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Summary. The delay that necessarily occurs between the emergence of symptoms and the
identification of the cause of those symptoms affects the timeliness of detection of emerging
outbreaks of infectious diseases, and hence the ability to take preventive action. We study the
delays that are associated with the collection of laboratory surveillance data in England, Wales
and Northern Ireland, using 12 infections of contrasting characteristics. We use a continuous
time spline-based model for the hazard of the delay distribution, along with an associated
proportional hazards model. The delay distributions are found to have extremely long tails,
the hazard at longer delays being roughly constant, suggestive of a memoryless process,
though some laboratories appear to stop reporting after a certain delay. The hazards are found
typically to vary strongly with calendar time, and to a lesser extent with season and recent
organism frequency. In consequence, the delay distributions cannot be assumed to be stationary.
These findings will inform the development of outbreak detection algorithms that take account of
reporting delays.
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1. Introduction

Delays are ubiquitous in surveillance data since only rarely, if ever, can a health event of interest
be recognized or registered instantaneously. Delays may be intrinsic to the underlying biological
process of interest, as with the incubation period of an infection, namely the time elapsed between
an individual’s being infected and the appearance of symptoms. Alternatively, delays may involve
external processes, notably the time taken to reach a diagnosis, or to enter this diagnosis in the
appropriate database, as is the case with cancers.

The statistical analysis of delay data has a history stretching back at least 50 years. An early
reference is Sartwell’s study of incubation periods using log-normal distributions (Sartwell,
1966). More recently, Bayesian methods have been used in this context to handle situations in
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which infection times are unobserved (O’Neill et al., 2000). However, the major application of
statistical methods to the analysis of delay data in disease surveillance has been to obtain valid
estimates of recent incidence, when case ascertainment or reporting is subject to delays. Thus, the
advent of the acquired immune deficiency syndrome epidemic in the 1980s, and the urgency with
which estimates were required of current trends in the incidence of human immunodeficiency
virus, provided a great impetus to the statistical treatment of delay data (Brookmeyer and Gail,
1988; Lawless, 1994).

Methods for estimating delay distributions from grouped data were first described by Harris
(1989), Brookmeyer and Damiano (1989) and Zeger et al. (1989), within a more general for-
mulation involving joint estimation of the incidence function as well as the delay distribution.
Brookmeyer and Liao (1990) proposed a convenient method for the analysis of grouped delay
data that does not involve the incidence function. This model, which can be implemented as a
generalized linear model (McCullagh and Nelder, 1989), has been used to study factors influenc-
ing delays in acquired immune deficiency syndrome epidemiology, notably whether delays are
changing over time (Bacchetti, 1996; Cui and Kaldor, 1998; Gebhardt et al., 1998; Deuffic and
Costagliola, 1999; Tabnak et al., 2000). Recently, the model has been used to model reporting
delays for salmonellas (Jones et al., 2014). The model is particularly convenient when imple-
mented with a complementary log–log-link, in which case it induces a relationship between the
cumulative distribution functions (CDFs) of the delay distribution of the form

F.t|x/=F.t/exp.βTx/ .1/

where F.t|x/ is the CDF of delays in a subpopulation with characteristics x and F.t/=F.t|0/.
Brookmeyer and Liao (1990) noted that this model is not a proportional hazards model: when
βTx > 0 the ratio of hazard functions increases monotonically from 0 to 1, thus converging
at long delays. The model has been described as a ‘reverse time proportional hazards model’
(Kalbfleisch and Lawless, 1989).

Midthune et al. (2005) generalized the model of Harris (1989) to include corrections to the
data as arise in cancer registries. The reporting delay component of the model, which as its
predecessors is specified for grouped data, parameterizes the probability of a given delay in
terms of the discrete hazard, using a complementary log–log-link function, though the model
is not a generalized linear model.

The methods that are developed in the present paper are motivated by the LabBase laboratory
surveillance data which are routinely collected on a large number of distinct organism types by
Public Health England. These data are used to detect, monitor and if appropriate to take control
measures to stem the development of outbreaks (Enki et al., 2013).

In this paper we do not address in any detail how reporting delays ought to be taken into
account in outbreak detection. There, the focus is wholly on reports with relatively short delays,
since those with long delays cannot be acted on promptly. However, it is also of interest to
examine the entire reporting delay distribution, to obtain a better understanding of the reporting
process, and perhaps to help to improve it. Thus, our aim in this paper is to describe the reporting
delay hazard, with the aim of gaining a better understanding of the reporting process, and
to investigate whether temporal factors, notably calendar time, season and recent incidence,
influence reporting delays. Similar considerations have recently motivated Jones et al. (2014)
who studied in detail the factors affecting reporting delays for salmonellas in France. Two
features distinguish the UK data from most other applications: the great diversity of organisms
involved, and the very long tails of the delay distributions. To capture these features in a unified
framework, we have adopted a proportional hazards modelling approach in continuous time,
the baseline hazard being represented by spline functions.
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In the next section, we describe the data and motivate our modelling approach. Then in Section
3 we derive the likelihood and describe the spline model for the hazard. Section 4 contains the
data analysis.

2. Reporting delay data for infectious diseases

2.1. The LabBase system
In England, Wales and Northern Ireland, several hundred hospital and specialist laboratories
send individual reports of isolates of infectious pathogens—usually typed for epidemiological
purposes down to a detailed classification such as serotype or phage type—to the central Lab-
Base database at Public Health England (previously the Health Protection Agency) in London.
These data have been collected electronically since 1991 and comprise several thousand different
organism types (Enki et al., 2013). They constitute a key resource in infectious disease surveil-
lance; an automatic outbreak detection algorithm is run each week to detect potential outbreaks
(Farrington et al., 1996; Noufaily et al., 2013). This algorithm seeks to identify organisms for
which the current weekly count is unusually high relative to the expected count. Such aberrant
organisms are then subjected to further scrutiny.

Each reported isolate contains the date at which the specimen (which might be a sample of
blood, urine, faeces etc.) was taken, and the date at which the report was sent to LabBase. The
time interval between the specimen date and the report date is the reporting delay. This includes
the time that is needed to analyse and classify the specimen but may also include clerical and
other delays. Data entry errors in the dates may also affect the reporting delays. The LabBase
outbreak detection system is based on dates of report; some of the issues relating to this are
discussed in Farrington et al. (1996). It is hoped that the present paper will help to inform a
move to outbreak detection based on dates of specimen.

Reporting delays are known to differ substantially between infectious pathogens (which
require different identification procedures, of varying complexity) and between reporting lab-
oratories (some of which are reference laboratories specializing in certain types of organisms).
Some specimens are sent to several laboratories in succession to undertake different typing
steps. This applies, in particular, to salmonellas, for which local laboratories undertake a partial
identification, after which isolates are sent to the national reference laboratory for full char-
acterization. Reporting delays may also vary according to season, or according to the current
workload, or over time. The aim of the present paper is to investigate these types of temporal
variation. When using surveillance data for outbreak detection purposes, time is of the essence.
Thus there is little time to check and correct the data, other than excluding data with obvi-
ous errors (such as reports entered as occurring before specimen collection). The data that are
analysed here are raw data, as used in practice for outbreak detection.

2.2. Description of the data
We report on 12 different infectious organisms, of contrasting characteristics. These organisms
were selected to provide a wide range of organism types (bacteria, viruses and protozoa, with
different transmission routes), seasonalities, median frequencies and reporting delays. Seven
salmonella serotypes were included, in view of the public health importance of salmonella
infection. The data were provided by Public Health England from their LabBase surveillance
database. All isolates with dates of report between January 1st, 2004, and December 31st, 2011,
were obtained for these 12 organisms. The date of specimen and date of report were used to
calculate the reporting delay, in days. Information on reporting laboratories was not available.
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Table 1. The 12 organisms analysed†

Organism name N N1 (%) N2 (%)

Acinetobacter baumanii 4033 6 (0.15) 5 (0.12)
Campylobacter jejuni 1984 6 (0.30) 1 (0.05)
Chlamydia sp 31127 31 (0.10) 338 (1.09)
Giardia lamblia 27243 48 (0.18) 29 (0.11)
Norovirus 56574 6 (0.01) 199 (0.35)
Salmonella abony 106 1 (0.94) 0 (0.00)
Salmonella braenderup 848 2 (0.24) 0 (0.00)
Salmonella brandenburg 177 0 (0.00) 1 (0.57)
Salmonella enteritidis PT21 3088 7 (0.23) 3 (0.10)
Salmonella infantis 1146 0 (0.00) 0 (0.00)
Salmonella senftenberg 480 1 (0.21) 1 (0.21)
Salonella typhimurium DT104 2373 5 (0.21) 6 (0.25)

†N is the total number of isolates, N1 the number with negative delays and N2
the number with delay greater than 730 days.

Table 1 lists the 12 organisms along with the total counts of isolates for each organism (N).
Also shown are the numbers and percentages of reports for which the reporting delay is allegedly
negative (N1), i.e. the date of report precedes the date of specimen, presumably owing to data
entry error. These isolates were excluded from further analysis. The earliest date of specimen
was April 14th, 1994, the reporting delay being over 10 years. Such extreme intervals are likely
also to be due to data entry error. Few isolates were found to have reporting delays greater
than 730 days (numbering N2 in Table 1): only for Chlamydia sp (where ‘sp’ denotes ‘species’)
do these account for more than 1% of reports (328 of the 338 with delays over 2 years for
Chlamydia sp having specimen dates before January 1st, 2002). As delays over 730 days are so
infrequent, and appear to relate primarily to historical data, we excluded such reports. In fact,
as will become apparent later, for several organisms there is evidence that isolates with long
delays are systematically discarded by many laboratories.

Table 2 gives some brief indications about the clinical and epidemiological characteristics
of the organisms that were selected, and Table 3 shows some descriptive statistics. For several
organisms the minimum delay is 0 days, implying that the specimen was collected and the
pathogen identified, typed and reported on the same day; however, only 10 delays among the
many tens of thousands analysed were equal to 0, so no special measures were taken to account
for these. The median delay varies from 9 to 25 days, and in all cases the mean is very much
greater than the median, implying substantial right skew. The maximum values are all very high,
indicating very long upper tails. In contrast, the 75% quantiles are in most instances of the order
of a month or less.

2.3. Analysis strategy
We decided to model delays in continuous time, thus avoiding the need to classify delays into
discrete categories which may need to differ between organisms. A further reason for using a
continuous time framework is to visualize the hazard function over the span of the data and
thus to gain a better understanding of the processes generating the delays. Finally, we decided
to eschew the reverse time proportional hazards regression model in favour of an explicit model
for the hazard, using splines to allow a flexible representation of hazards at moderately long
delays, which are a striking feature of these data. The regression model that was used is a
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Table 2. Clinical and epidemiological information on the 12 organisms

Organism name Clinical and epidemiological information

Acinetobacter
baumanii

Causes potentially serious bacteraemia, respiratory and wound
infections; transmission by direct contact or contact with contam-
inated surfaces, notably in hospitals; peaks in summer

Campylobacter
jejuni

Causes infectious intestinal disease; transmitted by consumption
of contaminated food, contact with infected animals or person to
person

Chlamydia sp The most common sexually transmitted infection; no clear seasonal-
ity

Giardia lamblia A waterborne protozoan infection causing diarrhoeal disease;
transmitted by the faecal–oral route through contact with contam-
inated water or person to person; peaks in summer

Norovirus A common cause of infectious gastroenteritis; highly infectious;
transmitted from person to person; peaks in winter

Salmonellas A common cause of food poisoning; most of the several thousand
strains are transmitted by consumption of contaminated food or
person to person; most salmonellas peak in summer

proportional hazards model providing a simple interpretation of parameters in terms of relative
hazards. Note that inferences on covariate effects are driven by the shorter delays, which are
much more numerous than longer delays. This is appropriate for our intended application to
outbreak detection, where only short delays are of interest. In practice, we would not expect
hazards to be proportional over the entire range of delays; however, the proportional hazards
model provides a useful test of the null hypothesis of equal hazards, and the validity of the
model can readily be investigated graphically.

3. Modelling reporting delays

3.1. Constructing the log-likelihood
Let the random variables S, T and D represent respectively the date of specimen, the date of
report and the reporting delay for a particular organism. Thus T � S, D = T − S and D � 0.
Suppose that the probability density function of D is f.·/, with CDF F.·/.

In specifying the likelihood, we need to take into account both left and right truncation of
the data. This truncation is a consequence of the fact that the data that we obtained relate to
reports received between January 1st, 2004, and December 31st, 2011. Since delays are no greater
than 730 days, for simplicity, we shall count days from day 1 corresponding to January 1st,
2002. Let τ1 =731, corresponding to January 1st, 2004 (the first possible value of T ), τ2 =2922,
corresponding to December 31st, 2009 (2 years before the last possible value of T ), and τ3 =3652,
corresponding to December 31st, 2011 (the last possible value of T ).

The contribution of an observation .S, T/, with D = T − S, then depends on whether S�τ1,
τ1<S�τ2 or τ2<S�τ3, via the appropriate conditioning to take into account the truncation of
the data:

(a) if S�τ1, since T �τ1, then D�τ1 −S (the likelihood contribution is f.d|s�τ1/=f.d/={1−
F.τ1 − s/});

(b) if τ1<S�τ2, then the observation is unrestricted (since no delay is greater than 730 days)
and the likelihood contribution is f.d|τ1<s�τ2/=f.d/;
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Table 3. Summary statistics for delay distributions (days)†

Organism name n Minimum Q1 Median Mean Q3 Maximum
(days) (days) (days) (days) (days) (days)

Acinetobacter baumanii 4022 1 8 14 41.32 31 721
Campylobacter jejuni 1977 2 7 14 25.81 22 726
Chlamydia sp 30758 2 9 14 34.01 24 728
Giardia lamblia 27166 0 6 9 25.43 18 729
Norovirus 56369 0 7 11 20.45 18 730
Salmonella abony 105 7 17 22 30.56 33 127
Salmonella braenderup 846 0 15 19 24.11 27 342
Salmonella brandenburg 176 8 18 25 50.0 50 631
Salmonella enteritidis PT21 3078 0 7 11 16.76 15 645
Salmonella infantis 1146 0 15 22 31.7 35 573
Salmonella senftenberg 478 4 13 18 24.15 26 420
Salmonella typhimurium DT104 2362 0 8 12 21.4 16 645

†n is the total number of isolates analysed, Q1 is the 25% quantile and Q3 the 75% quantile.

(c) if τ2<S�τ3, since T �τ3, then D�τ3 −S and the likelihood contribution is f.d|τ2<s�τ3/=
f.d/=F.τ3 − s/.

Hence, the log-likelihood given data si, ti (with di = ti − si), i=1, : : : , n, is

l=
n∑

i=1
log
{

f.di/

1−F.τ1 − si/
J.si � τ1/+f.di/J.τ1 <si � τ2/+ f.di/

F.τ2 − si/
J.τ2 <si � τ3/

}
, .2/

where J is the indicator function taking the value 1 if its argument is true and the value 0
otherwise.

The model will be parameterized in terms of the hazard λ.d/. Now

λ.d/=f.d/=S.d/

where the survivor function S.d/=1−F.d/ is

S.d/= exp

{
−
∫ d

0
λ.u/du

}
:

Thus the likelihood (2) can be rewritten in terms of the hazard function.

3.2. A semiparametric regression model for the hazard
We model the baseline hazard flexibly as a linear combination of M-splines; an M-spline of
order o is a non-negative function made up of degree o − 1 polynomials connected at knots.
Thus,

λ.d/=M.d/=
m∑

j=1
α2

j Mj.d/,

where the αjs are constants to be estimated, the squares ensuring that M.d/ � 0. The Mj.d/,
j = 1, 2, : : : , m, are M-spline basis functions of order 4 and m = o + k − 2, where o is the
order of the M-spline and k is the number of knots considered in the interval [a, b] where
a=min{di, i=1, : : : , n} and b=max{di, i=1, : : : , n} (including knots at a and b). M-splines and
the implementation of the method have been described by Joly et al. (1998) and Ghebremichael-
Weldeselassie et al. (2012), where further details may be sought.
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In this paper, we take k =15 (and hence m=17). We found that using larger values of k only
increases the computational complexity with no real improvement to the model. We constrained
the model so that λ.b/=0 by setting αm =0 (Ramsay, 1988), consistent with observations with
delay greater than 730 days being discarded; as it turned out, a lower discard time limit would
have been appropriate for several organisms.

The advantage of using M-splines is that their integrals are I -splines, denoted I.d/. Thus the
density may be written very simply as

f.d/=M.d/ exp{−I.d/}
and the CDF as

F.d/=1− exp{−I.d/}:

We now extend the model to include a linear regression on the log-hazard scale. Let X be a
vector of p covariates and θ be the corresponding vector of regression parameters. Let xi be the
covariate vector for observation i. Define

λ.di; xi/= exp.θTxi/λ.di/

= exp.θTxi/
m∑

j=1
α2

j Mj.di/:

Thus, the regression model is additive on the log-scale, the regression parameters being inter-
pretable as log-relative-hazards.

The log-likelihood (2) is readily extended with f.di; xi/ and F.di; xi/ in place of f.di/ and F.di/

respectively. Let l.α, θ; d, x/ denote the log-likelihood of the semiparametric regression model,
where α parameterizes the baseline hazard and θ the regression. Thus,

l.α, θ; d, x/=
n∑

i=1

{{
li + exp.θTxi/

m∑
j=1

α2
j Ij.τ1 − si/

}
J.si � τ1/+ li J.τ1 <si � τ2/

+
(

li − log

[
1− exp

{
− exp.θTxi/

m∑
j=1

α2
j Ij.τ2 − si/

}])
J.τ2 <si � τ3/

}
, .3/

where

li =θTxi + log

{
m∑

j=1
α2

j Mj.di/

}
− exp.θTxi/

m∑
j=1

α2
j Ij.di/:

The parameters α and θ are obtained by maximizing the penalized log-likelihood, which
involves a smoothing parameter φ that controls the curviness of M.d/:

pl.α, θ; d, x/= l.α, θ; d, x/−φ

∫ {
m∑

j=1
α2

j M ′′
j .u/

}2

du:

The smoothing parameter φ is obtained by maximizing an approximate cross-validation cri-
terion (O’Sullivan, 1988). As proposed by Joly et al. (1998) and also used by Ghebremichael-
Weldeselassie et al. (2012), φ is chosen in the absence of covariates (and thus with θ set to 0).
We found that the results are not very sensitive to the choice of φ.

We also undertook analyses of the hazard on subsets of the data, segmented in two groups:
short delays (D � 60 days) and longer delays (D > 60 days). For the short delays group we
estimated the hazard non-parametrically as previously described, using new values τ1 and τ2 in
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the likelihood corresponding to a maximum delay of 60 days rather than 730 days as previously
used. For the longer delays we fitted an exponential model, conditional on D>60, applying the
same likelihood as described previously, restricted to values di > 60, and using the conditional
exponential density f.d|D> 60/=λ exp{−λ.d −60/} and CDF F.t|D> 60/=1− exp{−λ.d −
60/}. Regression models were not fitted to these subsets of the data.

4. Data analysis

We first fitted the model without any covariates to the data for the 12 pathogens listed in
Table 1. We also did a combined analysis of the five relatively infrequent salmonellas (Salmonella
abony, Salmonella braenderup, Salmonella brandenburg, Salmonella infantis and Salmonella senf-
tenberg), since these organisms have similar delay distributions. Figs 1 and 2 show the his-
togram of the delays and the estimated hazards. For all data sets, the histograms reveal that the
delay distributions have very long upper tails, with most delays being less than 2 months. Gen-
erally, the hazards are highly peaked at low values and then drop dramatically to fluctuate
around a low positive value. There are two exceptions to this general pattern: Chlamydia sp,
for which the drop in the hazard at long delays is followed by a very large peak at about
400–500 days, and the grouped uncommon salmonellas, for which the hazard peaks at 100
days. Norovirus also exhibits a lesser secondary peak in the hazard at a delay of 150–200
days. These peaks are due to irregularities in the upper tail of the distribution, which are dis-
cussed below, possibly resulting from organisms with delays over a certain value being dis-
carded.

A roughly constant hazard at long delays suggests that, beyond a certain point, reporting is
essentially memoryless (and hence consistent with an exponential distribution). This accords
with the interpretation that long delays are either the result of random coding errors or relate
to specimens that have been lost, set aside or overlooked and are reported when they happen to
turn up, or when cleared out. The highly peaked hazard at low delays, in contrast, reflects the
laboratory identification process: there are relatively few very short delays, at which point the
hazard is low, thereafter increasing to a peak before dropping again.

To look in more detail at these two very different features of the delay distributions, we
repeated the analyses after segmenting the data in two groups: short delays (D � 60 days) and
longer delays (D > 60 days). We chose a cut-off of 60 days because reports with delays beyond
this are of little use in outbreak detection; for eight of the 12 organisms, the value of 60 days
lies beyond the 90th percentile of the delay distribution. Figs 3 and 4 show the histograms of
the delays in the two groups, along with the fitted non-parametric and exponential densities.

On this more detailed scale, it is clear that the empirical delay distribution under 60 days can be
markedly multimodal (which is a feature generally smoothed over by the spline model, notably
for the uncommon salmonellas; see Fig. 4(d), with modes typically at weekly intervals. This
is particularly apparent for Campylobacter jejuni and the salmonellas. The weekly modes may
reflect the practice of some laboratories, which may work to a weekly reporting cycle; further
enquiries suggest that laboratory reporting practice is extremely variable and idiosyncratic. The
modes may also reflect approximate coding of dates. The upper tails, in contrast, often reveal
irregularities. Most notable are reporting cliffs, i.e. sudden and permanent drops in frequency.
This is apparent for Chlamydia sp, for norovirus and for some of the less common salmonellas,
e.g. Salmonella senftenberg. These discontinuities in the delay distribution cause fluctuations
in the hazards in the upper tail, which are visible for certain organisms in Figs 1 and 2. It
appears that some laboratories do not report organisms with delays beyond a certain value: the
hazard should be zero from that value onwards. Under this interpretation, the fluctuations in
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Fig. 1. Histogram and estimated smooth hazard of the delay distribution for four organisms: (a) Acineto-
bacter baumanii ; (b) Campylobacter jejuni ; (c) Chlamydia sp; (d) Giardia lamblia
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Fig. 2. Histogram and estimated smooth hazard of the delay distribution for three organisms and the five
uncommon salmonellas combined: (a) norovirus; (b) Salmonella enteritidis PT21; (c) Salmonella typhimurium
DT104; (d) uncommon salmonellas
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Fig. 3. Histogram and fitted density for four organisms, for (a)–(d) delays of 60 days or less, with the density
obtained from the smooth hazard, and (e)–(h) delays greater than 60 days, with the exponential density: (a),
(e) Acinetobacter baumanii ; (b), (f) Campylobacter jejuni ; (c), (g) Chlamydia sp; (d), (h) Giardia lamblia
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Fig. 4. Histogram and fitted density for three organisms, and the five uncommon salmonellas combined
for (a)–(d) delays of 60 days or less, with the density obtained from the smooth hazard, and (e)–(h) delays
greater than 60 days, with the exponential density: (a), (e) norovirus; (b), (f) Salmonella enteritidis PT21; (c),
(g) Salmonella typhimurium DT104; (d), (h) uncommon salmonellas
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Fig. 5. Observed and fitted exponential cumulative frequency of delays greater than 60 days for two
organisms: (a) norovirus; (b) Salmonella enteritidis PT21

the hazard at these points is spurious. In view of these irregularities, the exponential model does
not generally provide a statistically acceptable fit to the upper tail, though it often adequately
describes the overall tendency. Plots of the empirical and expected (under the exponential model)
cumulative frequency of delays above 60 days are shown in Fig. 5, for norovirus where the
exponential model is deficient, and Salmonella enteritidis PT21, where it is adequate.

Returning to the model for all delays from 0 to 730 days, we next investigated the effect of
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covariates on the hazard by using the semiparametric regression model. We looked for linear
and quadratic effects of calendar time, using the covariates x1 and x2 =x2

1, with

x1i = .si −m/=1000

where si is the date of specimen collection for observation i and m is the mean of the si for the
organism under consideration. We looked at the effect of season with covariates x3, x4 and x5
representing indicators for summer (si in June–August), autumn (si in September–November)
and winter (si in December–February) respectively, the reference season being spring. Finally,
we looked at the effect of recent throughput for that organism, using the covariate x6 defined as

x6i = 1
100

× total number of specimens collected in the 7 days before si:

The log-likelihood ratios for fitting these covariates one at a time and jointly is shown in
Table 4. When each covariate is assessed separately at the 5% level of significance, there was
no evidence of any trend for Salmonella braenderup or Salmonella senftenberg; for Salmonella
abony, Salmonella brandenburg and Salmonella infantis there was evidence of a linear trend (on
the log-scale) but not of a quadratic trend. For Acinetobacter baumanii, Salmonella abony and
Salmonella brandenburg there was no significant season effect. For Chlamydia sp, Salmonella
abony, Salmonella infantis and Salmonella typhimurium DT104 there was little evidence that the
number of specimens of the same organism collected in the previous week had any bearing on
results. For Chlamydia sp, the full model did not converge so we replaced the covariate x6i by
an indicator taking the value 1 when the specimen count in the previous week was above its
median value. We also analysed the five less common salmonellas combined. Table 5 shows the
parameter estimates that were obtained when all covariates (including the quadratic trend) are
included.

To assess the effect on the hazard of the previous week’s specimen count, we calculated
δ = exp.θ IQR=100/ where IQR is the interquartile range of the weekly specimen count. These

Table 4. Likelihood ratio test statistics relative to the null model†

Organism name Results for the following models and numbers of parameters:

Linear Quadratic Season Previous All
trend, trend, effect, weekly count, variables,

1 2 3 1 6

Acinetobacter baumanii 45.3 113.9 1.3 7.4 138.5
Campylobacter jejuni 50.3 56.5 41.3 32.2 175.6
Chlamydia sp 81.4 1034.2 285.6 2.8‡ 1695.2
Giardia lamblia 3582.4 3604.8 165.2 141.7 3971.6
Norovirus 7307.2 7528.0 44.4 2925.6 8286.0
Salmonella abony 6.6 6.9 2.7 3.0 14.0
Salmonella braenderup 2.3 2.3 44.6 5.4 59.3
Salmonella brandenburg 25.5 26.2 26.4 4.0 61.1
Salmonella enteritidis PT21 24.0 103.9 35.5 195.0 236.9
Salmonella infantis 117.9 118.3 59.9 9.3 166.6
Salmonella senftenberg 0.2 4.6 13.9 21.1 23.2
Salmonella typhimurium DT104 0.2 47.9 38.5 0.2 96.8
5 infrequent salmonellas 111.3 113.2 153.4 27.4 284.0

†Values with p> 0:05 are in italics.
‡Dichotomous variable (see the text).
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Table 5. Parameter estimates (with standard errors in parentheses below them) and value of δ for the joint
models

Organism name Results for the following covariates:

Trend Season Recent incidence

Linear, Quadratic, Summer, Autumn, Winter, Count, (See text),
β1 β2 γ1 γ2 γ3 θ δ

Acinetobacter baumanii 0.222 0.221 −0.012 −0.029 −0.047 2.01 1.13
(0.021) (0.027) (0.046) (0.046) (0.048) (0.433)

Campylobacter jejuni 0.275 0.101 −0.125 −0.701 −0.154 1.25 1.08
(0.028) (0.029) (0.060) (0.074) (0.070) (0.23)

Chlamydia sp 0.268 −0.368 −0.085 −0.022 0.241 24.3† 1.28
(0.010) (0.011) (0.016) (0.017) (0.017) (1.51)

Giardia lamblia 0.404 0.020 −0.075 −0.001 0.012 0.738 1.19
(0.007) (0.009) (0.014) (0.014) (0.008) (0.015)

Norovirus 0.505 0.142 −0.016 −0.025 −0.122 0.066 1.16
(0.007) (0.007) (0.017) (0.014) (0.011) (0.002)

Salmonella abony 0.339 −0.055 −0.462 −0.690 −0.231 44.9 1.00
(0.129) (0.158) (0.264) (0.262) (0.343) (24.1)

Salmonella braenderup 0.086 −0.017 −0.332 −0.610 0.026 4.95 1.16
(0.043) (0.056) (0.104) (0.099) (0.119) (1.62)

Salmonella brandenburg 0.654 −0.237 1.138 0.581 2.031 14.4 1.15
(0.118) (0.143) (0.465) (0.443) (0.511) (10.3)

Salmonella enteritidis PT21 0.011 −0.238 0.015 0.059 0.057 2.08 1.24
(0.033) (0.042) (0.055) (0.054) (0.046) (0.217)

Salmonella infantis 0.402 0.010 −0.184 −0.465 0.081 1.44 1.21
(0.041) (0.052) (0.093) (0.091) (0.105) (1.48)

Salmonella senftenberg −0.111 −0.188 −0.263 −0.496 −0.073 6.22 1.04
(0.076) (0.083) (0.116) (0.105) (0.139) (1.77)

Salmonella typhimurium DT104 0.131 −0.301 −0.018 0.323 0.240 0.507 1.04
(0.036) (0.043) (0.067) (0.069) (0.073) (0.161)

5 infrequent salmonellas 0.217 −0.060 −0.349 −0.597 0.038 2.52 1.16
(0.027) (0.032) (0.063) (0.061) (0.065) (0.462)

†Dichotomous variable (see the text).

values are in Table 5. Thus, for each organism, δ is the hazard at the 75th percentile of x6i, divided
by the hazard at the 25th percentile of x6i (for Chlamydia sp, δ = exp.θ=100/). For example,
for Acinetobacter baumanii, the lower and upper quartiles of the weekly counts are 7 and 13
respectively, so δ =exp{2:01.13−7/=100}�1:13. This δ provides a more interpretable measure
than θ and permits comparisons between organisms of different frequencies. The hazard ratios
δ all lie between 1 and 1.3, indicating an increase in the hazard and hence a reduction in the
delay. However, the effect of recent reports is not as marked as that of calendar time. Note that
this analysis considers workload related to only the same organism: an alternative would have
been to consider total workload irrespective of organism type.

Fig. 6 shows the trends over time for all organisms (reparameterized to share a common
reference point); the five uncommon salmonellas were grouped. For most organisms, notably
norovirus, the hazard has increased in recent years, corresponding to a reduction in reporting
delays, though for Chlamydia sp, Salmonella typhimurium DT104 and Salmonella enteritidis
PT21 there has been a slight reduction in the hazard, and hence a lengthening of the delay.
Changes in reporting delay distributions over time may be affected by the changing efficiency of
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testing procedures, and by public health priorities. The increasing hazard (and hence decreasing
delays) for norovirus may be affected by the growing public profile that has been accorded to
winter vomiting disease.

Fig. 7 shows the seasonal effect for all organisms (with the five infrequent salmonellas
grouped). It is clear that, although there are some seasonal effects, these are much less marked
than the effects of calendar time.

We examined the proportional hazards assumption by plotting the empirical cumulative
hazards log[− log{S̃.d|x/}] against the delay d for specimen dates between 2002 and 2009 (to
avoid censoring), where S̃ denotes the empirical survivor function and x defines a subgroup of
specimen dates (the plots are not shown). When the estimated hazard ratios were substantially
different from 1, the proportional hazard assumption was generally found to be plausible, as for
example in the case of the time trends in norovirus. For relative hazards that were close to 1, the
corresponding cumulative hazards tended to be overlaid, the noisiness of the data precluding
any assessment of the proportionality assumption.

5. Final remarks

We have analysed reporting delays for a selection of organisms reported to the LabBase surveil-
lance database. Two major features emerge from this analysis. First, reporting delays can be
extremely long. Although we excluded data with reporting delays over 2 years as these were
very uncommon indeed, long delays remain a problem. The shape of the hazard suggests that,
after a certain point, reporting becomes essentially random, with some laboratories stopping
entirely to report organisms with delays beyond a certain time. Most delays, however, lie within
a relatively short window, determined by the organism identification procedure but typically
under 2 months. Delays in this range are relevant to outbreak detection: data with longer
delays are essentially irrelevant for this purpose. The second feature to emerge is that temporal
effects do influence the delay distribution. Most important among these are long-term trends
over calendar time, which correspond to a gradual reduction or lengthening of the delays. The
practical consequence of this observation is that the delay distribution cannot be assumed to be
stationary over long time spans.

The modelling framework that we have used is based on a semiparametric regression model
for the hazard. This enabled us to visualize the hazard in continuous time, and to study the
effect of covariates in a natural fashion, with a simple relative hazard interpretation. The major
disadvantage of the approach that we have taken is that it is more cumbersome than the gen-
eralized linear model method of Brookmeyer and Liao (1990). Estimates of the hazard at long
delays are sensitive to irregularities in the data, notably those resulting from discontinuities in
reporting. Such sensitivities in the hazard, though often spurious, can help to focus attention
on important aspects of the data.

Our emphasis throughout this paper has been to describe and characterize the delay distribu-
tion in its entirety. In particular, we have included long delays, which are often dropped from the
analysis of surveillance data. Such an omission is arguably perverse, since a better understanding
of these long delays may perhaps contribute to improving laboratory reporting practice, and
hence to reducing both the extremes and the means of the delay distributions. For detection of
outbreaks, reporting delays constitute a nuisance factor that may delay the identification of an
outbreak, or blur its magnitude. Isolates with long delays are of little use in outbreak detection,
since, by the time that they are reported, opportunities for control of the outbreak may have
passed, though of course this in turn depends on the duration of the outbreak. More emphasis
should therefore be placed on eliminating extreme delays.
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