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Species fraud and product mislabelling in processed food, albeit not being a direct health issue, often
results in consumer distrust. Therefore methods for quantification of undeclared species are needed.
Targeting mitochondrial DNA, e.g. CYTB gene, for species quantification is unsuitable, due to a fivefold
inter-tissue variation in mtDNA content per cell resulting in either an under- (�70%) or overestimation
(+160%) of species DNA contents. Here, we describe a reliable two-step droplet digital PCR (ddPCR) assay
targeting the nuclear F2 gene for precise quantification of cattle, horse, and pig in processed meat prod-
ucts. The ddPCR assay is advantageous over qPCR showing a limit of quantification (LOQ) and detection
(LOD) in different meat products of 0.01% and 0.001%, respectively. The specificity was verified in 14
different species. Hence, determining F2 in food by ddPCR can be recommended for quality assurance
and control in production systems.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The declaration of meat products in the EU is mandated by the
Commission Directive 2002/86/EC stating that meat products have
to be labelled with precise information about the species and its
percentage in the product (Commission Directive, 2002). Falsely
declared meat products have shaken the consumers’ acceptance
of meat products in the past and represent a wide spread problem
which is known for several decades. It was postulated that the
overall rate of substituted species was 16.6% in raw and cooked
meat samples (Hsieh, Woodward, & Ho, 1995). Furthermore, it
was shown that 22.0% of the analysed meat products were not in
compliance with the specific legislation (Ayaz, Ayaz, & Erol,
2006). Methods to control meat products have aimed to detect
either species-specific proteins (ELISA, liquid chromatography
(LC), high performance LC, ultra-performance LC) or DNA (hybrid-
ization, PCR, single strand conformational analysis, conformation
sensitive gel electrophoresis, RFLP) (Ballin, Vogensen, & Karlsson,
2009; Giaretta, Di Giuseppe, Lippert, Parente, & Di Maro, 2013).
DNA detection methods target either single copy genes (Laube,
Zagon, & Broll, 2007; Laube et al., 2003) or mitochondrial DNA
(mtDNA) (Karabasanavar, Singh, Kumar, & Shebannavar, 2014;
Matsunaga et al., 1999). Methods based on mtDNA are highly
sensitive. However, since the amount of mtDNA shows higher
tissue-specific variation than nuclear DNA, quantification cannot
be based on mtDNA instead a single copy chromosomal target is
desirable (Ballin et al., 2009). In general, quantification results
should be based on genome/genome equivalents and not on
weight/weight, because of differences in tissue composition, spe-
cies genome size, DNA degradation, and extractability (Ballin
et al., 2009). Due to the horsemeat scandal, which has evolved into
a pan-European, if not a global food fraud in 2013, the detection of
minute species admixtures in processed food products has recently
become an important diagnostic challenge. Different qPCR assays
were developed to distinguish between various amounts of species
in processed and several canned foods including beef, pork, lamb,
goat, chicken, duck, and turkey (Laube et al., 2007). The reported
qPCRs amplify regions in different single copy genes and use exter-
nal standards for quantification with an absolute limit of quantifi-
cation (LOQ) in the range of 10–100 genome copies. A method for
utilisation under tropical conditions (Laube et al., 2007) facilitated
quantification P1% (w/w) and in low-processed meat products as
well as in normal canned foods P0.1% (w/w).

An approach to detect traces of DNA is the use of digital PCR
(dPCR). It permits counting of single template molecules by separa-
tion of extremely diluted nucleic acids into individual reaction com-
partments, which are monitored for a positive amplification after
end-point PCR amplification using fluorescent target-specific hydro-
lysis probes. The benefits of dPCR in comparison to quantitative
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PCR are its higher sensitivity and precision as well as providing an
absolute measure of nucleic acid concentration (Hindson et al.,
2011) without the use of standard curves (Pinheiro et al., 2012).
External standards for absolute quantification especially in highly
processed meat products are problematic, because DNA amplifica-
tion efficiencies and qualities might vary between the reference
and the test sample (Ballin et al., 2009). The precision of qPCR is
limited because it cannot reliably distinguish differences that are
smaller than 2-fold and quantification of minute minor concentra-
tions (<1%) is often inaccurate. In contrast digital PCR can detect
630% difference in gene expression, distinguish whether a variant
occurs in five versus six copies and identify rare variant contents
of 60.1% (Baker, 2012). DPCR is more tolerant to inhibitors than
qPCR (Hoshino & Inagaki, 2012) and because of partitioning in sep-
arate reaction chambers it is robust against many factors that can
influence PCR like cross-reacting DNA templates and primer-dimers
(Nakano et al., 2003). In droplet digital PCR (ddPCR) each reaction is
randomly distributed in several thousands nanoliter-scale water in
oil droplets. The absolute number of target molecules initially pres-
ent in the original sample can be determined by the ratio of positive
to total number of droplets (Morisset, Stebih, Milavec, Gruden, & Zel,
2013). Using droplet digital PCR, templates of low concentration can
be detected in a background of high numbers of non-target nucleic
acids (Morisset et al., 2013; Pohl & Shih Ie, 2004), thus a direct
relative quantification is possible.

The aim of this study was the establishment of a new method
for exact quantification of different species in meat and processed
meat products using droplet digital PCR for routine use in
laboratories.
2. Materials and methods

2.1. Test material

Beef, pork, and horsemeat from local meat sellers were cooked
and subsequently minced. Different meat mixtures of (0.01–50%)
of the species combinations horse:cattle and horse:pig were pre-
pared in a total mass of 100 g. DNA extracted from beef, pork,
and horsemeat was mixed in the ratios of 0.1%, 0.01% and 0.001%
of the species combinations horse:cattle, horse:pig, cattle:pig and
pig:cattle.

Bovine tendon, fat, liver, and muscle tissue were used to deter-
mine differences between the mtDNA content.

Processed meat products (Lasagne, Pelmeni, Beef goulash,
Swabian pockets) were washed and pieces of meat separated.
DNA was isolated from meat products, cold meat (Thuringian
ground pork, spiced ground pork, fine salami, coarse salami, onion
sausage) and from seven calf liver sausages.

DNA isolated from blood or meat of 14 different species (Suppl.
Table S1) and 17 bovine, 26 equine and 6 porcine breeds, including
1 crossbreed (Suppl. Table S2) was used to verify the species
specificity of the assays and to rule out breed effects.
Table 1
Reaction conditions of ddPCR systems.

Step CYTB F2

Initial denaturation (�C/min) 95/10 95/10
Cycles 50 50
Denaturation (�C/s) 95/30 95/30
Primer annealing (�C/s) 55/60 55/10
Primer extension (�C/s) 55/60 68/20
Inactivation (�C/min) 98/10 98/10
2.2. DNA extraction

DNA was extracted from test material using a modified cetyltri-
methylammonium bromide (CTAB) method (Amtliche Sammlung
von Untersuchungsverfahren nach § 64, 2007). Ten individual
portions (200 mg) of each sample were mixed thoroughly with
1 mL extraction buffer solution (20 g/L CTAB, 1.4 mol/L NaCl,
0.1 mol/L Tris�HCl (pH = 8.0), 20 mmol/L Na2EDTA), 40 lL protein-
ase K solution (20 mg/ml) and 20 lL RNase A solution (10 mg/
mL). The samples were incubated at 65 �C overnight and centri-
fuged for 10 min at 14,500�g. 1 mL of the supernatant was trans-
ferred into 570 lL chloroform-isoamyl alcohol (24:1), mixed and
centrifuged at 14,500�g for 15 min. The upper phase was mixed
with 800 lL isopropanol, incubated for 1 h at �20 �C and centri-
fuged for 15 min at 14,500�g. The supernatant was discarded
and the pellet was washed with 500 lL ethanol (70%). After centri-
fugation at 14,500�g for 5 min the pellet was resolved in 25 lL
nuclease- and protease free water (Braun, Melsungen, Germany)
and DNA aliquots were pooled. DNA concentrations were deter-
mined fluorometrically using Quant-it™ ds DNA Assay Kit (Life
Technologies, Eugene, Oregon, USA) and a GENios Pro microplate
reader (Tecan Deutschland GmbH, Crailsheim, Germany) and sub-
sequently verified using ddPCR.

2.3. Droplet digital PCR and analysis

For ddPCR, specific primer pairs and hybridization probes for
the mitochondrial cytochrome B gene (CYTB) and the chromosomal
coagulation factor II gene (F2) were designed and purchased from
Eurofins MWG Operon (Ebersberg, Germany). Primer pairs for the
CYTB gene amplified fragments of 151 bp (horse), 146 bp (cattle),
and 147 bp (pig) and for the F2 gene fragments of 95 bp (horse),
96 bp (cattle), and 97 bp (pig) (Suppl. Table S3).

Before performing ddPCR 50 ng, 100 ng, and 1 lg genomic DNA
was digested using 10U BamHI (New England Biolabs GmbH,
Frankfurt/Main, Germany) in 11 lL 1� ddPCR supermix (Bio-Rad,
Munich, Germany) containing 110 ng BSA for 1 h at 37 �C.

After digestion, 900 nmol/L of each primer, 250 nmol/L of
hydrolysis probes and 1 nmol/L dUTPs (Carl Roth, Karlsruhe,
Germany) were added to the restriction mixture and supple-
mented with nuclease- and protease free water (Braun, Melsungen,
Germany) to a final volume of 22 lL. Droplets were generated
using the QX100 droplet generator (Bio-Rad, Munich, Germany)
according to manufacturer’s instructions. PCR amplifications were
performed in a thermal cycler (Biometra, Göttingen, Germany)
using the conditions in Table 1, and analysed in a QX100 droplet
reader (Bio-Rad, Munich, Germany).

For exact quantification of the minor species fraction in a
mixture, 1 lg extracted DNA was used with only the primers and
probes of the interrogated species. Primers and probes of both
species were used with 50 ng DNA in triplicates for simultaneous
detection of the content of two species. Meat mixtures were ana-
lysed accordingly, but each sample was analysed in duplicates
and triplicates for the diluted samples. On average ddPCR yielded
a number of 12,768 accepted droplets with a standard deviation
of 1328 droplets.

Poisson statistics were applied to determine the concentration
of template molecules in each reaction, confidence intervals are
95% and, if not stated otherwise were calculated according to pub-
lished formulas (Dube, Qin, & Ramakrishnan, 2008; Whale, Cowen,
Foy, & Huggett, 2013).

2.4. Determination of mitochondrial vs nuclear DNA using CYTB and F2
ddPCR assay

To compare CYTB and F2 copies, one DNA sample from either
bovine muscle, fat, tendon or liver tissue was extracted. For the
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CYTB assay DNA was diluted (1:100 and 1:500 (liver)). For the F2
assay undiluted DNA was used and both ddPCR assays were
performed with 7 lL DNA. Additionally, extracted DNA from
processed meat products, cold meat, and calf liver sausages were
applied in CYTB assay with 0.1 ng DNA and F2 assay with 100 ng
DNA. The differences between the DNA quantities are necessary
to achieve concentrations within the quantification range.

2.5. Specificity and sensitivity

To test sensitivity of each species-specific assay to different
breeds a ddPCR with 50 ng DNA from different horse-, cattle-,
and pig breeds (Suppl. Table S2) were performed. Specificity of
the assays was tested using DNA from different species and breeds
that were tested with all primers and probes for horse, cattle, and
pig (Suppl. Table S3).

The limit of quantification (LOQ) was determined by evaluating
the repeatability over the dynamic range of ddPCRs conducted
using different DNA mixtures (0.001–0.1% minor fraction) and
meat mixtures (0.01–50% minor fraction). Repeatability was
assessed by calculating the coefficient of variation of the measured
percentages from nine ddPCR-measurements conducted on con-
secutive days. In each run the minor fraction was determined from
two repetitions. Three repetitions performed in one run were used
for the meat mixtures.

The limit of detection (LOD) was defined as the lowest concen-
tration that could be stably detected in all ddPCRs.
3. Results and discussion

3.1. Determination of mtDNA using CYTB ddPCR assay

Mitochondrial DNA (mtDNA) is a well-established target for
detection of traces in mixtures. The CYTB gene is highly conserved
and the only mitochondrial gene coding for a subunit of respiratory
complex III. It has a length of 1140 bp and encodes a single poly-
peptide with a length of 380 amino acid (OMIM, 2011). CYTB is
present in all mammals with high copy numbers and is useful for
qualitative species detection, which has been shown in various
studies (Ballin et al., 2009; Maede, 2006; Matsunaga et al., 1999).
The used primers for the CYTB assay for cattle, horse, and pig were
located in the coding region. As to whether mtDNA can be used for
quantification purposes is in doubt, due to the variable content of
mitochondria in different mammalian tissues (Ballin et al., 2009;
Robin & Wong, 1988), whereas a quantitative determination of this
variability, based on precise determinations is missing. To eluci-
date the differences between mtDNA and nuclear DNA content
we conducted ddPCRs of the two targets using one DNA sample
from each bovine muscle, fat, tendon and liver tissue as examples.
The ratios calculated for CYTB copies versus F2 copies were 1095
(CI: 1141–1051) for muscle, 184 (CI: 191–178) for fat, 225 (CI:
217–235) for tendon and 935 (CI: 1077–811) for liver. Even testing
only one DNA extraction per tissue the already detected 6-fold dif-
ference between fat and muscle tissue illustrates the high variabil-
ity in mitochondrial DNA content. Given that the quantitative
determination of the content of a false declared species requires
two determinations (one for the declared and one for the unde-
Table 2
Limit of quantification and limit of detection for DNA mixtures in F2 ddPCR assays repres

DNA mixtures (%) Horse/cattle Horse/p

0.1 0.066% (7.43) 0.106% (
0.01 0.007% (19.90) 0.010% (
0.001 0.0004% (78.95) 0.001% (
clared), the error if mtDNA is used can add up to more than 10-fold.
The problem of w/w quantification with mtDNA is in particular
related to processed food, because it may also consist in part of
fat, tendon, and offal in addition to muscle meat. Thus, the quanti-
fication of traces of an unwarranted species cannot be achieved by
using mtDNA, but rather has to be based on a nuclear gene. For
quantification based on nuclear DNA, knowledge of tissue type is
not important anymore and it has been proposed to express the
result as genome/genome equivalents and not on weight/weight
(Ballin et al., 2009) even if genomic DNA is used for quantitative
species determinations. This seems to be the most correct way of
reporting species traces based on such detection techniques. We
used a single copy gene F2, since it is present in all mammals
and shows enough cross-species variability to ensure species-
specific detection.
3.2. Determination of nuclear DNA using ddPCR assay

Species-specific primers were designed for intronic regions of
the F2 gene, which showed more nucleotide differences than the
exonic regions within the examined species. The PCR amplicon of
the three species cattle, horse, and pig was located in intron 5
and reverse primers are partially in exon 6.
3.3. Specificity, LOQ and LOD

The specificity of the F2 assay was detected for the 14 species
listed in Suppl. Table S1. The sensitivity of the primer/probe com-
binations was retained in each breed of the tested species listed in
Suppl. Table S2. This shows that the assays can be used for reliable
quantification of species in mixtures.

The LOQ of the F2 ddPCR systems was defined as the lowest
concentration of mixture with a coefficient of variation (CV)
6 25% for quantification. The CV cut-off was chosen according to
the relative repeatability standard deviation suggested in the
‘‘FAO Guidelines on performance criteria and validation of methods
for detection, identification and quantification of specific DNA
sequences and specific proteins in food’’ (Codex Committee on
Methods of Analysis and Sampling, 2010). Based on this criterion
the limit of quantification for DNA (Table 2) and meat mixtures
is 0.01% (Table 3) with the ddPCR, which is one order of magnitude
lower than the LOQ reported with qPCR in low-processed meat
products and normal canned food (Laube et al., 2007).

The results of recovery of the respective species spiked in meat
mixtures are summarised in Table 3. In the meat mixtures
prepared of 50% w/w and 10% w/w horsemeat in beef or pork,
53.56% (SD = 0.61%) and 12.93% (SD = 0.25%) horse DNA were
detected, whereas the lower amounts showed a good recovery, in
particular with respect of difficulties to homogenise the tissues
to ensure a completely representative sampling for DNA extrac-
tion. In addition, the accuracy of quantification can be influenced
by the degradation of the DNA, resulting from the processing of
meat and meat products, the genome size between the species
and the degree of ploidy (Laube et al., 2007), e.g. muscle and liver
cells could be polyploid by fusion or perturbed mitosis (Davoli & de
Lange, 2011). Overall these results should be representative for the
performance that can be yielded on a routine-testing basis, where
ented as mean values and coefficient of variation in brackets (n = 18).

ig Cattle/pig Pig/cattle

4.46) 0.085% (3.85) 0.139% (10.83)
14.63) 0.006% (11.04) 0.021% (15.68)
39.58) 0.002% (21.19) 0.0015% (56.07)



Table 3
Limit of quantification for meat mixtures (tissue/tissue) in F2 ddPCR assay
represented as mean values and standard deviation (%) in brackets.

Meat mixtures (%) Horse/cattle Horse/pig

50 53.56% (0.61) 52.24% (0.19)
10 13.14% (0.13) 12.93% (0.25)
1 1.04% (0.03) 0.7% (0.01)
0.1 0.07% (0.0002) 0.1% (0.01)
0.01 0.08% (0.001) 0.01% (0.001)
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diverse species proportions can be reliably determined down to
0.001% (LOD) and reliably quantified down to 0.01% (LOQ) for dif-
ferent DNA mixtures (Table 2). Therefore this robust and accurate
test system is well suitable for food control measures.
3.4. Test procedure of processed meat products

In the first step a quantitative PCR for each species was per-
formed with standards, prepared from meat mixtures horse:cattle
Fig. 1. Workflow for DNA quantification of different species in meat and meat products.

able 4
pecies content in seven calf liver sausages, processed food and cold meat (content in percentage of the meat fraction; 95% confidence interval in brackets).

Samples Manufacturer’s
information (%)

F2 ddPCR (%) CYTB ddPCR (%) DCYTB-F2

Cattle Pig Cattle Pig Cattle Pig

Calf liver sausages S1 20.9 79.1 5.9 (5.7–6.1) 94.1 (93.9–94.3) 5.3 (5.1–5.4) 94.8 (94.6–94.9) �0.2
S2 20.5 79.5 3.1 (3–3.2) 96.9 (96.8–97) 2.7 (2.5–2.8) 97.3 (97.2–97.5) �0.3
S3* 17 83 19.1 (18.7–19.5) 80.9 (80.5–81.3) 22.8 (22.4–23.2) 77.2 (76.8–77.6) 0.2
S4* 19.5 80.5 6 (5.8–6.1) 94.1 (93.9–94.2) 3.8 (3.7–4) 96.2 (96–96.3) �0.4
S5 17.6 82.4 4.7 (4.5–4.9) 95.3 (95.1–95.5) 6.2 (5.9–6.4) 93.8 (93.6–94.1) 0.2
S6 21.4 78.6 5.3 (5.1–5.5) 94.7 (94.5–94.9) 4.4 (4.2–4.6) 95.6 (95.4–95.8) �0.3
S7* 20.3 79.7 6.5 (6.3–6.7) 93.5 (93.3–93.7) 3.7 (3.6–3.9) 96.3 (96.1–96.4) �0.5

Meat products Lasagne* 72.6 27.4 86.9 (86.6–87.2) 13.1 (12.8–13.4) 92.4 (92.1–92.8) 7.6 (7.2–7.9) 0.1
Pelmenia 100 100 – –
Beef goulasha 100 100 – –
Swabian pocketsa 100 100 – –

Cold meat Thuringian ground pork – – 0 (0–0.1) 100 (99.9–100) 0 (0–0.1) 100 (99.9–100)
Spiced ground pork – – 0 (0–0.1) 100 (99.9–100) 0 (0–0.1) 100 (99.9–100)
Fine Salami – – 0.06 (0.05–0.07) 99.94 (99.93–99.95) 0.12 (0.1–0.15) 99.88 (99.85–99.9) 1.0
Coarse Salami – – 0.12 (0.11–0.15) 99.88 (99.85–99.89) 0.04 (0.03–0.06) 99.96 (99.94–99.97) �0.7
Onion sausage* – – 1.2 (1.1–1.3) 98.8 (98.7–98.9) 3 (2.9–3.2) 97 (96.8–97.1) 1.6

CYTB-F2 were calculated by dividing the difference between the determined percentages of cattle CYTB and F2 ddPCRs by the F2 value.
a Quantification based on real-time qPCR.
* Significant difference between F2 and CYTB ddPCR (p < 0.05).
T
S

D

and horse:pig (10%, 1%, 0.1% and 0.01%). If no traces were detect-
able, the results are based on this first step. Depending on whether
the quantity of the suspected trace species was > 1% or less than 1%
a one-step or two-step ddPCR assay was performed, respectively.
An outline of the experimental procedure is depicted in Fig. 1.
For quantification of admixtures > 1% a ddPCR with 100 ng DNA
and primers/probes for both present species was carried out. To
quantify the minor species fraction of less than 1%, a ddPCR was
performed with 1 lg DNA and primer/probes for the species in
question. Simultaneously, a ddPCR with 50 ng DNA and primer/
probes for both species was implemented to quantify the major
species ratio. With at least 5–7 orders of magnitude, the dynamic
range in qPCR is wider than in the ddPCR (Gachon, Mingam, &
Charrier, 2004; Heid, Stevens, Livak, & Williams, 1996) used here,
which covers more than 4 orders of magnitude (Pinheiro et al.,
2012). For digital PCR the upper bound of the dynamic range is
dependent on the number of individual reaction compartments
provided. The lowest imprecision of the applied Poisson statistics
is achieved at 80% template-occupancy of the compartments with
a sharp rise towards 100% occupancy (Dube et al., 2008). Therefore,
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the upper limit of template molecules for a ddPCR with app. 20,000
droplets is app. 16,000 template molecules to yield the highest
reliability. The bounded dynamic range in ddPCR was overcome
by a two-step assay for quantification of minor species 6 1%, since
otherwise enough positive droplets for the lower species content
and enough negative events for the major content cannot be
achieved simultaneously in one reaction. Since the dynamic range
of target DNA quantification in dPCR, directly depends on number
of partitions (Hindson et al., 2011), dPCR methods providing more
reactions may be capable to precisely quantify the minor fraction
over the entire needed range in one step.

Using this analytical concept, the respective species content in
processed meat products and calf liver sausage samples (run in
duplicates) was investigated and the data are summarised
in Table 4. Compared to the manufacturer’s declarations for beef
content in calf liver sausages, quantification using the F2 ddPCR
procedure showed a significant lower content in six of the seven
products and a significant higher content in one sausage
(p < 0.0001). The content of cattle DNA varied between 3.1% and
19.1%. The onion sausage sample and the tested Lasagne showed
a higher percentage of beef DNA, compared to the manufacturer’s
content information (p < 0.0001). No equine DNA was detectable
in any of the tested processed meat products (Table 4). When the
beef content determination based on genomic and mitochondrial
DNA was compared, the use of mitochondrial DNA tended to over-
and underestimate the DNA content with a range of �70% to +160%
(DCYTB-F2 – Table 4).

4. Conclusion

Due to several food scandals within the last years, the necessity
of a cost effective and reliable method for quantification of animal
species in meat and processed meat products has become a major
challenge. From the data presented here, it can be concluded that
the use of mtDNA cannot be recommended due to an at least 5-fold
variability between different tissues (fat versus muscle) compared
to nuclear DNA. This variability is even more pronounced if weight/
weight percent concentrations are used. Therefore the use of
nuclear genes and a genome/genome equivalent ratio is advanta-
geous. In addition, the number of different nuclear genes and/or
nuclear DNA compared to mtDNA allows the development of an
almost infinite number of highly species specific assays. The com-
bination of a qPCR and ddPCR two-step assay allowed the reliable
species quantification (LOQ) and determination (LOD) in produc-
tion-related admixtures and processed foods with 0.01% and
0.001%, respectively.
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