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ABSTRACT E. coli is a ubiquitous member of the intestinal
microbiome. This organism resides in a biofilm comprised of a
complex microbial community within the mucus layer where it
must compete for the limiting nutrients that it needs to grow
fast enough to stably colonize. In this article we discuss the
nutritional basis of intestinal colonization. Beginning with basic
ecological principles we describe what is known about the
metabolism that makes E. coli such a remarkably successful
member of the intestinal microbiota. To obtain the simple
sugars and amino acids that it requires, E. coli depends on
degradation of complex glycoproteins by strict anaerobes.
Despite having essentially the same core genome and hence
the same metabolism when grown in the laboratory, different
E. coli strains display considerable catabolic diversity when
colonized in mice. To explain why some E. coli mutants do not
grow as well on mucus in vitro as their wild type parents yet
are better colonizers, we postulate that each one resides in a
distinct “Restaurant” where it is served different nutrients
because it interacts physically and metabolically with different
species of anaerobes. Since enteric pathogens that fail to
compete successfully for nutrients cannot colonize, a basic
understanding of the nutritional basis of intestinal colonization
will inform efforts to develop prebiotics and probiotics to
combat infection.

INTRODUCTION

Every mammal on the planet is colonized with E. coli
(1), as well as cold-blooded animals (e.g., fish) at an
appropriately warm temperature (2). We estimate there
are 10?! E. coli cells in the human population alone.
E. coli is frequently the first bacterium to colonize hu-
man infants and is a lifelong colonizer of adults (3).
E. coli is arguably the best understood of all model

organisms (4). Yet the essence of how E. coli colonizes
and/or causes disease is still not completely understood.
Certainly, innate immunity, adaptive immunity, and
bacterial cell-to-cell communication play important
roles in modulating the populations of the 500-1000
different commensal species in the intestine (5-11);
however, these topics will not be a focus of this chapter.
We have reviewed the mucus layer as habitat for E. coli
to colonize the intestine, aspects of E. coli physiology
that enable its success, and the model systems employed
for colonization research (12-14). Here, we focus on
E. coli metabolism in the intestinal mucus layer. We
discuss evidence that E. coli must obtain nutrients in the
mucus layer to colonize, that it resides in the mucus layer
as a member of mixed biofilms, and that each E. coli
strain displays a unique nutritional program in the in-
testine. We also discuss evidence supporting the “Res-
taurant” hypothesis for commensal E. coli strains, i.e.,
that they colonize the intestine as sessile members of
mixed biofilms obtaining the nutrients they need for
growth locally, but compete for nutrients with invading
E. coli pathogens planktonically.
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FROM INGESTION TO COLONIZATION

When E. coli is eliminated by a host animal, it is not
growing because it cannot grow in the luminal contents
of the intestine (15). E. coli persists in the environment
until its next host consumes viable bacteria in contami-
nated water or adulterated food. Following ingestion,
a stressor faced by E. coli is acidity in the stomach,
which it survives because stationary phase bacteria in-
duce protective acid-resistance systems (16). Extreme
acid tolerance makes E. coli transmissible by as few as
ten bacterial cells (17). Upon reaching the colon, E. coli
must find the nutrients it needs to exit lag phase and
grow from low to high numbers. Failure to transition
from lag phase to logarithmic phase will lead to elimi-
nation of the invading E. coli bacteria (18). Successful
colonization of the colon by E. coli depends upon com-
petition for nutrients with a dense and diverse micro-
biota (18), penetration of the mucus layer (19) (but not
motility [20]), avoid host defenses (21, 22), and grow
rapidly, exceeding the turnover rate of the mucus layer
(23). E. coli resides in mucus until being sloughed into
the lumen of the intestine (24, 25), from whence some
cells are eliminated in the host feces and the cycle begins
again. This circle of colonization and extra-intestinal
survival is the reality for commensal and pathogenic
E. coli alike.

BASIC PRINCIPLES OF COLONIZATION

Colonization is defined as the indefinite persistence of a
particular bacterial population without reintroduction
of that bacterium. We agree with Rolf Freter, a true
pioneer in the field of intestinal colonization, who con-
cluded that although several factors could theoretically
contribute to an organism’s ability to colonize, compe-
tition for nutrients is paramount for success in the
intestinal ecosystem (26). According to Freter’s nutrient-
niche hypothesis, the mammalian intestine is analogous
to a chemostat in which several hundreds of species of
bacteria are in equilibrium. To co-colonize, each species
must use at least one limiting nutrient better than all
the other species (18, 27, 28). The nutrient-niche hy-
pothesis further predicts that invading species will have
difficulty colonizing a stable ecosystem, such as the
healthy intestine. The ability of the microbiota to resist
invasion is termed colonization resistance (29), an ex-
ample of which being that when human volunteers were
fed E. coli strains isolated from their own feces, those
E. coli failed to colonize (30). Yet, despite coloniza-
tion resistance, humans are colonized on average with
five different E. coli strains and there is a continuous

succession of strains in individuals (30). This suggests
that diversity exists among commensal E. coli strains
and that different strains may possess different strategies
for utilizing growth-limiting nutrients.

If diversity amongst E. coli commensal strains plays a
role in colonization resistance, then mice pre-colonized
with a human E. coli commensal strain would resist
colonization by the same strain (isogenic challenge strain)
because bacteria that consume the nutrients it needs to
colonize already occupy its preferred niche. However, if
mice pre-colonized with one human E. coli commensal
strain were subsequently fed a different E. coli strain
(non-isogenic challenge strain) then, if the second strain
could occupy a distinct niche in the intestine, it would
co-colonize with the first strain. The results of such
experiments showed that each of several pre-colonized
E. coli strains nearly eliminated its isogenic challenge
strain from the intestine, confirming that colonization
resistance can be modeled in mice, but non-isogenic
challenge E. coli strains grew to higher numbers in the
presence of different pre-colonized strains, suggesting
that the newly introduced non-isogenic challenge strain
either grows faster than the pre-colonized strain on one
or more nutrients or uses nutrient(s) not being used by
the pre-colonized strain (31).

How might an invading enteric pathogen subvert
colonization resistance? According to the nutrient-niche
hypothesis, upon reaching the intestine the pathogen
would first have to outcompete the resident microbiota
for at least one nutrient, allowing it initially to colonize
the intestine. However, colonization would not in itself
result in pathogenesis if the pathogen must reach the
epithelium and either bind to epithelial cells or invade
the epithelium. In such instances, the pathogen must
presumably penetrate the mucus layer. In a series of
groundbreaking studies (32-34), Stecher, Hardt, and
colleagues showed that when Salmonella enterica sero-
var Typhimurium induces inflammation in a mouse
colitis model, the composition of the microbiota is
changed and its growth is suppressed while serovar
Typhimurium growth is enhanced. The authors also
showed that serovar Typhimurium is attracted by che-
motaxis to galactose-containing nutrients on the muco-
sal surface (e.g., galactose-containing glycoconjugates
and mucin) and, as expected, flagella and motility were
required (32). Thus, to quote the authors (34), “Trig-
gering the host’s immune defense can shift the balance
between the protective microbiota and the pathogen in
favor of the pathogen.”

In streptomycin-treated mice, nutrient consumption
by colonized E. coli strains can prevent invading E. coli
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strains from colonizing (35). By examining the sugars
used by various human commensal E. coli strains
to colonize, we identified a pair of strains (E. coli HS
and E. coli Nissle 1917) that together use the five
sugars previously found to be most important for
colonization by the enterohemorrhagic E. coli (EHEC)
strain EDL933 (O157:H7) (36). When mice were pre-
colonized with E. coli HS and E. coli Nissle 1917,
invading E. coli EDL933 was eliminated from the in-
testine (35). Clearly, one therapeutic strategy to prevent
pathogenesis would be to outcompete the pathogen for
nutrients normally present in the intestine and eliminate
it before it can colonize and subsequently cause inflam-
mation (5, 6, 37).

Implicit in the nutrient-niche hypothesis is the idea
that different species compete for preferred nutrients
from a mixture that is equally available to all spe-
cies. However, there is growing evidence that, at least
under some circumstances, E. coli receives the nutrients
it needs through direct interactions with neighboring
microbes in the intestinal community. Thus, we take a
renewed look at the metabolism of and nutrient flow
between members of the intestinal microbiota.

CENTRAL METABOLISM AND
INTESTINAL COLONIZATION

E. coli is a Gram-negative, prototrophic, facultative
anaerobe with the ability to respire oxygen, use alterna-
tive anaerobic electron acceptors, or ferment, depending
on electron-acceptor availability. Central metabolism in
E. coli consists of the Embden-Meyerhof-Parnas glyco-
lytic pathway (EMP), the pentose phosphate pathway
(PP), the Entner-Doudoroff pathway (ED), the TCA cy-
cle, and diverse fermentation pathways. E. coli grows
best on sugars, including a wide range of mono- and
disaccharides, but it cannot grow on complex polysac-
charides because it lacks the necessary hydrolase en-
zymes (36). E. coli also can grow on amino acids and
dicarboxylates that feed into the TCA cycle; the metab-
olism of these nutrients requires gluconeogenesis, the
biosynthesis of glucose phosphate to be used as precur-
sors of macromolecules such as LPS and peptidoglycan.
Central metabolic pathways in E. coli are highly con-
served, constituting a significant part of the core E. coli
genome (38). The role of central metabolism during
intestinal colonization has been studied in E. coli. The
results of these experiments are summarized below
(Table 1).

Mutants blocked in glycolysis or the ED pathway,
but not the PP pathway, have major colonization defects

TABLE 1 Central metabolism mutants tested for coloniza-
tion defects in the mouse intestine

Pathway Gene Defect MG1655 EDL933
Glyoxylate bypass aceA No Yes
ED edd Yes Yes
glycolysis pgi Yes ND
PPP gnd No ND
gluconeogenesis PpPSA pckA No No
TCA cycle frdA Yes Yes
TCA cycle sdhAB No Yes
TCA cycle frdA sdhAB Yes Yes

Results show the difference in population sizes of wild-type verses mutant strains
at Day 9.

Yes indicates the difference exceeds a 0.8 log;o colonization advantage and
students ¢ test value P < 0.05

ND indicates not determined

in competition with their wild type parents (39). Given
its role in hexose metabolism, it is expected that gly-
colysis is important for colonization. Indeed, a pgi
mutant lacking the key enzyme, phosphoglucose isom-
erase, of the EMP glycolytic pathway has a substantial
colonization defect when competed against its wild-
type E. coli K-12 parent (Table 1). The role of the EMP
pathway goes beyond colonization by E. coli. For ex-
ample, glucose catabolism and glycolysis are known to
play a role in intracellular growth of serovar Typhi-
murium within macrophage vacuoles (40), and proper
regulation of glucose catabolism and glycolysis are
coupled to virulence-factor expression in EHEC (41). A
recent study of Shigella flexneri revealed similar usage
of these central metabolic pathways to support replica-
tion within host cells (42). We conclude that glycolysis
is important for E. coli colonization and other aspects
of enteric pathogenesis.

Gluconate was the first nutrient that was shown to
be used by E. coli to colonize the streptomycin-treated
mouse intestine (43). Since gluconate and other sugar
acids are primarily catabolized via the ED pathway, it
is reasonable to expect that mutants lacking the path-
way will be defective in colonization (44). The ED
pathway is encoded by the edd-eda operon (45). The
promoter-proximal edd gene encodes 6-phosphogluconate
dehydratase, which converts 6-phosphogluconate to 2-
keto-3-deoxy-6-phosphogluconate. The eda gene encodes
2-keto-3-deoxy-6-phosphogluconate aldolase, which con-
verts 2-keto-3-deoxy-6-phosphogluconate to glyceraldehye-
3-phosphate and pyruvate. E. coli edd mutants lacking
the ED pathway, but retaining the pentose phosphate (PP)
pathway, are poor colonizers of the mouse intestine,
suggesting that E. coli utilizes the ED pathway for growth
in the intestine (43). Other enteric bacteria require the
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ED pathway. For example, intracellular serovar Typhi-
murium induces genes of the ED pathway and gluconate
catabolism during growth in macrophages (46). More-
over, the ED pathway is induced by Vibrio cholerae
in vivo and an edd mutant failed to colonize the mouse
intestine (47).

In contrast to the importance of the ED pathway,
an E. coli gnd mutant, missing 6-phosphogluconate
dehydrogenase and therefore deficient in the oxida-
tive branch of the PP pathway, was as good a mouse-
intestine colonizer as the wild-type (39). It should be
noted that gnd mutants retain the non-oxidative PP
pathway; therefore, they retain the ability to make
essential precursor metabolites (e.g., ribose-5-phosphate)
(48). We conclude that E. coli has alternative mecha-
nisms for generating reducing power (nicotinamide ade-
nine dinucleotide phosphate; NADPH) other than the
oxidative PP pathway, but that the ED pathway for
sugar acid catabolism is required to colonize efficiently
(Table 1).

The role of the TCA cycle in commensal E. coli col-
onization of the intestine and in E. coli pathogenesis is
poorly studied. It has been reported that an sdhB mutant
lacking succinate dehydrogenase colonized as well as its
wild-type parent (39). However, E. coli has a second
isoform of succinate dehydrogenase: fumarate reduc-
tase, which provides redundant enzyme function under
some circumstances (49). Indeed, an E. coli sdhAB frdA
double mutant has a significant colonization defect
(Table 1). The role of the TCA cycle in colonization and
pathogenesis by other Enterobacteriaceae is better un-
derstood, as described immediately below.

A fully functional TCA cycle is required for virulence
of Salmonella enterica serovar Typhimurium via oral
infection of BALB/c mice, i.e., a sucCD mutant, which
prevents the conversion of succinyl coenzyme A to suc-
cinate, was attenuated. Also, an sdhCDA mutant, which
blocks the conversion of succinate to fumarate, was
attenuated, whereas both an aspA mutant and an
frdABC mutant, deficient in the ability to run the re-
ductive branch of the TCA cycle, were fully virulent (50).
Moreover, although it appears that serovar Typhimu-
rium replenishes TCA cycle intermediates from sub-
strates present in mouse tissues, fatty acid degradation
and the glyoxylate bypass are not required, since a fadD,
fadF, and aceA mutants were all fully virulent during
acute infection (50-52). Interestingly, it appears that the
TCA cycle is required for virulence of Edwardsiella
ictaluri in catfish fingerlings (53) and that the glyoxylate
bypass is required for serovar Typhimurium persistent
infection of mice (51).

The fact that E. coli depends on the TCA cycle for
colonization implies that gluconeogenesis also is im-
portant. Using mutants that are unable to synthesize
glucose from fatty acids, acetate, and TCA cycle inter-
mediates because they are blocked in converting pyru-
vate to phosphoenolpyruvate (ppsA pckA), a critical
step in gluconeogenesis, it was shown that neither the
commensal E. coli K-12 strain MG1655 nor EHEC use
gluconeogenesis for growth in the streptomycin-treated
mouse intestine when each is the only E. coli strain fed
to mice (54). However, E. coli Nissle 1917, the probiotic
strain, does use gluconeogenesis to colonize (55). In
addition, while E. coli EDL933 did not use gluco-
neogenic nutrients when it was the only E. coli strain
in the mouse intestine, it used metabolic flexibility to
switch to gluconeogenic nutrients when in competi-
tion in the intestine with either E. coli MG1655 (54) or
E. coli Nissle 1917 (55). These findings are of extreme
interest in view of a recent report showing that E. coli
EDL933 activates expression of virulence factor genes
only under gluconeogenic conditions (41).

CATABOLIC PATHWAY DIVERSITY IN E. COLI

The substrate range of E. coli is limited to mono-
saccharides, disaccharides, a small number of larger
sugars, some polyols, and sugar acids (56). Amino acids
and carboxylates also are consumed (56, 57). The
corresponding catabolic pathways feed these substrates
into central metabolism. While the genes encoding cen-
tral metabolism in E. coli fall within the highly con-
served core genome (38), there is predicted to be some
variation between strains with respect to the cata-
bolic pathways that feed various substrates into central
metabolism, as indicated by genome-based metabolic
modeling (58). For example, pathogenic E. coli strains
are predicted to grow on sucrose while commensals are
not. In contrast, commensals are predicted to grow on
galactonate while pathogens are not. However, most of
the substrates predicted by modeling to be used differ-
entially by different E. coli strains are not known to be
present in the intestine (58). E. coli EDL933, the pro-
totypical EHEC strain, is able to grow on sucrose,
whereas most commensal strains do not because they
lack the sac genes, and some strains are missing genes
within the N-acetylgalactosamine operon and are thus
unable to grow on this substrate (36). Despite the
modest differences between strains regarding their sub-
strate range, in laboratory cultures containing a mixture
of 13 different sugars known to be present in mucus
polysaccharides, E. coli EDL933 and E. coli MG1655
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each use the sugars in the same order (36). However,
although E. coli strains have nearly identical catabolic
potential, they vary significantly in the sugars that sup-

NUTRIENT AVAILABILITY IN THE INTESTINE

Fluorescent in situ hybridization (FISH) microscopy of
thin sections of the cecum of streptomycin-treated mice
shows that colonized E. coli are surrounded by other
members of the microbiota within the mucus layer (19,
54, 61). Indeed, E. coli grows well in vitro on cecal
mucus, but fails to grow in intestinal contents (15,
19). When a transposon insertion-mutant library was
screened for poor growth on mucus agar plates, a waaQ
mutant of E. coli K-12 was isolated that also was de-
fective in lipopolysaccharide biosynthesis, sensitive to
detergents, clumped iz vitro in broth culture, and failed
to colonize streptomycin-treated mice (19). While the
waaQ strain initially (during the first 24 h) grew from
low to high numbers in the intestine, it rapidly declined
in fecal plate counts and was undetectable by day 7 of
the experiment. FISH showed that that the waaQ mu-
tant formed clumps in the cecal mucus layer of strepto-
mycin-treated mice at 24 h post-feeding, leading to the
conclusion that failure to penetrate mucus and grow as
dispersed cells within the mucus layer prevented it from
colonizing (19).

The sources of nutrients that support intestinal
colonization by E. coli are shed epithelial cells, dietary
fiber, and mucosal polysaccharides (12-14). Most of
the amino acids are available in the cecum, as growth
of E. coli in mucus results in repression of the majority
of genes involved in amino acid biosynthesis (39). In
rat, mouse, and human, colonic mucus is organized by
Muc2, the major glycoprotein, which is a high molecular
weight gel-forming glycoprotein containing L-fucose,
D-galactose, D-mannose, N-acetyl-D-glucosamine, N-
acetyl-D-galactosamine, and N-acetylneuraminic acid
(62). Mucin is 80% polysaccharide and 20% protein
and is highly viscous (63). In addition to mucin, the
mucus layer contains a number of smaller glycoproteins,
proteins, glycolipids, and lipids (62-65). There are two
mucus layers, a loosely adherent suction-removable
layer closest to the lumen of the intestine and an ad-
herent layer firmly attached to the mucosa (62, 66, 67).
In the rat colon, the thickness of the adherent layer is
about 100 um and that of the loose layer about 700 pm
(62). In the mouse colon, the thickness of the adherent
layer is about 50 um and that of the loose layer about
100 um (67). The mucus layer itself is in a dynamic state,

constantly being synthesized and secreted by the mucin-
secreting, specialized goblet cells and degraded to a large
extent by the indigenous intestinal microbes (68, 69).
Degraded mucus components are shed into the intestinal
lumen forming a part of the luminal contents that is
excreted in the feces (68).

The loosely adherent mucus layer contains large
numbers of bacteria in the mouse, but the inner adherent
mucus layer is largely devoid of bacteria (70) and is not
penetrated by beads the size of bacteria (71), suggesting
that the inner mucus layer protects the colonic epithe-
lium from the commensal microbiota. Commensal
E. coli strains do not attach to intestinal epithelial cells
and growth takes place predominantly in the mucus
layer (19, 24). The mucus layer of the conventional
mouse large intestine turns over about every 2 hours
(23). Hence, to maintain a stable population, the bac-
terial growth rate in mucus must keep pace with the
turnover rate of the mucus layer. For example, E. coli
BJ4 has a generation time of 40-80 minutes in the
streptomycin-treated mouse cecum, which is more than
fast enough to maintain its population (23).

E. coli cannot degrade oligosaccharides or polysac-
charides, except dextrin (36, 72). In the intestine, this is the
job of anaerobes. To obtain the mono- and di-saccharides
it needs for growth, E. coli relies on hydrolysis of complex
polysaccharides by members of the intestinal community
such as Bacteroides thetaiotaomicron, a Gram-negative
obligate anaerobe and a major member of the human
intestinal microbiota (73-78). This symbiotic relationship
is illustrated in Fig 1. Complex polysaccharides derived
from epithelial cell debris, dietary fiber, or mucus are
degraded by extracellular polysaccharide hydrolases
secreted by anaerobes. The anaerobes preferentially take
up the resultant oligosaccharides, which are further de-
graded intracellularly to monosaccharides that enter cen-
tral metabolism. The mono- and di-saccharides that are
released by polysaccharide hydrolysis are discarded by
the anaerobes and thereby made available to E. coli and
organisms with similar metabolism.

Evidence for the model shown in Fig 1 is mount-
ing. In response to competition from Eubacterium
rectale, B. thetaiotaomicron upregulates a number of
polysaccharide-utilization loci that encode a variety of
glycosyl hydrolases (79). In contrast, E. rectale responds
to B. thetaiotaomicron by down-regulating expression
of loci encoding glycan-degrading enzymes and up-
regulating expression of a number of sugar transporters,
suggesting that E. rectale uses metabolic flexibility to
take advantage of the superior ability of B. thetaiota-
omicron to degrade polysaccharides (79). In a tour de
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FIGURE 1 Nutrient flow in the intestine. The primary sources of carbohydrates in the large
intestine are mucus, dietary fiber, and epithelial cell debris. Mucus and dietary fiber consist
of complex polysaccharides. E. coli typically cannot degrade complex polysaccharides;
thatis the job of anaerobes. Hence, degradation of polysaccharides by anaerobes releases
oligosaccharides, which are preferred by anaerobes, as well as mono- and disaccharides,
which are preferred by E. coli. doi:10.1128/microbiolspec.MBP-0006-2014.f1

force series of experiments from the Sonnenberg labo-
ratory, it was recently shown in gnotobiotic mice
associated with B. thetaiotaomicron and S. Typhimurium
that fucose and sialic acid catabolic-gene systems are
up-regulated in the latter organism and its growth is
stimulated (77). Importantly, Salmonella mutants lack-
ing the capacity to catabolize either fucose or sialic
acid showed substantial fitness defects in streptomycin-
treated mice (77). A B. thetaiotaomicron mutant lack-
ing a predicted surface-associated sialidase failed to
release free sialic acid in mice, whereas the wild-type
B. thetaiotaomicron released free sialic acid and stim-
ulated intestinal growth of Clostridium difficile (77).
Free sialic acid was very low in conventional mice and
greatly elevated in mice that were treated with strep-
tomycin, which is consistent with the idea that the
microbiota consumed sialic acid in the conventional
animals, but streptomycin treatment removed those
members of the microbiota (77). These experiments prove
that polysaccharide hydrolysis by anaerobes in the in-
testine can provide monosaccharides to members of
the microbiota that can use them.

NUTRIENT LIMITATION IN THE INTESTINE

Competition for limiting resources drives ecosystems
(80). In microbial ecosystems, such as the intestine, the
microbial community competes for carbon and energy
sources and terminal electron acceptors (27). It appears
that E. coli uses strategies for maximizing its population
in a stiffly competitive environment. E. coli can simul-
taneously utilize a mixture of six sugars under nutrient-
limiting conditions in chemostats (81). When presented
with a mixture of 13 sugars in vitro, E. coli uses up
to nine of them at a time (36). Bacteria expand their
transcriptome to induce a number of gene systems for
carbon-source transport and catabolism when growing
slowly (82) or when they are nutrient-deprived (83).
While there is a fine line between “hunger” and “star-
vation”, in fact, the two are distinct. Hunger is a state
that is defined by physiological and genetic changes that
expand the metabolic capacity of the cell (84). To better
understand the role of the hunger lifestyle in vivo, the
importance of carbon stores for colonization fitness was
examined (60). It is well known that stored glycogen
promotes survival during times of carbon limitation.
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It was found that mutants of commensal and pathogenic
E. coli that cannot synthesize or degrade glycogen have
significant intestinal colonization defects in mice (60).
Furthermore, in support of the hypothesis that E. coli
uses glycogen to withstand hunger, when a constant
supply of a readily metabolized carbon source was
supplied in the drinking water of the mice, these colo-
nization defects were rescued (60).

E. coli Nissle 1917 is a non-pathogenic strain that has
been used since the early 1920’s as a probiotic agent to
treat gastrointestinal infections in humans, sold under
the name “Mutaflor” (85). Despite having the E. coli
Nissle 1917 genome sequence to search for clues as to its
success as a probiotic agent (86, 87), little attention has
been paid to the possibility that it may out-compete
pathogens for essential nutrients. When E. coli Nissle
1917 is the only E. coli strain in the streptomycin-treated
mouse intestine, it appears to use arabinose, fucose,
galactose, gluconate, mannose, N-acetylgalactosamine,
and sialic acid to colonize (Table 2 and [59]). In contrast,
E. coli Nissle 1917 does not appear to use ribose to
colonize (Table 2). Identifying the nutrients used by
E. coli Nissle 1917 when competing with E. coli patho-
types might lead to new approaches to prevent E. coli
infections.

Metabolic flexibility is also exhibited by uropatho-
genic E. coli (UPEC) strain CFT073, a human urinary-
tract pathogen, when its nutritional program in the
mouse intestine is compared to that in the mouse urinary
tract. E. coli CFT073 utilizes several sugars simulta-
neously to colonize the intestine (Table 2 and [35]), but
not to infect the urinary tract. Instead, in the urinary

TABLE 2 Sugar utilization in the intestine by E. coli strains

tract, transport of peptides and gluconeogenesis are re-
quired for maximum E. coli CFT073 growth (88). When
E. coli EDL933 is the only E. coli strain in the mouse
intestine, it does not use gluconeogenic substrates to
colonize, but it switches to gluconeogenic nutrients
when competing in the intestine with E. coli MG1655
(55). As an additional example of metabolic flexibility
in vivo, neither E. coli MG1655 nor E. coli Nissle 1917
use ribose for growth in the intestine, unless fuculose-1-
phosphate accumulates in mutants unable to catabolize
it further (59). Moreover, it was shown that fucose at a
concentration too low to support growth, stimulated
the utilization of ribose by the wild-type E. coli strains
in vitro, suggesting that fuculose-1-phosphate plays a
role in regulating the use of ribose as a carbon source
by E. coli MG1655 and E. coli Nissle 1917 in the mouse
intestine (59). In summary, to colonize successfully,
E. coli must compete for limiting nutrients, so it uses sev-
eral sugars at a time, is flexible in its nutrient preference,
and relies on glycogen-carbon stores in the intestine.

COMPETITION FOR NUTRIENTS
IN THE INTESTINE

E. coli competes for nutrients in the intestine in (at least)
three ways. First, it can use nutrients that are avail-
able because no other community member has used it
(Table 2). Second, it can outcompete other strains for
the nutrients it prefers by growing faster on them (89).
Third, it can enter into a symbiotic association with the
anaerobe(s) that releases its preferred sugar(s) (61, 90).
Evidence for each of these mechanisms comes from

Sugar defect Mutation MG1655 Nissle HS EDL933 UPEC EPEC
Arabinose araBAD Yes Yes Yes Yes Yes Yes
Fucose fucK No Yes No No No No
Galactose galK No Yes Yes Yes Yes Yes
Gluconate gntK/AidnK Yes Yes Yes No ND ND
Hexuronates uxaC No No No Yes ND ND
Lactose lacZ No No Yes No ND ND
Mannose manA No Yes No Yes Yes Yes
N-acetylglucosamine nagk Yes No Yes Yes Yes Yes
N-acetylgalactosamine agaWEFA NA Yes ND No ND ND
N-acetylneuraminate nanAT Yes Yes Yes No ND ND
Ribose rbsK No No Yes Yes Yes Yes
Sucrose sacH NA NA NA Yes NA ND

Results show the difference in population sizes of wild-type verses mutant strains at Day 9.

Yes indicates the difference exceeds a 0.8 logyo colonization advantage and students ¢ test value P < 0.05

NA indicates that the pathway is not intact in this genetic background

ND indicates not determined
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competitive-fitness studies in streptomycin-treated mice.
Streptomycin treatment (5 g/l in drinking water) per-
turbs the microbiota by selectively removing the facul-
tative anaerobes with which E. coli competes, making
nutrients available and allowing experimentally intro-
duced strains to overcome colonization resistance (27,
91, 92). Colonization resistance in animal models can
also be overcome in other ways, e.g., by gnotobiotic
mice in which there is no native microbiota (93), by mice
that have a contrived microbiota (94), or by mice with
intestinal inflammation, which generates nitrate that is
respired by E. coli (95).

The three ways that E. coli can compete with the
microbiota for nutrients are described in detail here.
First, different E. coli strains use different nutrients
in vivo, despite using the same nutrients in the same
order in vitro (Table 2). Mutants with deletions in genes
corresponding to metabolic pathways induced in mucus
were constructed by allelic replacement (29) and were
tested for their ability to compete with their wild-type
parent strain when simultaneously fed to mice in low
numbers (10° CFU/mouse). The data obtained from
these studies showed that the human commensals E. coli
HS, E. coli Nissle 1917, E. coli MG1655, and the patho-
gen E. coli EDL933 each occupy unique nutritional
niches in the mouse intestine (Table 2 and [35, 36]).
Of the 12 sugars available in the mucus layer, E. coli
HS utilizes six for colonization: arabinose, galactose,
gluconate, N-acetylglucosamine, lactose, and ribose
(Table 2). E. coli Nissle 1917 uses a different list of seven
carbon sources to support colonization, including arabi-
nose, fucose, galactose, gluconate, N-acetylglucosamine,
and N-acetylneuraminate, and mannose (Table 2) and
E. coli MG1655 utilizes five sugars for colonization:
arabinose, fucose, gluconate, N-acetylglucosamine, and
N-acetylneuraminate (Table 2). Each of these commen-
sals is capable of colonizing mice that are pre-colonized
with any one of the others (31), and each strain is
capable of utilizing at least one sugar not used by
the others in vivo, which suggests that differences in
their in vivo sugar preferences allows them to occupy
distinct nutrient-defined niches in the intestine. Further-
more, the intestinal niche occupied by pathogenic E. coli
EDL933 is also unique and is defined by utilization of
seven sugars: arabinose, galactose, hexuronates, man-
nose, N-acetylglucosamine, ribose, and sucrose (Table 2).

That E. coli MG1655 and E. coli EDL933 display
different nutritional programs in the mouse intestine,
e.g., E. coli MG1655 uses N-acetylneuraminate but not
mannose whereas E. coli ED1.933 uses mannose but not
N-acetylneuraminate (Table 2), was surprising in view

of the fact that E. coli MG1655 and E. coli EDL933
utilize them equally well in vitro and display identical
nutritional preferences in vitro, i.e., they use sugars in
the same order in vitro as follows: N-acetylglucosamine,
gluconate, ribose, sialic acid, mannose, arabinose, mal-
tose, and fucose (36). These findings will be discussed in
the context of the “Restaurant” hypothesis below.

Since different commensal E. coli strains use different
sugars to colonize the intestine, it seemed reasonable
that a potential strategy for preventing colonization by
the enterohemorrhagic E. coli ED1.933 would be to pre-
colonize mice with a combination of commensal strains
that would fill the sugar-defined nutritional niches nor-
mally available to the invading pathogen. When mice
were pre-colonized for 10 days with either the com-
mensal E. coli MG16535, E. coli HS, or E. coli Nissle
1917 and then fed 10° CFU of the pathogenic E. coli
EDL933, E. coli Nissle 1917 limited growth of E. coli
EDL933 in the intestine (10° to 10* CFU/gram of feces),
whereas E. coli MG1655 and E. coli HS allowed growth
to higher numbers (10° to 10”7 CFU/gram of feces).
However, when E. coli EDL933 was fed to mice previ-
ously pre-colonized with the three commensal E. coli
strains (MG1655, HS, and Nissle 1917), each of
which displays a different nutritional program in vivo
(Table 2), E. coli EDL933 was eliminated from the in-
testine (31). Therefore, a combination of as few as three
commensal E. coli strains provided a barrier to E. coli
EDL933 infection.

If the basis for exclusion of E. coli EDL933 was
because the three commensal E. coli strains utilize the
nutrients needed by E. coli EDL933 to compete and
colonize, then any E. coli commensal strain or combi-
nation of strains that effectively catabolizes the sugars
used by E. coli EDL933 would prevent its colonization.
Indeed, when the ability of E. coli EDL933 to colonize
mice that were pre-colonized with E. coli HS and E. coli
Nissle 1917 was tested, which the data in Table 2 indi-
cate should be equally effective without E. coli MG1655
present, E. coli EDL933, was indeed eliminated 5 days
following association (35). However, the same two com-
mensal E. coli strains could not prevent colonization of
E. coli CFT073, an uropathogenic strain, and E. coli
E2348/69, an enteropathogenic strain (96). Therefore,
it is unlikely that any particular commensal strain(s)
of E. coli will be generally effective as a probiotic to
prevent colonization by enteric pathogens. Nevertheless,
the data support the hypothesis that nutrient consump-
tion by commensal E. coli can limit nutrient availability
to pathogens, which in turn points to the potential of
probiotics for preventing disease.
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A second way of competing for nutrients in the in-
testine is illustrated by what happens when E. coli
MG1655 adapts to the mouse intestine. When mice were
fed E. coli MG1655, non-motile fIhDC deletion mutants
appeared in the feces 3 days post-feeding and reached
approximately 90% of the total population by day 15 of
the experiment (97). These mutants had a striking colo-
nization advantage over the wild-type E. coli MG1655
parent strain. The deletions were of varying length and
began immediately downstream of the IS1 element in
the fIh D C promoter region. One such mutant, designated
MG1655%*, was a better colonizer than its parent, grew in
cecal mucus faster than its parent in vitro (90 = 2 min
generation time vs 105 + 2 min, P <0.001), and grew 15—
30% faster than its parent on a number of sugars pres-
ent in the mouse intestine (98). The E. coli flbDC operon
encodes the FIhD4C, regulatory complex, which is the
master positive regulator of the more than 40 gene fla-
gella regulon (99). The FIhD4C, complex has also been
reported to negatively regulate E. coli K-12 genes in-
volved in galactose transport, the ED pathway, and the
TCA cycle and positively regulate genes involved in ri-
bose transport (89, 100). E. coli MG1655 flhDC deletion
mutants have also been reported to be selected in the
intestines of ex-germfree mono-associated mice (101).

Several high-throughput genomic approaches were
taken to further characterize E. coli MG1655*. Whole-
genome pyrosequencing did not reveal any changes on
its genome, aside from the deletion at the fIhDC locus,
that could explain the colonization advantage of E. coli
MG1655* (89). Microarray analysis revealed modest
yet significant induction of catabolic gene systems across
the genome in both E. coli MG1655* and an isogenic
flhD mutant constructed in the laboratory (89). Cata-
bolome analysis with Biolog GN2 microplates revealed
an enhanced ability of both E. coli MG1655* and the
isogenic fIlbD mutant to oxidize a variety of carbon
sources (89). Collectively, the results showed that
intestine-adapted E. coli MG1655* is more fit than
the wild-type for intestinal colonization, because loss of
FIhD results in elevated expression of genes involved in
carbon and energy metabolism, allowing the mutants
to outcompete their wild-type parent for the same nutrients.
Hence, a second strategy for gaining a colonization
advantage is to outcompete other members of the micro-
biota for their preferred nutrients.

There is a third way that E. coli competes for nutri-
ents in the intestine. The intestine selects for mutants that
gain a colonization advantage by promoting occupation
of a distinct niche. The selection of non-motile E. coli
MG1655 flbDC mutants by the streptomycin-treated

mouse intestine is easily explained by the nutrient-niche
hypothesis, i.e., the mutants grow 15% faster iz vitro in
mouse cecal mucus and 15%-30% faster on several
sugars present in cecal mucus than E. coli MG1655 (97).
In addition to fIhDC mutants, E. coli MG1655 mutants
with reduced motility also were selected by adaptation in
the streptomycin-treated mouse intestine and these
turned out to be E. coli MG1655 envZ missense mutants
(61). E. coli MG1655 envZ missense mutants have
also been reported to be selected in the intestines of ex-
germfree mono-associated mice (102). The envZ gene
encodes a histidine kinase that is a member of the envZ/
ompR two-component signal-transduction system that
modulates gene expression in response to osmolarity.
The genes regulated include fIh DC, the porin genes omp C
and ompF, and several other genes encoding outer-
membrane proteins (103, 104). These E. coli MG1655
envZ missense mutants produced more phosphorylated
OmpR than both E. coli MG1655 and the E. coli
MG165S5 flhDC deletion mutants and produced more of
the outer-membrane porin OmpC and less of the outer-
membrane porin OmpF (90). As a result, the E. coli
MG1655 envZ missense mutants were more resistant
to bile salts and colicin V than E. coli MG1655 and the
E. coli MG1655 flhDC deletion mutants (61). One of
the E. coli MG1655 envZ missense mutants, which was
studied further, contained the envZp4q;, missense muta-
tion and grew about 15% slower iz vitro in mouse cecal
mucus and on several sugars present in mucus compared
to the fIbDC deletion mutants, yet was as good an intes-
tinal colonizer as the fIhDC deletion mutants and far
better than E. coli MG1655 (61). Moreover, E. coli
MG1655 envZps4qy, and the E. coli MG1655 flhbDC de-
letion mutants appeared to colonize equally well in one
major intestinal niche, but E. coli MG1655 envZp4qr.
appeared to use galactose to colonize a second intestinal
niche either not colonized or colonized poorly by the
E. coli MG1655 fIhDC deletion mutants. These data are
not consistent with the nutrient-niche hypothesis, but
they are consistent with what we call the “Restaurant”
hypothesis, which will be discussed below.

Since E. coli MG1655 envZpsi1, was a far better in-
testinal colonizer than wild-type E. coli MG16535, the
envZps11 gene was transferred for further study into
E. coli Nissle 1917, the human probiotic strain used to
treat gastrointestinal infections. Like E. coli MG1655
envZpai1, E. coli Nissle 1917 envZpsaq1, produced more
phosphorylated OmpR than its parent and produced
more of the outer membrane porin OmpC and less of the
outer membrane porin OmpF (90). It also became more
resistant to bile salts and colicin V, grew 50% slower
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in vitro in mucus and 15%-30% slower on several
sugars present in mucus, yet was a 10-fold better colo-
nizer than E. coli Nissle 1917 (90). Furthermore, like
E. coli MG1655 envZpayy, E. coli Nissle 1917 envZpsqr.
appeared to use galactose to colonize a second intestinal
niche either not colonized or colonized poorly by wild-
type E. coli Nissle 1917, despite not growing as well as
E. coli Nissle 1917 on galactose as a sole carbon source
(90). Moreover, despite being a better colonizer, E. coli
Nissle 1917 envZps11 was not better than its parent at
preventing colonization by enterohemorrhagic E. coli
EDL933 and, in fact, appeared to be worse (90). The
data can be explained according to our “Restaurant”
hypothesis for commensal E. coli strains, i.e., that they
colonize the intestine as sessile members of mixed
biofilms obtaining the sugars they need for growth
locally, but compete for sugars with invading E. coli
pathogens planktonically as described below.

BIOFILMS IN THE INTESTINE

Much attention has been given to the role played by
biofilms in bacterial colonization of many environments,
but until recently surprisingly little information was
available regarding biofilms in the intestine. On the
one hand, the transit time of intestinal contents is short
compared to the timescale of biofilm development (105),
so it was hard to imagine how a stable biofilm might
be maintained in the intestine, yet the kinetics of plas-
mid transfer between E. coli strains in the streptomycin-
treated mouse intestine suggested that E. coli resides in
biofilms in vivo (106). Moreover, the mucus layer itself
has many of the characteristics of a secreted biofilm
matrix. Add to this the concept of bacterial binding to
mucus components and it became reasonable to consider
the possibility of bacterial biofilms in the gastrointestinal
tract. Indeed, it’s been shown that biofilms form in the
mucus layers of the large intestines of healthy humans,
rats, baboons, and mice (107-110) and that mixed
biofilms consisting of Bacteroides, Enterobacter, and
Clostridia species form rapidly on strands of mucin in
mucus introduced into a growing human microbiota
contained in a continuous-flow culture system con-
structed to mimic the human intestine (111). Further-
more, it appears that human colonic-mucosal biofilms
and bacterial communities in feces differ greatly in com-
position (112) and dysbiosis in the community struc-
ture of mucosal biofilms may play an important role in
contributing to chronic inflammatory-bowel diseases
such as ulcerative colitis and Crohn’s disease (107, 108).
In Vibrio cholerae, biofilm formation is important for

pathogenesis (113). Intestinal biofilms would provide
the habitat for microbe-microbe interactions such as
those that are thought to occur between E. coli and the
polysaccharide-degrading anaerobes.

THE “RESTAURANT"” HYPOTHESIS

As discussed above, commensal strains of E. coli appear
to reside in mixed biofilms in the large intestines of mice
(61, 90). Moreover, commensal and pathogenic strains
of E. coli use mono- and disaccharides for growth in the
intestine (36). However, these sugars are absorbed in
the small intestine, whereas dietary fiber reaches the
large intestine intact. In contrast to the anaerobes, most
E. coli strains do not secrete extracellular polysaccharide
hydrolases (72, 114) and therefore cannot degrade die-
tary fiber-derived and mucin-derived oligo- and poly-
saccharides. Since commensal and pathogenic E. coli
strains colonize the mouse large intestine by growing in
intestinal mucus (43, 115-119), it appears likely that
E. coli depends on the anaerobes present in mucus that
can degrade oligo- and polysaccharides to provide them
with the mono-and disaccharides and maltodextrins
they need for growth. Indeed, Salmonella enterica
serovar Typhimurium, which is in the same family as
E. coli and has very similar metabolism, catabolizes
fucose and sialic acid liberated from mucosal polysac-
charides by Bacteroides thetaiotaomicron (77). It is
therefore possible that anaerobes in the mixed biofilms
provide E. coli with the sugars it needs for growth lo-
cally, rather than from a perfectly mixed pool available
to all species, which is an assumption of the nutrient-
niche hypothesis. We call the mixed biofilms that feed
the E. coli strains “Restaurants” and we hypothesize
that different commensal E. coli strains reside in differ-
ent “Restaurants” interacting physically and metaboli-
cally with different anaerobes. Each restaurant might
serve different nutrients, i.e., each commensal E. coli
strain could be exposed to a different menu, which
explains why different E. coli strains display different
nutritional programs in the mouse intestine despite
displaying identical nutritional programs in vitro (33,
36). The restaurant hypothesis can also explain how
E. coli strains that grow more slowly in mucus and on
several sugars found in mucus are better colonizers than
their parents as long as they have a higher affinity for
biofilm-binding sites than their parents. Indeed, the
outer membranes of both E. coli MG1655 envZp4q1 and
E. coli Nissle 1917 envZp4qr, are very different from
those of their parents (61, 90), which could result in
increased affinities for mixed biofilms.
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The “Restaurant” hypothesis can also explain why,
despite being a better colonizer than E. coli Nissle 1917,
E. coli Nissle 1917 envZpy41, is not better at limiting
enterohemorrhagic E. coli EDL933 colonization than
E. coli Nissle 1917 and, in fact, may be worse (90). It is
possible when E. coli EDL933 invades the mouse in-
testine it initially grows planktonically in mucus and
not in mixed biofilms. If we are correct that E. coli
Nissle1917 and E. coli Nissle1917 envZpsq1, colonize
the mouse intestine by being served specific sugars by the
anaerobes in the mixed biofilms they inhabit, then small
amounts of these sugars that escape the mixed biofilms
might be available to invading E. coli EDL933 as well
as to the small numbers of planktonic E. coli Nissle1917
or E. coli Nissle1917 envZpsqr. that leave the mixed
biofilms. Therefore, it may be that both planktonic
E. coli Nissle 1917 envZp4q1, and E. coli Nissle 1917
compete directly with planktonic E. coli EDL.933 for the
sugars that escape the biofilms or that are produced by
small numbers of planktonic members of the micro-
biota that leave the biofilms. This scenario would allow
planktonic E. coli EDL933 to grow to the extent allowed
by the available concentrations of those sugars in com-
petition with planktonic E. coli Nissle 1917 envZp4qy, or
E. coli Nissle 1917, which could explain why E. coli
Nissle 1917, the faster grower in perfectly mixed bacteria-
free mucus in vitro, appears to limit E. coli EDL933
growth in the intestine to a greater extent than does E. coli
Nissle 1917 envZpaq1, (90).

We stress that the granularity of mixed intestinal
biofilms and nutrient flow between the microbes that
reside within them is not known. These interactions
could be so finite as to allow two different E. coli strains
to interact with the same anaerobe cell and each grow
on a different preferred nutrient. If so, it will not be pos-
sible to find zones within the biofilm (i.e., restaurants)
that contain only a single population of E. coli and
interacting anaerobe partner.

CONCLUSIONS

It is becoming increasingly clear that once E. coli strains
reach the large intestine, in order to colonize, they must
enter the mucus layer and utilize nutrients there for
growth. It is also clear that different strains of E. coli
display different nutritional programs in the intestine.
However, it is not known whether a specific E. coli
commensal strain utilizes the same nutrients when it is
the only E. coli strain in the intestine compared to a
situation in which it colonizes along with several dif-
ferent commensal E. coli strains with which it must

compete for nutrients. Metabolic flexibility could be a
key requirement for successful colonization of the in-
testine by several E. coli strains simultaneously. How-
ever, the “Restaurant” hypothesis explains long-term
colonization by several established commensal E. coli
strains without invoking metabolic flexibility, i.e., each
commensal E. coli strain resides as a sessile member of
a mixed biofilm in the intestine and obtains nutrients
locally rather than from a perfectly mixed pot of nu-
trients. However, as described above, it seems likely that
when mice colonized long-term with one E. coli strain
are fed a pathogenic E. coli strain, planktonic members
of the pre-colonized strain that escape the mixed bio-
film compete directly with the invading pathogen for
nutrients from the same perfectly mixed pot, according
to the Freter nutrient-niche hypothesis. Since it appears
likely that a pathogen must be able to grow in the in-
testine in order to initiate the pathogenic process, we
hope that future research will provide a nutritional
framework for colonizing humans with a combination
of commensal E. coli strains or with one commensal
E. coli strain that has been engineered to be as effec-
tive as several strains and can serve as an effective
first line of defense against pathogenic E. coli intestinal
infections.
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