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Birds represent a diverse and evolutionarily successful lineage, occupying a wide range

of niches throughout the world. Like all vertebrates, avians harbor diverse communities

of microorganisms within their guts, which collectively fulfill crucial roles in providing the

host with nutrition and protection from pathogens. Across the field of avian microbiology

knowledge is extremely uneven, with several species accounting for an overwhelming

majority of all microbiological investigations. These include agriculturally important birds,

such as chickens and turkeys, as well as birds of evolutionary or conservation interest.

In our previous study we attempted the first meta-analysis of the avian gut microbiota,

using 16S rRNA gene sequences obtained from a range of publicly available data sets.

We have now extended our analysis to explore the microbiology of several key species in

detail, to consider the avian microbiota within the context of what is known about other

vertebrates, and to identify key areas of interest in avian microbiology for future study.
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Introduction

Birds represent a diverse and evolutionarily successful lineage, with over 10,000 extant species (Gill
and Donsker, 2015) ranging from the diminutive bee hummingbird (weighing in at a mere 2 g) to
the towering ostrich (>100 kg and>2m tall). Such extreme morphological diversity is mirrored by
the wide range of lifestyles adopted by avians, with the capacity of most species to fly facilitating the
colonization of niches in ecosystems throughout the world. Bird diets vary widely, from fruit, seeds
and foliage through to carrion and the capture of live animals. In this review article, we consider
some of the challenges imposed on birds by their diet and lifestyle, and explore the potential
relevance of gut microorganisms in assisting them to deal effectively with such constraints.

The gastrointestinal (GI) tracts of birds—like those of other vertebrate hosts—harbor a
community of microbes, with densities as high as 1011 CFU/g in the hindgut (Barnes, 1972). While
there is extensive evidence that microbial colonization of the GI tract brings benefits to host birds
(Jin et al., 1998; Torok et al., 2008, 2011; Angelakis and Raoult, 2010; Zhang et al., 2011; Cao
et al., 2012; Stanley et al., 2012), there are also pathways through which the normal colonization
of microbes can be of detriment (Ford and Coates, 1971; Potti et al., 2002; Cao et al., 2012; Singh
et al., 2013). Our knowledge of the avian microbiota has arguably lagged behind that of many other
vertebrates, most notably humans (Turnbaugh et al., 2007) and mice (Benson et al., 2010; McKnite
et al., 2011; Campbell et al., 2012; Hildebrand et al., 2013) but also othermammals, insects, and even
fish (Sullam et al., 2012; Engel and Moran, 2013). In recent years, however, the data generated in
avian microbiology have markedly increased (Supplemental Table S1, Supplemental Figure S1).
It is now evident that the gut microbiota influences the health and physiology of vertebrate hosts,
with recognized roles for the vertebrate microbiota in nutrition, gut development and regulation of
host physiology.
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Technological advances, most notably the advent of
next-generation sequencing platforms, such as 454 GS FLX
pyrosequencing and the Illumina HiSeq/MiSeq, have reduced
the costs of sequencing by orders of magnitude, enabling
unprecedented insights into both the diversity and function of
microbes within the vertebrate GI tract. Large-scale sequencing
of 16S rRNA genes from GI bacteria and archaea has been
particularly profitable, with recent efforts to infer functional
characteristics from 16S rRNA data also showing real promise
(Zaneveld et al., 2010; Muegge et al., 2011; Langille et al.,
2013). Our recent article (Waite and Taylor, 2014) represented
the first attempt to unify the current data pertaining to avian
microbiology into a single meta-analysis and to reveal the
influence of environment and lifestyle on the avian microbiota.

The revolution in 16S rRNA gene sequencing has seen earlier
studies of microbial physiology within birds complemented by
investigations into the diversity and phylogeny of avian gut
microbes. Research foci have recently included the variation in
microbial community structure along the GI tract, the effect
of diet and age, and for some hosts the influence of factors
such as captivity, antibiotic treatment, or pathogen colonization
(Table 1) (Waite and Taylor, 2014). While commercially

TABLE 1 | Summary of studies investigating the impact of biological and

non-biological factors on the avian microbiota.

Factor Host Study

Variation along the GI

tract

Chicken Bjerrum et al., 2006

Gong et al., 2007

Turkey Torok et al., 2008

Hoatzin Godoy-Vitorino et al., 2012

Kakapo Waite et al., 2012

Host age Chicken Van Der Wielen et al., 2002

Lu et al., 2003

Scupham, 2007

Hoatzin Godoy-Vitorino et al., 2010

Kittiwake Van Dongen et al., 2013

Dietary and probiotic

manipulation

Chicken Jin et al., 1998

Rubio et al., 1998

Blanco et al., 2006

Janczyk et al., 2009

Hammons et al., 2010

Torok et al., 2011

Stanley et al., 2012

Dewar et al., 2014b

Captivity and antibiotic

treatment

Capercaillie Wienemann et al., 2011

Kakapo Waite et al., 2014

Turkey Scupham et al., 2008

Parrots Xenoulis et al., 2010

Penguin Singh et al., 2013

Note that many of these studies investigate multiple facets of the microbiota so may

overlap with other categories.

important bird species such as broiler chickens and turkeys
have long received attention from microbiologists, other host
avians such as the folivorous hoatzin, carnivorous penguins,
scavenging vultures, and critically endangered kakapo have also
come under recent scrutiny (Figure 1). Here we re-examine
existing knowledge of the avian microbiota, particularly within
the context of the wider vertebrate microbiota, and identify the
key outstanding questions in avian microbiology.

Different Lifestyles, Different Challenges

The plethora of ecological strategies that have been adopted by
avians means that, collectively, birds have to cope with a wide
range of gastronomic challenges. This is reflected in the large
variation in organ morphology among different bird species,
although despite these often substantial differences the only avian
lineage showing major differences from the “standard” gut layout
is that of the psittacines (parrots), which lack ceca (Stevens
and Hume, 1998). The ceca are a pair of finger-like appendages
protruding from the junction of the small and large intestine
which facilitate nitrogen cycling, carbohydrate fermentation and
aid water retention (McNab, 1973; Mead, 1989; Józefiak et al.,
2004). The nutritional characteristics of different bird diets vary
greatly, while toxins of both plant and carrion origin may also be
encountered by certain species. While inter-individual variation
exists within the avian microbiome, this effect is overshadowed
by factors such as diet or host age. As shown for other vertebrates
(Ley et al., 2008), one would expect the GI microbiota of avians

KEY CONCEPT 1 | Microbiota vs. microbiome

Although sometimes used synonymously, these terms are generally meant

to describe subtly different things. Microbiota refers to the community

of microorganisms within a given environment (e.g., the avian gut), while

microbiome describes the collective genomes of all these microbial species.

to reflect their particular lifestyle. Here, we consider some of the
better-studied avian hosts and their diets and seek to illustrate
the enabling role played by gut microbes within these diverse
species.

The hoatzin (Opisthocomus hoazin; Figure 1) of South
America is something of a biological anomaly. Unlike most birds,
it feeds mostly on leaves and—uniquely among avians—carries
out foregut fermentation in an enlarged crop (Grajal et al., 1989),
making its digestive strategy more like that of a ruminant than
a bird. Indeed, the hoatzin foregut microbiota—dominated by
members of the Bacteroidetes, Firmicutes, and Proteobacteria—is
more similar to that of a cow’s rumen than it is to its’ own hindgut
microbiota, demonstrating the importance of organ function
in determining microbial community composition (Godoy-
Vitorino et al., 2012). The hoatzin crop and cow rumen thus
represent an excellent example of evolutionary convergence: a
diet dominated by plant fibers requires a fermentation chamber
of sufficient volume to retain this refractory material until its
microbial breakdown into host-assimilable products such as
short-chain fatty acids. Mechanical considerations predict that
such an enlarged crop would preclude flying, and yet the hoatzin
is capable of flight. This may be due to the highly selective
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FIGURE 1 | A selection of avians that have been studied in a

microbiology context. Chicken (Gallus gallus domesticus), (A); turkey

(Meleagris gallopavo), (B); hoatzin (Opisthocomus hoazin), (C); little penguin

(Eudyptula minor), (D); turkey vulture (Cathartes aura), (E); and the kakapo

(Strigops habroptilus), (F). All images are used with the authors’ permission,

as detailed in the Acknowledgments.

diet that flying affords, allowing the hoatzin to specifically target
higher quality foods with consequent rapid fermentation and
optimal digestive efficiency (Grajal et al., 1989). Crop bacteria
may also perform another important role for the hoatzin, by
degrading toxic polyphenolic compounds which are present in
many of the consumed plant species (Domínguez-Bello et al.,
1994; Garcia-Amado et al., 2003, 2007). The extent to which the
hoatzin relies on behavioral (avoidance) strategies, or its own
crop microbiota, to enable its folivorous diet remains uncertain
(Jones et al., 2000).

Another ecological niche which exposes the bird to toxic
components is that exploited by vultures. Vultures, such as
the turkey vulture (Cathartes aura; Figure 1) and black vulture
(Coragyps atratus), consume carrion, feeding upon decaying
animal carcasses that are in some cases days old. These habits
expose vultures to a range of potential pathogens (Marin
et al., 2014; Sulzner et al., 2014) as well as bacterial toxins,
such as botulinum, produced during tissue breakdown. This
is enough to deter most potential consumers, yet vultures are
seemingly inured to these compounds. The faces of turkey and
black vultures, which are often inserted inside decaying body
cavities of vertebrate prey species, contain a highly diverse,
yet substantially overlapping microbiota consisting primarily of
Actinobacteria, Firmicutes (Bacilli and Clostridia), as well as
Beta- and Gammaproteobacteria. The similarity in microbiota
between the two vulture species likely reflects the common
diets of these co-occurring scavengers (Roggenbuck et al., 2014).
Corresponding hindgut samples yielded significantly lower
bacterial diversities (though with some overlapping phylotypes),
indicating that most diet-derived bacteria do not survive the
passage from the mouth to the gut. The hindgut microbiota
of both vulture species is dominated by members of only two
bacterial classes, Clostridia and Fusobacteria (Roggenbuck et al.,

2014). It is surmised that these two taxa outcompete other
bacteria in the vulture hindgut, while the bird can tolerate
bacterial toxins in order to exploit their degradation of carrion
tissues.

The kakapo (Strigops habroptilus; Figure 1) of New Zealand
is the world’s heaviest parrot and only flightless parrot. It is
also the only parrot that performs a mating ritual known as
lek breeding, through which males compete for mates through
a characteristic booming call. It is, unfortunately, also one of
the world’s rarest species, with only 126 individuals confined
to three predator-free islands off New Zealand’s coast. Like the
aforementioned hoatzin, the kakapo is herbivorous, and it has
long been speculated that it also performs foregut fermentation
(Morton, 1978). However, the two bird species are markedly
different when it comes to feeding strategy. The kakapo typically
pulls foliage through its beak, sucking out nutrients while leaving
the more recalcitrant, fibrous material behind in characteristic
“chews” (Oliver, 1955; Horrocks et al., 2008). The requirement
for an extensive microbial community to ferment plant material
is therefore dramatically reduced, as reflected in recent molecular
studies which revealed the kakapo microbiome to typically be
dominated (up to ∼95%) by only two bacterial phylotypes
belonging to the genera Escherichia and Streptococcus (Waite
et al., 2013, 2014).

The study of microbial diversity and function in avians is
a burgeoning field, with recent focus not only on the birds
mentioned above, but also others including penguins (Figure 1)
and commercially important species such as chickens and turkeys
(Figure 1). Unsurprisingly, commercially raised fowl have long
been the subject of microbiological investigation, but their
microbiology has been reviewed elsewhere (Yeoman et al., 2012;
Wei et al., 2013; Oakley et al., 2014; Cox and Dalloul, 2015;
Deusch et al., 2015) and is not specifically covered here.

Frontiers in Microbiology | www.frontiersin.org 3 July 2015 | Volume 6 | Article 673

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Waite and Taylor Avian gut microbiota

What do We Know about the Avian Gut
Microbiota?

Much like for other vertebrate hosts, the GI microbiota of
avians is dominated by members of the Firmicutes, with
Actinobacteria, Bacteroidetes, and Proteobacteria also commonly
observed (Figure 2). This broad generalization holds across both
herbivores and carnivores, although the relative proportions of
these groups can vary substantially. Despite these superficial
similarities, the microbiota of avians is somewhat distinct
from that of other branches of the tree of life. Hird et al.
(2014) compared the microbiota of numerous avians to a
larger sequence data set (Ley et al., 2008) and showed that
the gut microbiota of avians clustered apart from that of
mammals and insects. Performing this analysis with our own
aggregation of data also demonstrated this finding (Figure 3,
Supplemental Figures S2, S3), with avian samples showing
clustering apart from samples obtained from humans and other
mammals, insects and fish (ANOSIM, 0.49 < R < 0.72)
but surprisingly weak structuring apart from samples obtained
from reptiles (ANOSIM R = 0.12) (p < 0.001 for all
comparisons). Among avians, the richness of the microbiota can
vary considerably, ranging from dominance by only a handful
of phylotypes, as in the case of the kakapo, to a highly diverse
community comprising 40 bacterial phyla, as observed for the
hoatzin (Godoy-Vitorino et al., 2010) (the hoatzin data were
not included in Figure 2 due to differences in the methodology
by which they were obtained (PhyloChip microarray vs. next-
generation sequencing)). For a more detailed description of
the microbiota data, including diversity comparisons (with an

average of 5.5 bacterial phyla per avian sample), the reader is
referred to our recent meta-analysis paper (Waite and Taylor,
2014). The functional role of microbes in the hindgut of birds
has historically been an area of interest (Bolton, 1965; Pritchard,
1972; Józefiak et al., 2004), with microbial production of lactate,
acetate and other short-chain fatty acids strongly implicated in
the health of birds and other vertebrates (Van Der Wielen et al.,
2000; Hosseini et al., 2011; Fukuda et al., 2012). More recently,
the focus has moved to areas of greater interest in agriculture,
predominantly the roles of microbial strains or communities in
preventing pathogen colonization and for boosting weight gain
(Watkins and Miller, 1983; Jin et al., 1998; Cutler et al., 2005;
Torok et al., 2008; Zhang et al., 2011, 2014; Cao et al., 2012; Chen
et al., 2013).

Although host genetics clearly influence the human gut
microbiota (Goodrich et al., 2014) and evidence exists for the

KEY CONCEPT 2 | Host genetics

The influence of host genetics on the gut microbiota is an intriguing, and

complicated, facet of microbiology. Host genetics have a measurable, albeit

subtle, influence on the gut microbiota at both inter-species and within-

population resolutions, likely resulting from physiological differences between

the guts and immunological profiles of individuals. However, these effects are

often overshadowed by other environmental factors, with cohabitation and local

diet patterns providing confounding influences.

importance of host-specific factors as determinants of the avian
gut microbiota (Zhu et al., 2002; Banks et al., 2009; Benskin et al.,
2010; Grond et al., 2014), the scale at which this effect is observed
is small compared to that of other factors such as diet (Lozupone
et al., 2013; Carmody et al., 2015). A recent analysis by Hird et al.

FIGURE 2 | Relative proportions of bacterial phylotypes

detected in the avian gut microbiota. Data were processed as

per Waite and Taylor (2014). Figure displays the number of

genus-level phylotypes detected in each sample, not the relative

abundance of these phylotypes. Where studies analyzed multiple

individuals, results were averaged across the study with the

number of individuals in brackets. Data sources are as detailed in

Supplemental Table S1.
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FIGURE 3 | Non-metric multidimensional scaling plots of the

avian gut microbiota compared to that of other animal lineages.

Data from next-generation amplicon sequencing sources were used.

Figure displays NMDS based on unweighted unifrac distance (left,

stress = 0.18, R2 = 0.87) and Jaccard dissimilarity index of

genus-level phylotypes (right, stress = 0.19, R2 = 0.91). Unweighted

UniFrac distances were inferred through closed-reference OTU picking

using QIIME 1.80, and phylotypes were generated using the

assign_taxonomy.py script with the Greengenes database (May 2013

release) (Caporaso et al., 2010). Three dimensional representations of

the data are provided in Supplemental Figures S2, S3. All data

sources are provided in Supplemental Table S2.

(2014) addressed the influence of environmental and host factors
on shaping the avian microbiota by comparing fecal microbiota
profiles of the cowbird (an avian brood parasite) to those of birds
known to host cowbird young. The data obtained showed clearly
that location, age and diet all play greater roles in shaping the gut
microbiota of cowbirds than the taxonomic identity of the birds
studied. A similar result was reported for members of the Paridae
in an earlier study (Lucas and Heeb, 2005) and has also been
shown for chickens raised in captivity (Stanley et al., 2013).While
gut microbes convey benefits to their hosts in a variety of ways
(Pritchard, 1972; Domínguez-Bello et al., 1993; Preest et al., 2003;
Shawkey et al., 2007; Burtt et al., 2011), the findings of Hird and
colleagues suggest that the microbiota is more a product of the
environment than a trait of the bird itself. Our own aggregation
of data support this finding, with occurrence of bacterial phyla
(Actinobacteria, Fusobacteria) and classes (Alpha-, Beta-, Delta-,
and Epsilonproteobacteria) varying between different studies of
the same host organism (Figure 2, chicken). Our meta-analysis
of amplicon sequence data also revealed study origin to have

KEY CONCEPT 3 | Amplicon sequencing

A generic term to describe the PCR amplification, and subsequent sequencing

by one of the “next-generation” sequencing technologies, of genes from

extracted microbial DNA. Amplicon sequencing most commonly utilizes 16S

ribosomal RNA (rRNA) genes, as these are conserved in all bacteria and archaea

(eukaryotes contain the homologous 18S rRNA gene). The analysis of rRNA

genes via sequencing has been a cornerstone of microbial ecology for more

than two decades, while functional genes (e.g., encoding for specific enzymes)

can also be targeted with the amplicon sequencing approach.

greater explanatory power than biological variables, such as diet,
when investigating the avian microbiota (Waite and Taylor,
2014). The interplay between environmental factors and host

genetics in shaping the microbiome has been reported for other
vertebrates (Benson et al., 2010; Campbell et al., 2012; Stanley
et al., 2013), although care must be taken when dissecting genetic
effects and the role of maternal inoculation of the microbiota
(Spor et al., 2011).

An interesting aspect of avian microbiology that has only
recently come to light is the potential role of Fusobacteria in the
guts of carnivorous birds. While members of the Fusobacteria
are often studied in the context of pathogenicity, recent analyses
of the vulture microbiota have revealed abundant populations
of Fusobacteria that appear to be beneficial, or at the very
least harmless, to the host bird (Roggenbuck et al., 2014).
While Firmicutes, Bacteroidetes and Proteobacteria are the most
consistently observed bacterial phyla across the animal gut
microbiota, a rich community of Fusobacteria has frequently
been reported in the guts of carnivorous and omnivorous
avians. These include close relatives of the human pathogens
Fusobacterium nucleatum and F. necrophorum, while the avian
pathogen Streptobacillus moniliformis (also a member of the
phylum Fusobacteria) was detected in some penguin samples.
Up to one third of the vulture gut microbiota, and over half
of the penguin microbiota, can consist of Fusobacteria (Dewar
et al., 2013, 2014a; Roggenbuck et al., 2014; Vela et al., 2014),
with F. mortiferum predominating among Fusobacteria within
the vulture microbiota. Fusobacteria are also observed at a lower
abundance in other carnivorous seabirds and the omnivorous
bustard (Dewar et al., 2014b; Shabbir et al., 2014), and have been
reported in the guts of some non-mammalian carnivores (Keenan
et al., 2013; Nelson et al., 2013), although a consistent pattern has
not been observed in mammals (Ley et al., 2008; Swanson et al.,
2011; Nelson et al., 2013). While the consistent appearance of
Fusobacteria in the avian microbiome is an interesting avenue for
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further study, the potential role of this phylum in avian nutrition
requires further analysis, as does the occurrence of Fusobacteria
in captive avians (Figure 2).

A Look to the Future

The gut microbiology of humans and other vertebrates has
exploded as a discipline over the past decade, driven by
technological advances and an increased appreciation of the
vital roles played by the gut microbiome in animal health.
Although study of the avian microbiota has arguably lagged
behind that of some other host organisms, this gap is closing
rapidly. As discussed within these pages, certain key taxa—
such as the chicken, turkey, hoatzin, and kakapo—have received
considerable research attention from microbiologists, and it is to
be hoped that our current knowledge of the avian microbiota
will soon be extended to encompass many of the “missing”
branches of the bird tree of life (Figure 4). Expanding the
knowledge on any avian lineage will be of value in resolving
high-level patterns of the influence of diet and lifestyle on the
gut microbiota. A lineage that we feel would be of great interest
is the hummingbird, which possesses the fastest metabolism
among homeothermic animals (Suarez, 1992) and relies on a
diet primarily of nectar supplemented with arthropods (Brice,
1992; Yanega and Rhubega, 2004; Powers et al., 2010). As an
adaptation to the extreme levels of sugar ingested, hummingbirds
possess extremely potent sucrase (Martínez Del Rio, 1990) and
are able to survive in a constant state of hyperglycemia (Beuchat
and Chong, 1998). Although some study of bacterial activity in
hummingbirds has been performed (Preest et al., 2003), deeper
analysis of this community would greatly aid our understanding
of not only gut bacteria in general but specifically life in an
osmotically challenging environment.

Despite containing the same core phyla as the mammalian
gut microbiota, the “typical” microbiota of avians is clearly
distinct from that of mammals and insects (Hird et al., 2014)
and analysis of full-length 16S rRNA genes often yields sequences
that diverge heavily from previously obtained bacterial sequences
(Zhu et al., 2002; Bjerrum et al., 2006; Godoy-Vitorino et al., 2008,
2010). The pace at which 16S rRNA gene information has grown
has left many other aspects of microbial genomics and ecology
behind. The content of the publicly available 16S rRNA gene
sequences in the Greengenes database outnumbers prokaryotic
type strains by over 40:1, and prokaryotic genomes by about
20:1 (Kyrpides et al., 2014). While some inferences about the
functional roles of microbes associated with the avian GI tract
can be made using predictive software such as PICRUSt (Langille
et al., 2013), much of the actual function of these communities
remains unclear, especially when considering the significant
evolutionary specialization which gut-associated bacteria often
undergo (Comstock and Coyne, 2003; Xu et al., 2003; Meinl
et al., 2009; Frese et al., 2011; Foley et al., 2013). The suite
of meta-“omics” techniques offers partial solutions to this issue
obviating, or in some cases aiding, the need for cultivation
and potentially providing new insights into the community-
level function and ecological interactions in the avian gut. While
not related to the study of avians, metagenomics has previously

been applied to tailor cultivation conditions in order to isolate
previous uncultivated bacteria (Tyson et al., 2004, 2005). One can
easily envisage the complementary application of metagenomics,
metatranscriptomics and metaproteomics in order to elucidate
the functional potential, gene expression and protein production,
respectively, of the microbial community associated with an
avian host. Such integrated approaches have been applied to
gut environments to some extent (Pérez-Cobas et al., 2013;
Kato et al., 2014) and, when used in combination with recently
acquired bird genome data (Jarvis et al., 2014), would offer
unprecedented insights into avian-microbe interactions.

Our own studies of the kakapomicrobiome (Waite et al., 2013,
2014) have identified an area of potential wider research and
applied interest, namely the use of microbial ecology approaches
to aid in avian conservation. To use the kakapo as a case
in point, characterization of the indigenous microbiota should
facilitate the detection of microbial dysbiosis and, potentially, the
identification of invading pathogenic species, while longitudinal
studies have allowed the effects of human intervention and
intrinsic host characteristics on the gut microbiota to be teased
apart (Waite et al., 2014). Such an approach should be equally
beneficial for the conservation of any intensively managed,
endangered bird.

Studying the impact of environmental factors on the
avian gut microbiota highlights another area in which avian
microbiology is lacking, namely the existence of a global,
unified initiative using a common methodology to resolve
large-scale patterns in microbial distribution and function.
The recently completed Human Microbiome Project (Human
Microbiome Project Consortium, 2012; Human Microbiome
Project, 2014) represented a landmark in microbiology, bringing
together research from a number of institutions and research
groups to tackle a series of overarching questions. Following
in the footsteps of the HMP, a range of projects have
been enacted to address areas of ecological and medical
microbiology in a standardized manner. The Earth Microbiome
Project (Gilbert et al., 2014), Hospital Microbiome Project
(http://hospitalmicrobiome.com/) and 1000 Springs project
(http://www.1000springs.org.nz/) all aim to study large sources
of data using a common laboratory and bioinformatics
approach in order to reduce methodological artifacts, which
are known to contribute large sources of bias to studies. Other
studies have begun to combine genome-wide and microbiome-
wide association studies to comprehensively identify the
genetic pathways through which vertebrate hosts influence the
microbiota (Benson, 2014).

In summary, while the avian microbiota is an area of
microbiology of great economic importance and scientific
interest, the field has arguably not advanced as quickly as
some other areas of microbiology. While trends seen in avian
microbiology do appear to reflect those seen in other vertebrates
there are key areas of the avianmicrobiota that distinguish it from
that of mammals and reptiles. The last decade has seen a massive
leap forward in the technology available to microbiologists and
while the avian microbiota has lagged behind other vertebrates,
interest appears to be growing in this area of microbiology and
many novel avenues of study exist within avian microbiology.
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FIGURE 4 | Coverage of microbiological representation across avian

lineages. Two studies have been performed on avian orders with no

representation in the displayed phylogeny (emu, Bennett et al., 2013;

cormorant, Tausova et al., 2012). The microbiota of several species has been

studied using molecular techniques other than sequence analysis (Lucas and

Heeb, 2005; Ruiz-Rodríguez et al., 2009). Pale green indicates data that are

available on online repositories, but currently unpublished. Figure modified

from Jarvis et al. (2014); reprinted with permission from AAAS and the author.
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Unweighted UniFrac distances were inferred through closed-reference OTU

picking using QIIME 1.80 (Caporaso et al., 2010) against the Greengenes 16S

rRNA gene database (May 2013 release). Plot was visualized using the “rgl”

package in R.

Supplemental Figure S3 | Three dimensional non-metric multidimensional

scaling plot of the binary Jaccard distances of genus-level phylotypes

between samples. Phylotypes were constructed following classification using

the assign_taxonomy.py script in QIIME 1.80 (Caporaso et al., 2010) against the

Greengenes 16S rRNA gene database (May 2013 release). Plot was visualized

using the “rgl” package in R.

Supplemental Table S1 | Summary of published sequence data obtained

from molecular analysis of avian samples. Asterisk (∗) denotes a study that

analysed the bacterial communities associated with multiple species of birds.
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conditions (e.g. did not select for antibiotic-resistant bacterial strains). Where

publication details associated with a data set could not be obtained the NCBI
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microbiota analysis. All data were quality filtered as described in Waite and
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