. 2007). Lysogenic S. thermophilus
strains have been identified and have been correlated with strain autolysis (Husson-Kao
et al. 2000; Neve et al. 2003). While the presence of prophages in commercial strains
has generally been considered an undesirable trait due to the risk of phage excision,
some prophage elements have been found to encode systems which are beneficial for
phage defence namely, superinfection exclusion systems (Sie) in lactococcal strains and
Lipoprotein (Ltp) in streptococcal strains (Gasson and Davies 1980; McGrath et al.
2002; Mahony et al. 2008).

4.3.2 Restriction-modification (R-M) systems and abortive infection (Abi) systems

Genes encoding R-M systems are present on approximately 90% of currently available
bacterial and archaeal genome sequences (Roberts et al. 2003). These systems can be
plasmid or chromosomally encoded, and their general role is to recognize and target
invading foreign DNA with restriction enzymes, while simultaneously protecting the
host’s DNA by methyltransferase (MTase) activity. Four types of R-M systems (I, II, III
and IV) are currently recognized and have been extensively reviewed previously
(Roberts et al. 2003; Loenen et al. 2013; Pingoud et al. 2014; Rao et al. 2014). The
presence of various R-Ms in industrial starter cultures plays an important role in phage
defence, as invading phage DNA, if unmethylated (except in the case of type IV R-M
systems), will be subject to endonuclease activity. Traditional and laborious approaches
to the identification of R-Ms such as the use of crude cell extracts, extract fractionation
and restriction endonuclease assays are time-consuming and often only suitable for type
II R-Ms such as the lactococcal ScrFI, LlaBAI and LlaBI (Fitzgerald et al. 1982;
Nyengaard et al. 1993; Mruk et al. 2003) and S. thermophilus Sth4551 (Guimont et al.
1993). These methods have been replaced with the emergence of more accessible
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sequencing technologies allowing for the prediction of chromosomal- and plasmid-
encoded R-Ms through similarity searches, e.g. the L. lactis systems LlaJI, LldI and
LlaI (Hill et al. 1989; Deng et al. 2000; O'driscoll et al. 2004) and the S. thermophilus
R-M system Sth3681 (Burrus et al. 2001). In recent years, the emergence of SMRT
sequencing technology (as discussed above) has revolutionised the identification of
whole genome modification and the function of R-Ms. Combining whole genome
sequencing and MTase motif analysis, the functions of one or more bacterially encoded
R-Ms can be predicted which can then be confirmed using heterologous gene expres-
sion coupled with restriction endonuclease assays. This approach has been applied to
both bacteria and bacteriophages alike (Murphy et al. 2014; O'Connell-Motherway
et al. 2014), though it has not yet been applied to lactococcal or streptococcal strains.

Abortive infection (Abi) systems are host-encoded resistance mechanisms that
disrupt critical stages in the lytic phage cycle such as phage transcription, translation,
DNA replication or phage DNA packaging and have been extensively studied in
L. lactis (Ainsworth et al. 2014a, c). Abi-mediated resistance typically culminates
in the death of the infected host cell in order to limit the release of progeny particles,
thus protecting the neighbouring bacterial population. Currently, 23 Abi systems
(AbiA-AbiZ) are known for L. lactis, which, with the exception of AbiN and AbiV,
are all plasmid-encoded (Prevots and Ritzenthaler 1998; Chopin et al. 2005; Ainsworth
et al. 2014a, c). The presence of Abi systems was first identified due to the protective
effect that certain lactococcal plasmids have against phage infection, by causing a
decreased burst size and an altered phage plaque morphology as observed for plasmids
pTR2030 and pIL105 (Sing and Klaenhammer 1986; Gautier and Chopin 1987).
Subsequently, plasmids that conferred such resistance to infecting phages were digested
with restriction endonucleases and the fragments cloned into suitable shuttle vectors.
The various recombinant derivatives were then screened to determine if a particular
fragment provided phage resistance as observed for AbiE and AbiF encoded on the
lactococcal plasmid pNP40 (Garvey et al. 1995). Such experimental approaches are
time-consuming, particularly if the approach was to be employed in order to assess a
collection of dairy starters. As with R-Ms, whole genome sequencing can readily
identify both chromosomally and plasmid-encoded Abi systems, in particular in the
case of SMRT sequencing technology, which in many cases can produce completed,
single contig bacterial genome and plasmid sequence information for use in compar-
ative sequence analyses (Sistla and Rao 2004).

4.3.3 CRISPR/Cas systems

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-
associated (Cas) genes form an acquired adaptive immunity system against foreign
genetic elements in prokaryotes (Horvath et al. 2008; van der Oost et al. 2009; Deveau
et al. 2010). CRISPR systems are composed of a series of conserved repeats which are
separated by protospacers, variable sequences involved in target recognition, an A-T-
rich leader region located at the 5′ end of the CRISPR locus and Cas genes (Deveau
et al. 2008). CRISPR systems play an important role in phage resistance in dairy starter
strains (Mills et al. 2010), and furthermore, CRISPR systems can be used as a tool for
the typing and comparative analyses of strains of S. thermophilus (Horvath et al. 2008).
CRISPR typing of S. thermophilus performed by Horvath et al. (2008), based on a
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combination of primers targeting conserved regions and Sanger sequencing resulted in
the identification of CRISPR3 and demonstrated the diversity of CRISPR systems
across 124 S. thermophilus strains. To date, there have been four distinct CRISPR loci
identified in S. thermophilus, designated as CRISPR1 through to CRISPR4 (Makarova
et al. 2011). In L. lactis, only one plasmid-encoded CRISPR/Cas locus has been
characterised (Millen et al. 2012).

5 Future perspectives and conclusions

While it is likely that “omics”-based technologies will never completely replace
traditional culture-based methods, there is a vast array of knowledge to be gained from
integrating these disciplines. Small-scale trial fermentations will continue to be the only
genuine test of the performance of starter cultures within an industrial setting; yet, it is
an impractical approach for screening large culture banks for suitable strains. The
recent advances in NGS technologies have ensured that sequencing has become a
more accessible avenue that may permit a rational approach to reduce the number of
potential candidates for such trials, and to minimize screening times and labour-
intensive culture techniques. Further combinations of sequencing-based approaches
with other “omics”-based technologies, such as transcriptomics and proteomics in
cheese, may help to moderate the genotype-phenotype link in the future.

Genome decay and redundancy, as highlighted in dairy lactococcal isolates
(Makarova et al. 2006; Goh et al. 2011; Ainsworth et al. 2013), coupled to cremoris
type strains which are believed to be descended from a few closely related lineages
(Kelly et al. 2010), are factors likely to limit the selection of novel starter strains in the
future. This is perpetuated by the likelihood of large redundancies in culture collections
from different institutes globally and the differentiation of many of these strains.
Additionally, the possibility of incorrect phenotype/genotype association, such as the
plasmid-encoded citrate metabolism trait, is likely to only be resolved by complete
genome sequencing.
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