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Fish quality has a direct impact on market price and its accurate assessment and prediction are of main impor-
tance to set prices, increase competitiveness, resolve conflicts of interest and prevent food wastage due to con-
servative product shelf-life estimations. In this work we present a general methodology to derive predictive
models of fish freshness under different storage conditions.
The approachmakes use of the theory of optimal experimental design, to maximize data information and in this
way reduce the number of experiments. The resulting growthmodel for specific spoilagemicroorganisms in hake
(Merluccius merluccius) is sufficiently informative to estimate quality sensory indexes under time-varying
temperature profiles. In addition it incorporates quantitative information of the uncertainty induced by fish
variability.
Themodel has been employed to test the effect of factors such asfishing gear or evisceration, on fish spoilage and
therefore fish quality. Results show no significant differences in terms of microbial growth between hake fished
by long-line or bottom-set nets, within the implicit uncertainty of the model. Similar conclusions can be drawn
for gutted and un-gutted hake along the experiment horizon.
In addition, whenever there is the possibility to carry out the necessary experiments, this approach is sufficiently
general to be used in other fish species and under different stress variables.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Food and Agricultural Organization of the United Nations (FAO)
has estimated that between 30–50% of all fish catches are lost in differ-
ent links of the food supply chain (Gustavsson et al., 2011), being funda-
mental the development of new tools to monitor and control fish
quality (Dalgaard, 2002; Ólafsdóttir et al., 1997). One of themain factors
affecting this attribute is the so-called Specific Spoilage Organisms
(SSOs), a fraction of the total fish microbiota that degrades the fish
into biochemical components, usually perceived by the consumer with
loss of freshness.

Fish quality may be affected by many factors related to the environ-
ment (e.g., catching ground and season), fishing practices, storage condi-
tions or handling, including bleeding and gutting procedures (Dowlati
et al., 2013). Consequently, its dynamics may present a significant vari-
ability fromcatch to catch, but also fromfish tofish inside the samebatch.

In the sequel we will adopt the interpretation of variability and
uncertainty given in Shorten et al. (2006). In this way we will refer to
. This is an open access article under
variability to describe the inherent differences between individuals
(fish composition, bacterial load or bacterial composition, etc.). Uncer-
tainty, on the other hand, would be related to the error associated to a
measurement (i.e., errors implicit in the analytical method), as well as
the uncertainty induced by such error on the estimation of a state.
While such distinction is clear in terms of the states (observables) of
the system, its effect on parameter estimation is unclear. This is why
when we refer to parameter uncertainty it should be understood as
the uncertainty due to the analytical method (measurement) and the
characteristic variability of the system.

Statistical models, such as the ones developed for haddock
(Melanogrammus aeglefinus) in Ólafsdóttir et al. (2006) and for seabass
(Dicentrarchus labrax) in Carrascosa et al. (2014), have been employed to
detect factors affectingmicrobiota and hence shelf-life uncertainty. These
models are essentially static correlations that link a pre-determined set of
experimental conditions, including a pre-established range of storage
temperatures and times, with fish quality or shelf-life. Unfortunately,
the own structure of these models prevents its use outside the set of
experimental conditions on which they were built. This in turn, limits
their application in real scenarios where quality or shelf-life must be esti-
mated under fluctuations in temperature, or in other relevant stress
variables.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Alternatively, food researchers have been exploring in the last two
decades the use of predictive (dynamic) models of microbial spoilage
to estimate shelf-life under fluctuating temperatures, which is one of
themost important stress variables in bacterial growth. Some examples
are the models included in the software developed by Dalgaard et al.
(2002), or the works by Koutsoumanis (2001) on gilt-head seabream
(Sparus aurata), Taoukis et al. (1999) on bogue (Boops boops) and Nuin
et al. (2008) on fresh turbot (Psettamaxima). Concerning their application
for quality assessment, such models are typically employed only to esti-
mate fish shelf-life in terms of rejection time; the moment where the
concentration of SSOs reaches the value that corresponds to sensory re-
jection. From the authors' best knowledge, only the work by Giuffrida
et al. (2013) exploits the potential of dynamic models to estimate
different levels of fish freshness, althoughwithout any analysis of the un-
certainty associated to the model parameters and thus to model
predictions.

In this work, we propose a methodology, which includes the design
of optimal experiments for parameter estimation, to develop models to
predict fish quality and its uncertainty under non-isothermal storage
conditions and test its validity in hake (Merluccius merluccius). In keep-
ing with this objective, a dynamic model to describe the growth of
representative SSOs in hake is proposed. In order to estimate model
parameters, we present an optimal experimental protocol which takes
advantage of non-isothermal conditions (varying time–temperature
profiles) to make data more informative thus reducing the number
of experiments, as well as confidence intervals of model parameters
(i.e., parameter uncertainty).

Note that previous studies made use of isothermal experiments to
estimate model parameters (Koutsoumanis, 2001; Nuin et al., 2008;
Taoukis et al., 1999), what may result into parameter estimates unable
to reproduce non-isothermal conditions (Van Boekel, 1996; Dolan,
2003; Valdramidis et al., 2008). The resultingmodel,which incorporates
fish-to-fish variability (via parameter uncertainty), will be employed to
calculate the so-called core predictions; a standard method in systems
biology to test predictive capabilities of complex models subject to
uncertainty (Brännmark et al., 2010). The capability of the model to
do reliable predictions under different temperature profiles,will be test-
ed under an arbitrary storage temperature profile, different from those
employed for parameter estimation.

Model building has been based on data from hake captured by
bottom-set nets and eviscerated, whereas for validation purposes a num-
ber of storage experiments were programmed. These included different
storage temperature profiles, as well as different fish handling protocols
(e.g., evisceration) and fishing techniques to test whether they may
have a significant influence on microbial growth, and therefore on final
fish quality, as reported in literature (e.g., Huss, 1995; Dowlati et al.,
2013).

Previous studies have reported a significant influence of the catching
method onmicrobial spoilage (or shelf-life) of fish (Özyurt et al., 2007).
Colonization dynamics by SSOs can be traced back to stress physiology
(e.g., Matos et al., 2010) or physical damage of fish caused by the fishing
gear (e.g., Rotabakk et al., 2011). As a result fish muscle may become
softer earlier, enhancing bacterial colonization by SSOs. In order to eval-
uate the effect of fishing gear on microbial spoilage a validation experi-
ment is performed that compares hake caught by bottom-set nets and
long-line during storage.

Concerning handling protocols, some authors suggest that spoilage
of ungutted hake may follow a different trend (Baixas-Nogueras et al.,
2009). In order to provide an answer for this question an experiment
was performed that included gutted and ungutted hake stored at the
same temperature conditions.

Finally a Quality Sensory Method (QSM) based on freshness ratings
established for whitefish by the Council Regulation (EC) No 2406/96
(1996) is related to core predictions allowing us to forecast hake quality
and its variability under different storage conditions of fluctuating
temperature.
2. Materials and methods

2.1. Experimental methods

2.1.1. Fish handling and storage conditions
Fresh guttedmedium-sized hake (Merlucciusmerluccius) (400–500 g)

caught in Galician waters either by bottom-set or long-line were pur-
chased from the retail market in Vigo (Spain) during the first 24 h after
slaughtering. Hakewas transferred to the laboratorywithin 30min in ex-
panded polysterene boxes with ice. Once in the lab, three-four specimen
were analyzed to assess initial quality. Ice was completely removed and
boxes containing hake were sealed and stored under refrigeration condi-
tions during 5–12 days either on an incubator (Model EC-570, Radiber
S.A.) for experiments at T ≥ 5 °C, or on a KIDE universal cold room for
experiments at T b 5 °C. Four experiments were performed using gutted
hake captured by bottom-set nets. In these experiments, the refrigeration
temperature was fixed to 1 °C, 3 °C, 5 °C and 7 °C. Samples from experi-
ment at 3 °C were used for validation and the remaining were employed
in the parameter estimation procedure. Also, hake captured by long-line
gear was stored at 3 °C and used for another validation experiment. A
last validation experiment was carried out by using ungutted and gutted
hake stored at 2.5 °C. A thermocouple, insertedwithin the abdominal cav-
ity of onefish, recorded the temperature every 5min throughout the stor-
age period. Fish (3–4 specimen)were taken out of refrigerated storage on
a daily basis (except on weekends). 3–4 samples per specimen were
employed for microbiological analyses.

2.1.2. Microbiological analysis
A quantity of 25 ± 1 g of fish dorsal muscle was homogenized in

100 mL of 0.9% NaCl by using a stomacher (ITUL Instruments, 2997).
This ratio is in accordance with the recommendations made by the In-
ternational Commission on Microbiological Specifications for Foods
(ICMSF, 1986). These homogenates were, afterwards, ten-fold serially
diluted in peptone water. Aliquots (0.1 mL) of adequate dilutions
were spread on glutamate starch phenol red agar (GSP) and Iron agar
Lyngby (IAL). GSP agar was composed of 10.0 g/L sodium glutamate
(Oxoid, England), 20 g/L soluble starch (Panreac, Spain), 2.0 g/L potassi-
umdihydrogen phosphate (VWR, Belgium), 0.50 g/Lmagnesium sulfate
(Panreac, Spain), 0.36 g/L phenol red (Merck, Germany), 100.000 UI/L
penicillin G (ERN Labs, Spain) and 12 g/L agar (Panreac, Spain). IAL
agar consisted of 20 g/L peptone (Panreac, Spain), 3.0 g/L yeast extract
(Panreac, Spain), 3.0 g/L meat extract (Panreac, Spain), 5.0 g/L sodium
chloride (VWR, Belgium), 0.32 g/L ferric citratemonohydrate (SigmaAl-
drich, Germany), 0.47 g/L sodium thiosulfate pentahydrate (Probus,
Barcelona), 0.6 g/L L-cysteine (Sigma Aldrich, Germany), 12 g/L agar
(Panreac, Spain). Pseudomonas spp. were counted as colonies grown
on GSP plates after incubation at 25 °C during 48 h (Druggan and
Iversen, 2012). Black colonies formed on IAL were counted after 3–
5 days of incubation at 17 °C to enumerate H2S-producing bacteria
(Gram, 1992). The great majority of H2S-producing bacteria isolated
from ice-stored fish have been identified as Shewanella spp.
(Jørgensen and Huss, 1989; Vogel et al., 2005).

2.1.3. Sensory analysis
Fish freshness was organoleptically assessed following the Quality

IndexMethod (QIM) developed by Baixas-Nogueras et al. (2003b). Sen-
sory quality was also assessed by reference to the freshness ratings for
whitefish set out in Annex I of Council Regulation (EC) No 2406/96
(1996), named along the document as Quality Sensory Method (QSM).

2.2. Microbial spoilage model

(Psychrotrophic) Pseudomonas and Shewanella are considered to be
the two main bacterial groups responsible for spoilage of fresh fish
aerobically stored in ice (Gram and Dalgaard, 2002; Gram and Huss,
1996). Experiments show that these SSOs exhibit a growth and
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Table 1
Bounds on the unknown parameters for the optimization involved in the parameter esti-
mation procedure. The estimated initial conditions, denoted as Ps0, Sh0, depend on the ex-
periment and are calculated from the statistics of the measured concentrations at t = 0.
Model parameters are common to all experiments.

θ θmin θmax Units

Ps*, Sh* 5.5 8.0 —
bPs, bSh 0.01 1.0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðd�C2

q
Þ

TPs⁎, TSh⁎ −130 1.0 °C
Psexpi0 ; Shexpi0

~y0−2σy0
~y0 þ 2σy0 —
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stationary phase following the standard logistic model (Baranyi and
Roberts, 1994):

dm
dt

¼ μ Tð Þ 1−10m−m�� �
ð1Þ

wherem andm* refer, respectively, to the concentration andmaximum
concentration (concentration in the stationary phase) of the selected
microorganisms in log-10 scale. In this equation, the growth rate denot-
ed as μ(T) depends on the temperature T according to the standard
square-root model (Ratkowsky et al., 1982):

ffiffiffiffiffiffiffiffiffiffi
μ Tð Þ

p
¼ b T−T�ð Þ ð2Þ

where b is the slope of the regression line and T* should be understood
as a conceptual temperature, being an intrinsic property of the organ-
ism, which does not necessarily mean the lowest temperature where
growth was observed or would occur (Whiting, 1995; Ratkowsky,
1993). Model (1)–(2) was used to represent the dynamics of both
SSOs, being of the form:

dPs
dt

¼ b2Ps T−T�
Ps

� �2 1−10Ps−Ps�
� �

ð3Þ

dSh
dt

¼ b2Sh T−T�
Sh

� �2 1−10Sh−Sh�
� �

ð4Þ

where Ps and Sh refer to the concentration of Pseudomonas and
Shewanella, respectively. Along the paper, SSOs are expressed in
C FU
g in log-10 scale.

Some authors have reported inhibitory effects of Pseudomonas on
Shewanella growth (Gram andMelchiorsen, 1996). However, according
Table 2
Parameter estimations results using preliminary experiments 1, 2 and 3. Model parame-
ters and initial conditions follow a normal distribution defined by the mean and standard
deviation.

Parameter ~θ� σθ Units

Model parameters Ps* 6.44 ± 0.0384 —
bPs 0.0533 ± 0.0139

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðd �C2

q
Þ

TPs⁎ − 12 ± 5.9 °C
Sh* 6.21 ± 0.0464 —
bSh 0.0442 ± 0.0081

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðd �C2

q
Þ

TSh⁎ − 16 ± 4.3 °C
Initial conditions Psexp10

1.31 ± 0.583 —

Psexp20
1.76 ± 0.245 —

Psexp30
2.06 ± 0.158 —

Shexp10
1.51 ± 0.254 —

Shexp20
1.75 ± 0.214 —

Shexp30
2.16 ± 0.113 —
to the same authors, such effects would only occur at cell levels much
higher than the ones found in the present study. Nonetheless, most
Pseudomonas isolated from fish did not manifest such effect in ice-
stored conditions (Gram, 1993). Therefore, no interactions between
Pseudomonas and Shewanellawere considered in the model.
2.3. Statistical methods

2.3.1. Parameter estimation
Unknown parameters of model in Eqs. (3)–(4) (namely, Ps*, Sh*, bPs,

bSh, TPs⁎, TSh⁎) are to be estimated bymeans of data regression, employing
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Fig. 1. Validation after the initial parameter estimation (experiments 1, 2 and 3). A and B
show the evolution of Pseudomonas and Shewanella concentrations during the validation
experiment. Dots and bars represent, respectively, the mean and standard deviation of
the experimental data (ỹ ± σy) whereas continuous lines depict model predictions. C
corresponds with the recorded temperature in the abdominal cavity of fish during the
experiment.
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a one-step procedure, in order to take advantage of non-isothermal ex-
periments to estimate all relevant parameters at once (Dolan et al.,
2007; Rodríguez-Fernández et al., 2007).

This approach has been selected over the classical two-step regres-
sion method, where parameters are estimated sequentially on a set of
isothermal experiments. On the one hand, because it requires a lower
number of experiments. On the other, because according to several
authors (Van Boekel, 1996; Dolan, 2003; Valdramidis et al., 2008) the
two-step approach may result into larger uncertainty on the parameter
estimates which may lead to unreliable predictions under non-
isothermal conditions.

The underlying idea of the one-stepmodel regression is to formulate
an optimization problem where the objective is to compute those pa-
rameter values that minimize a measure of the distance among the
model predictions and the experimental data. In this work this measure
has been chosen to be the maximum likelihood.

The maximum likelihood method seeks for the parameter values
that give the highest likelihood to the experimental data given the
considered model (Walter and Pronzato, 1997). The advantage of this
approach is that it allows taking into account the available information
on the nature of the experimental noise.

For this particular case in which bacterial concentrations follow a
log-normal distribution (Busschaert et al., 2010; Crépet et al., 2007),
and their measurements are independently and identically distributed,
the maximum likelihood approach translates into the minimization of
the following weighted least squares function:

J θð Þ ¼
Xnd

i

ymi−yi θð Þð Þ2
σ2

y;i

ð5Þ

where i indicates the measurement point, being nd the total amount of
data; θ corresponds to the set of parameters to be estimated; ymi and
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Fig. 2.Model fit vs. data using 1, 2, 3 and the OD experiments. A–D and E–H correspond, respect
and standard deviation of data (ỹ ± σy) whereas continuous lines show the model fit. I–L co
experiments.
yi(θ) refer, respectively, to bacterial concentration (either Pseudomonas
or Shewanella) experimentally measured and predicted by the model
for a given value of the parameters at the measurement time i; σy,i

corresponds to the standard deviation of the experimental noise at
measurement time i as estimated from experimental measurements in
different fish samples. Note that the objective function to beminimized
(J) is constructed so to give more relevance to those data with less
variability.
2.3.2. Confidence intervals, core predictions and experimental design
The error of the estimated model parameters is evaluated by con-

structing the confidence region in the model parameter space. To do
so a Monte Carlo sampling method has been used. This technique gen-
erates different growth curves following the statistical distributions es-
timated from experimental data. Each of these realizations is considered
as an acceptable set of data and used to estimate themodel parameters.
This procedure is repeated for a sufficiently large number of times (500
in this work) to obtain a good estimation of the parameters uncertainty.
In order to remove possible outliers, we select those parameters in the
0.05–0.95 interquantile range. The calculated parameter confidence is
expressed by a mean and a standard deviation as ~θ� σθ . Note that for
normal distributions, such as the ones found for this problem, this cor-
responds with a confidence interval of 68.3%.

This technique can be also exploited to calculate the uncertainty in
the predictions (an analysis known as core predictions in systems
biology). For the validation experiments (i.e., with data not used for pa-
rameter estimation) we compute the range of possible solutions corre-
sponding to different realizations of the parameter statistics and initial
population of SSOs.

It should be noted that confidence intervals, and thus core predic-
tions, highly depend on the experimental setup and the standard devi-
ation of the experimental noise. In order to minimize confidence
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Table 3
Parameter estimations using preliminary experiments (1, 2 and 3) in conjunction with the OD experiment.

Parameter ~θ� σθ Units

Model parameters Ps* 6.50 ± 0.0361 —
bPs 0.0301 ± 0.0092

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðd �C2

q
Þ

TPs⁎ − 26 ± 8.14 °C
Sh* 6.26 ± 0.0453 —
bSh 0.0458 ± 0.0052

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðd �C2

q
Þ

TSh⁎ − 14 ± 1.82 °C
Initial conditions Psexp10

0.238 ± 0.332 —

Psexp20
1.71 ± 0.257 —

Psexp30
2.06 ± 0.158 —

PsexpOD0
1.10 ± 0.407 —

Shexp10
1.70 ± 0.134 —

Shexp20
1.80 ± 0.196 —

Shexp30
2.19 ± 0.0767 —

ShexpOD0
2.08 ± 0.0811 —
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intervals in the context ofmicrobiologicalmodels, the use of optimal ex-
perimental design has been suggested (see, for example, Versyck et al.,
1999; Bernaerts et al., 2000; Balsa-Canto et al., 2008). Here, the optimal
experimental design problem is formulated as a general dynamic opti-
mization problem whose objective is to find the time-dependent tem-
perature profile so as to maximize the determinant of the so called
Fisher Information Matrix (Walter and Pronzato, 1997). It should be
noted that the Fisher Information Matrix contains the sensitivities of
the microbial concentrations with respect to the model parameters
evaluated at each measurement point. Therefore maximizing its deter-
minant maximizes sensitivity and, as a result, confidence intervals are
minimized.
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Fig. 3. Comparison of core predictions in validation experiment. A and C correspond with the r
tained by also including the information of the OD experiment. Dots and bars represent experim
gray bands their respective uncertainty.
2.3.3. Numerical methods
The solution of the parameter estimation and optimal experimental

design problems requires the use of advanced numerical techniques. In
this workwemade use of AMIGO (AdvancedModel Identification using
Global Optimization), a multi-platform toolbox implemented in Matlab
which covers parameter estimation but also sensitivity analysis and
experimental design (Balsa-Canto and Banga, 2011). From the set of
numerical methods offered in the toolbox, the global optimizer based
on scatter search (eSS, Enhanced Scatter Search) method (Egea et al.,
2010), was selected due to its efficiency and robustness in finding the
best parameter values and experimental designs. In addition, the
model simulator CVODES (Hindmarsh et al., 2005) was selected to
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Fig. 4. Core predictions for long-line hake. Fish was caught by long-line and stored, as in
the previous validation experiment, at 3 °C. A and B show the evolution of Pseudomonas
and Shewanella concentrations. Dots and bars represent, respectively, the mean and stan-
darddeviation of the experimental data (ỹ±σy)whereas continuous black lines show the
most probable predictions and gray bands their respective uncertainty. C depicts the re-
corded temperature in the abdominal cavity of fish during the experiment.
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solve the microbial spoilage model (3)–(4) and to evaluate the para-
metric sensitivities required to compute the Fisher Information Matrix.

3. Results and discussion

3.1. Parameter estimation

To solve the parameter estimation problem as described in
Section 2.3, a reasonable range of parameter values (parameter bounds)
needs to be supplied to the optimizer. Selected bounds are reported in
Table 1. In addition, initial conditions need to be provided to the
model simulator to solve Eqs. (3)–(4).

Many factors such as fishing gear, handling, or catching ground and
season, affect such conditions (Huss, 1995). A bad choice for the initial
conditions may lead to over- or under-estimation of the growth curve.
In order to avoid this situation, initial conditions for each experiment
will be estimated within the range computed from the experimental
data statistics at t = 0 (~y0 � 2σy0 ) that corresponds with a confidence
interval of 95%.

In the following, hake captured by bottom-set nets will be used un-
less specified otherwise. Asmentioned before, data from samples stored
at 1 °C, 5 °C and 7 °C (denoted as Experiments 1, 2 and 3, respectively)
are used for parameter estimation whereas data from samples stored at
3 °C are saved for model validation.

Parameter estimates and their respective confidence intervals ob-
tained from experiments 1, 2 and 3 are presented in Table 2. Here, con-
fidence in terms of coefficients of variation (σθ=~θ) is larger in the initial
conditions than in model parameters. This is so because estimation of
initial conditions are experiment-dependent in the sense that each esti-
mation uses only the information of one experiment. It should be
stressed, however, that onlymodel parameters can be exploited to fore-
cast the growthof SSOs in newexperiments. Consequently, the accuracy
of the measured initial conditions will be essential to avoid over- or
under-estimations of the growth curves.

In order to test the predictive capabilities of the model, the 3 °C ex-
periment has been used. The predictive model requires the use of the
estimated model parameters (Table 2), measured initial concentration
of SSOs and the storage temperature profile. Comparison between
model predictions and experimental data is depicted in Fig. 1A and B.
Points and error bars represent the mean and standard deviation of
data (ỹ ± σy), respectively, whereas continuous lines show the model
response. Note that predictions reproduce experimental data consider-
ably well, in particular for Shewanella. Experimental data are in agree-
ment with the values reported in the literature. In ice-stored fresh
hake (Merluccius merluccius), maximum levels of Shewanella reported
by Baixas-Nogueras et al. (2009) were 6.36 and 6.71 in hake stored for
14 and 16 days, respectively (storage was in flake ice (0 °C) inside a re-
frigerator set at 4 °C). In the same study, Pseudomonas counts were 5.03
and 5.45, respectively. Similar results were reported in previous works
(Baixas-Nogueras et al., 2003a).

3.2. Optimal experimental design

In order to improve the quality of the estimation, the temperature
profile which maximizes the information content of the experiment
(described by the determinant of the Fisher InformationMatrix) is com-
puted. Due to experimental restrictions, only one measuring time per
working day was allowed, except for the day of the temperature jump
where two consecutive samples are considered just after the event. Re-
sults show that the best experiment found started at 1 °C and jumps to
11 °C on the 8th day of the experiment (see Fig. 2L).

The implementation of the optimally designed experiment (denoted
in the following as OD experiment) is presented in Fig. 2D, H, L. It can be
observed that the recorded temperatures follow the theoretical profile
and never deviatemore than two degrees once the temperature reaches
1 °C in the abdominal cavity. Even in case of larger deviations, this ex-
periment would be more informative than the preliminary ones since,
as stated in Bernaerts et al. (2000), it introduces sharp changes in the
temperature that can be used to feed the model in the parameter
estimation.

Fig. 2 shows that the model is able to follow, not only preliminary
experiments, but also the OD experiment, which includes a variable
time–temperature profile. The OD experiment is used in conjunction
with experiments 1, 2 and 3 to estimate the model parameters
(3)–(4). As in the previous section, we have exploited the Monte Carlo
method to find out the confidence intervals in the parameters given
fish-to-fish variability. Results, gathered in Table 3, show how the
confidence intervals of most of the parameters are reduced by adding
the OD experiment. The exception is the temperature reference of
Pseudomonas (TPs⁎) where the standard deviation increases by including
information of the OD experiment.

This may be reasonable since adding a new experiment requires es-
timating two new initial conditions. Independently of this effect, how-
ever, we can conjecture that the model predictive capabilities are



Table 4
Correspondences between sensory assessment methods
QSMandQIMmarkswere obtained from sensory analysis
in experiments 1, 2, 3 and OD. Indexes E, A, B and NA cor-
respond to Extra-quality, A-quality, B-quality and Not ad-
mitted, respectively.

QSM marks QIM range

E [0, 3]
A [3, 6]
A–B [6, 8]
B [8, 12]
B–NA [12, 14]
NA [14, 19]
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mainly affected by errors in Ps* and bPs. As a consequence, reducing the
confidence intervals for these parameters is critical, even at the ex-
penses of increasing the uncertainty in TPs⁎. We cannot fully test this hy-
pothesis simply by checking the goodness of the prediction as it has
been done in Fig. 1, since only the best estimated values of the parame-
ters, but not their confidence intervals, are considered.

It should be noted that Figs. 1A, 2D and H suggest the presence of a
lag time at least for low temperatures (in the range of 1–3 °C). This lag
time was not observed in experiments performed at higher tempera-
tures. Model in Eqs. (3)–(4) could be modified in different ways to ac-
count for the delay in the exponential growth (Swinnen et al., 2004).
In this respect, the modification proposed by Baranyi and Roberts
(1994) has shown to be themost consistent in the sense that it typically
provides the bestfit to the data and gives reasonable estimates of the lag
time (Baty andDelignette-Muller, 2004), provided that the quantity and
quality of data is enough.

However, there are, at least, three reasons not to incorporate this
modification in models (3)–(4): first, the number of cells initially pres-
ent in fish is low and the experimental error is rather important (more
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Fig. 5. Microbial growth during storage of gutted and ungutted hake. Experimental data for
(Shewanella). The comparison between experiments and model core predictions (gray bands)
in the abdominal cavity of fish during the experiment.
than 100 % in many cases) thus preventing the use of those data to esti-
mate the lag time (see also Nuin et al., 2008,which neglects latency for a
similar reason); second, the model is intended to predict quality in the
growth phase thus the lag will not have an impact on the final value;
and third, the use of the modified model for the sake of prediction
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requires the knowledge about the physiological state of the cells at ini-
tial time, which is not available and not measurable thus making the
model useless.

In the next section, the so-called “core predictions”will be exploited
to estimate the uncertainty ofmicroorganismgrowth curves due tofish-
to-fish variability, and to evaluate previous hypothesis.
3.3. Validation using core predictions

Model predictions depend on the uncertainty on bothmodel param-
eters and initial concentration of SSOs in the considered experiment.
Statistics of model parameters were calculated in the previous sections
usingpreliminary experiments (Table 2) and the optimally designed ex-
periment (Table 3). The normal distribution of initial conditions is ex-
tracted from experimental replicas of bacterial concentrations in fish
samples. The mean values of model parameters and initial condition
distributions allowus to calculate themost probable growth curves con-
sidering fish-to-fish variability. In order to assess suchmodel uncertain-
ty, the Monte Carlo method will be now employed.

Results are shown in Fig. 3, where continuous black lines indicate the
most probable growth curves and gray bands represent their uncertain-
ty. Fig. 3A and C corresponds with the results obtained after the initial
parameter estimation (parameters of Table 2), whereas the results ob-
tained after including the OD experiment (parameters of Table 3) are
presented in Fig. 3B and D. Model uncertainty is reduced by adding
the optimally designed experiment for both microorganism classes.
This is the case even if confidence in some of the model parameters is
not so high, as it occurs with Pseudomonas.
Table 5
Validation of quality prediction Quality Sensory Method (QSM) and its estimation using
the microbial spoilage model for the validation experiment.

Time [days] Estimated QSM (range) QSM found in fish samples

0 E (E–E) E
1 E (E–A) E
2 A (E–A) A
5 B (B–B) B
6 B-NA (B–NA) B
7 NA (B–NA) NA
8 NA (NA–NA) NA
Previous studies have reported a significant influence of themethod
of catching on microbial spoilage (or shelf-life) of fish (Özyurt et al.,
2007). In order to test model predictive capabilities for gutted hake
caught by a different fishing gear, a new validation experiment has
been performed.

The results are presented in Fig. 4, where it can be seen that, despite
some slight overestimation, themodel is able to reasonably predict bac-
terial growth. It is difficult to identify the factors behind such overesti-
mation with the available data. Nonetheless, as some authors point
out, they might be related with damages induced by the fishing gear
on fish tissues that accelerate bacterial growth (Özyurt et al., 2007). In
any case these results suggest that the influence if any, is embedded
within the implicit uncertainty of the model.

Previous literature reported controversial results on the effective-
ness of gutting as a method to increase shelf-life. In particular for
hake, it was concluded that gutting would accelerate the proliferation
of gram-negative bacteria (Baixas-Nogueras et al., 2009). In order to val-
idate our model under different scenarios, an experiment was pro-
grammed that included storage of gutted and ungutted hake. To that
purpose, two batches of medium-size hake, one gutted and the other
ungutted, were prepared. As in previous experiments, fish was caught
by bottom-set nets, in Galician waters, using similar handling proce-
dures from the retailer to the lab except that fish was left ungutted.
Once in the lab, half of fish was gutted and both batches were stored
at 2.5 °C during 9 days. The same methodology described in
Section 2.1.2 has been employed for samplings and microbiological
analyses.

The results of this experiment are shown in Fig. 5. Experiments show
no significant differences in terms ofmicrobial growth for gutted (trian-
gles) and ungutted (circles) hake along the experiment horizon (Fig. 5A
and C). Concerning the predictive capabilities of the proposed model,
core predictions (gray bands) are presented in Fig. 5B and D, showing
a good agreement between model predictions and experimental data
(marks).

3.4. Quality predictions using the microbial spoilage model

As it has been previously reported (Nuin et al., 2008), models as the
one proposed are excellent tools to predict shelf-life under different
storage conditions. In this section we explore the potential of our pre-
dictive model of SSOs to estimate not just shelf-life, but also different
freshness categories of whitefish as defined by the QSM (Council
Regulation (EC) No, 2406/96, 1996) and the QIM (Bremner, 1985).
QSM establishes four fish quality categories that range from extra-
quality (E) to not admitted (NA), and includes two intermediate quality
grades (A and B). On the other hand, QIM classifies hake quality on a
natural number scale which depends on the fish species. In this study,
it has been found that SSO concentrations correlate particularly well
with QIM via an expression of the form:

QIM ¼ nint 10lQ
� �

−1 where lQ ¼ αPsþ βSh ð6Þ

where QIM is the corresponding quality index (ranging between 0–19)
for hake (Baixas-Nogueras et al., 2003b), and “nint” is the function that
computes the nearest integer value.

Data from experiments 1, 2, 3 andOD,which included QIM and QSM
evaluations from a panel of experts, have been used to estimate param-
eters in expression (6), resulting in α=0.068 and β=0.129 with a re-
gression coefficient r=0.89. Note that such value should be considered
reasonably good, specially taking into account that QIM is an integer
variable which refers to skin, eyes, gill and flesh quality; while concen-
trations of SSOs were measured only in flesh. To the authors' best
knowledge, only thework by Giuffrida et al. (2013) has tried to connect
concentrations of SSOswithQIMdirectly although for a different species
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and with SSO concentrations taken not just in flesh, but also in skin and
gill.

Comparison of the QSM and QIM values obtained for the different
experiments suggested the equivalences presented in Table 4. Such
characterization recognizes the existence of two overlapping categories
which we resolve by defining the new grades A–B and B–NA between
the A and B and between B and NA fish grades, respectively.

Uncertainty in microorganism concentrations Sh and Ps, defined as
the bandwidth of the core predictions obtained by including the infor-
mation of the OD experiment (Fig. 3), is employed to compute, by
means of expression (6), the corresponding QIM uncertainty. Its evolu-
tion, given in terms of a minimum and maximum QIM evolution
(slashed lines) as well as its most probable value (stars), are presented
in Fig. 6. As it can be seen from the figure, the QSM grades, defined in
Table 4 and represented on the background of the plot, can be predicted
from the QIM evolution.

To test the validity of the prediction, the panel of experts evaluated
the QSM in the validation experiment presented in Fig. 3. The results
are summarized in Table 5 showing that the marks obtained by the ex-
perts coincide for all times with the ones estimated by the model. It
should be stressed that, despite the fact that themodel here considered
does not include the lag phase, quality predictions at the initial times
coincide with the evaluations of the panel of experts. In agreement
with previous discussion on lag phase (Section 3.2), this supports the
assumption that the effect of this latency time is not relevant to estimate
quality.

Shelf-life, understood as the time required to reach a not-admitted
(NA) grade, can be obtained in a straightforwardmanner from the qual-
ity prediction model. For the scenario depicted in Fig. 6 (hake stored at
the temperature profile depicted in Fig. 1C), a simple inspection gives a
shelf-life range between approximately 5 to 8 days with a most proba-
ble value of 7 days what coincides with the experimental evidence.
4. Conclusions

A methodology to forecast hake quality during storage at different
temperature conditions has been proposed. The method makes use of
a dynamic model of microbiological growth that incorporates the un-
certainty caused by fish-to-fish variability. An essential step in model
development is the application of optimal experimental design to gen-
erate sufficient non-isothermal informative experiments to reduce the
uncertainty in the parameters and, thus, in model predictions. The esti-
mated growth curves are used to estimate the most probable value of
the Quality Sensory Index (Council Regulation (EC) No, 2406/96,
1996) and its associated uncertainty.

Fish quality predictions are estimated from any profile of the storage
temperature making use of the dynamic model of the SSOs (Specific
Spoilage Organisms) and confidence measurements of their initial con-
ditions. In addition, the model has been employed to test the effect on
fish quality of factors such as the fishing gear or evisceration. Results
from the microbial growth dynamics show no significant differences,
within the inherent model uncertainty, between hake fished by long-
line or bottom-set nets. Similar conclusions can be drawn for gutted
and un-gutted hake along the experiment horizon.

Finally, it must be remarked that the methodology here proposed is
flexible enough to include other stress variables (e.g., atmosphere com-
position) or to be extended to shelf-life assessment for other fish
species.
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