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2 Laboratorio de Inmunoquı́mica y Biotecnologı́a, Departamento de SAMP, Facultad de Ciencias Veterinarias,
Universidad Nacional del Centro de la Provincia de Buenos Aires, 7000 Tandil, Argentina

Correspondence should be addressed to Maria Paraje; gabrielaparaje@gmail.com

Received 30 August 2013; Accepted 25 September 2013

Academic Editors: H. P. Bais and T. Gupta

Copyright © 2013 Natalia Angel Villegas et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The present study was designed to determine the relationships among biofilm formation, cellular stress and release of Shiga toxin
(Stx) by three different clinical Shiga toxin-producing Escherichia coli (STEC) strains.The biofilm formation was determined using
crystal violet stain in tryptic soy broth or thioglycollate medium with the addition of sugars (glucose or mannose) or hydrogen
peroxide. The reactive oxygen species (ROSs) were detected by the reduction of nitro blue tetrazolium and reactive nitrogen
intermediates (RNI) determined by the Griess assay. In addition, the activities of two antioxidant enzymes, superoxide dismutase
(SOD) and catalase (CAT), were studied. For the cytotoxicity studies, Vero cells were cultured with Stx released of STEC biofilms.
The addition of sugars in both culture mediums resulted in an increase in biofilm biomass, with a decrease in ROS and RNI
production, low levels of SOD and CAT activity, and minimal cytotoxic effects. However, under stressful conditions, an important
increase in the antioxidant enzyme activity and high level of Stx production were observed. The disturbance in the prooxidant-
antioxidant balance and its effect on the production and release of Stx evaluated under different conditions of biofilm formation
may contribute to a better understanding of the relevance of biofilms in the pathogenesis of STEC infection.

1. Introduction

Hemorrhagic colitis, which occasionally progresses to hemo-
lytic uremic syndrome (HUS) in children and other sus-
ceptible groups of individuals, is a hallmark of human
infection with Shiga toxin-producing Escherichia coli
(STEC). Escherichia coli O157 :H7 is the serotype most
commonly associated with clinical disease and food-
associated outbreaks. However, other STEC serotypes such
as O111 and O26 have also been associated with outbreaks
and sporadic disease [1, 2]. Two types of Shiga toxins
(Stx), Stx1 and Stx2, are known and they constitute the main
virulence factors in STEC strains [3–5]. Vero cells have a high
sensitivity to Stx, and the cytotoxicity assay using this cell
line is often used as the gold standard to evaluate diagnostic
immunoassays. These cells have on their plasma membrane
receptors a high concentration of Gb3 andGb4, thus allowing

detection of Stx1, Stx2, and its variants. STEC strains released
toxins into the culture medium and the specific cytotoxicity
on Vero cells is used to determine the ability of bacterial
isolates from clinical specimens and Stx producing food. Stx2
toxin is produced and released into themedium continuously
during the exponential growth phase, while Stx1 toxin
accumulates in the periplasmic space of the bacteria and it
released at the end of the exponential phase [6, 7].

Biofilms have a microbial multicellular lifestyle, and they
are defined as organized communities of bacteria collaborat-
ing among themselves and being attached to an inert or living
surface contained in an extracellular polymeric substance
(EPS) [8]. Biofilm STEC formation has been reported on
stainless steel, glass, and polystyrene and it may be regarded
as a survival strategy of bacteria such as E. coli O157 :H7 [9–
11]. However, biofilms can cause serious problems in both
medicine and industry, through increasing the resistance of



2 The Scientific World Journal

cells to environmental stresses and protecting them from
cleaning and sanitation procedures [10, 12].

Diverse stresses, including low nutrients and oxygen
availability, high osmolarity, ethanol, and subinhibitory
antibiotic concentrations, can alter the cellular functions
associated with the oxidative metabolism, thereby stimu-
lating the production of reactive oxygen species (ROS),
including the highly reactive hydroxyl radicals (HO∙), hydro-
gen peroxide (H

2

O
2

), and the superoxide anion (O
2

−) [13].
Oxidative stress is caused by an imbalance between the pro-
ductions of oxidants, such as the free radicals, and the levels
of antioxidant defenses. A disturbance in the prooxidant-
antioxidant balance in favor of the overproduction of ROS
can result in damage to the cellular components. Another
form of stress is termed nitrosative stress, where reactive
nitrogen intermediates (RNI), such as nitrate (NO

3

−) and
nitrite (NO

2

−), are used as terminal electron acceptors under
anaerobic conditions, whereas nitric oxide (NO) is a short-
lived free radical produced enzymatically by nitric oxide
synthesis in various types of cells, and it has a great diffusion
across membranes [14]. In the antioxidant defense system,
some major enzymes involved in the detoxification of ROS
are superoxide dismutase (SOD) and catalase (CAT), among
others [15]. However, oxidative imbalance is due to an over-
production of ROS or a reduction in the oxidative defenses
is insufficient to remove the free radicals, and therefore the
antioxidant system plays a very important role in the control
of this process.

Bacteria may also encounter extracellular fluxes of ROS
from phagocytic cells during infection or when nonspecific
oxidizing biocides are employed as disinfectants. Although
adaptive responses against oxidative stress caused by these
ROS have been extensively studied with planktonic cells,
comparatively little is known about the biofilm responses.
Biofilms have been shown to become increasingly resistant to
repeated doses of antibiotics or nonspecific oxidizing biocides
[16], but the basis for this apparent acquired resistance is
currently unknown.We previously described a model system
for examining the oxidative stress generated in a biofilm
[13] but further studies are still necessary to determine
the consequences of the imbalance between the production
of oxidants and the levels of antioxidant defenses in the
biofilms. The objective of the present study was to determine
the relationships among STEC biofilm formation, cellular
stress, and release of Stx under different culture conditions.
To our knowledge, it is the first study that has attempted
to correlate this biofilm formation with the disturbance in
the prooxidant-antioxidant balance and its effect on the
production and release of Stx. The study shows that the
alteration of biofilm environment can be suitable for release
of Stx and it could contribute to the understanding of the
pathogenesis of infection by this pathogen.

2. Material and Methods

2.1. Bacterial Strains and Culture Conditions. The biofilm
formation of E. coli O157 :H7 (strain N∘ 1-Stx1 and Stx2-)
and E. coli O111 : H-(strain N∘ 2-Stx1-) clinical isolates (these

strains produce Shiga-toxin and they were associated with
HUS) and the reference strain E. coli EDL 933 (strain N∘ 3-
Stx1 and Stx2-) were studied. Clinical isolates were kindly
provided by the Microbiology Laboratory of the Pediatric
Hospital of Córdoba, Provincia de Córdoba, Argentina [14,
17]. Stock cultureswere preserved at−80∘Cusing glycerol 15%
(v/v) as the cryoprotectant, and the E. coli strains were grown
in tryptic soy broth (TSB) at 37∘C for 18 h.

2.2. Quantification of Biofilm Assay Using a Microtiter Plate
Assay. The assay for the biofilm formation used in this study
was adapted from the method of O’Toole and Kolter [18],
which is based on the ability of bacteria to form biofilm on
solid surfaces and it uses crystal violet (CV) to stain biofilms.
In brief, 200𝜇L of dilution 1/10 of overnight culture in TSB
was added in each well of flat-bottomedmicrotiter plates (96-
well, Greiner Bio-One, Germany), at 37∘C for 24 h without
shaking. After incubation, the supernatant was separated and
the flat-bottomed microtiter plate was washed twice with
phosphate buffer solution (PBS) pH 7.2.

Diverse culture conditions were assayed using TSB alone,
with added glucose (0.5%) or mannose (0.5%) [13, 19].
The influence of the reduction conditions was assayed in
thioglycollate broth, and the microaerobic conditions were
also studied [13]. TSB or thioglycollate was used as negative
controls to obtain a background value. H

2

O
2

is considered a
major endogenous source of oxidative stress [20]. Influence
of oxidative stress induced by exogenous application of H

2

O
2

(Merck) was assayed in concentrations ranging from 2.5 to
30mM and was added to each well with TSB.

Biofilm formation was investigated under static condi-
tions at 37∘C for 24 h. After incubation, the supernatant
was separated for determining cellular stressand cytotoxicity
effect and the plates were washed three times with 200𝜇L of
PBS. Then plates were air dried for 24 h prior to staining the
adherent biofilms in each well and stained with 200 𝜇L of 1%
(w/v) CV in water for 30min. Finally, the plates were rinsed
with very gently running distilled water until no stain was
visible. The quantitative analysis of the biofilm production
was performed by extracting the CV with 200𝜇L per well of
the bleaching solution: ethanol/glacial acetone (70 : 30), and
the optical density (OD) was determined at 595 nm using
a microplate reader (Model 680 BioRad, Hercules, CA). All
strains were tested in three independent experiments on
different days.

The average OD from the control wells (ODc) was
subtracted from the OD

595

nm of all test wells. A microtiter
plate biofilm assay was performed in triplicate for all strains,
and the averages and standard deviations were calculated
for all experiments. Strains were classified as follows: OD ≤
ODc = no biofilm producer; ODc < OD ≤ (2×ODc) = weak
biofilm producer; (2 ×ODc) < OD ≤ (4 ×ODc) = moderate
biofilm producer; and (4 × ODc) < OD = strong biofilm
producer [21].The biofilm biomass unit (BBU)was arbitrarily
defined with 0.1 OD

595

equal to 1 BBU [13].

2.3. Assays for Oxidative Metabolites and Antioxidative Activ-
ity. The production of ROS was detected in the supernatant
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Figure 1: Quantification of biofilm formation of STEC strains by
crystal violet (CV) staining expressed in biofilm biomass units
(BBU): (a) in TSB; with addition of 0.5% glucose; in thioglycollate
medium alone and with the addition of 0.5% glucose. (b) ROS
ratio (ROS/BBU) determined by NBT assay. (c) NO and BBU ratio
(NO/BBU) determined by Griess method. Error bars represent the
standard deviations of themeans of three independent experiments.
#
𝑃

versus TSB < 0.01 and #
𝑃

versus thioglycollate medium < 0.01
being considered statistically significant.

(0.1mL) by the reduction of nitro blue tetrazolium (NBT-
Sigma) to form an insoluble dark blue diformazan precipitate
(0.1mL of NBT 1mg mL−1). The by-products of the assay
are proportional to the ROS generated in biofilms and were
measured at 540 nm [13, 22].

NO production was determined by the measurement
of nitrite in cell free-supernatants using the Griess reac-
tion. Briefly, Griess reagent was prepared by mixing equal
volumes of sulfanilamide (1.5% in 1NHCl) and N-(1-
naphthyl)ethylenediamine dihydrochloride (0.13% in sterile
distilled water). A volume of 200𝜇L of Griess reagent was
then mixed with 100𝜇L of sample aliquots, and this mix-
ture incubated for 15min in the dark. The OD at 540 nm
was measured with an automated microplate reader (Bio-
Rad, Hercules, CA, USA), and the concentration of nitrite
calculated from a NaNO

2

standard curve [14, 22].
Total SOD activity was assayed photochemically based

on the inhibition of NBT reduction. The ability of SOD to

inhibit the reduction of NBT by the O
2

− generated through
the illumination of riboflavin in the presence of oxygen and
the electron donor methionine was evaluated in the samples
[15]. The results were expressed as SOD activity (%)/BBU.

ToquantifyCATactivity, themature biofilmswere treated
with 50 𝜇L of PBS, 40 𝜇L of 0.2M H

2

O
2

, and 200𝜇L of
0.2M potassium dichromate (K

2

Cr
2

O
7

) solution in glacial
acetic acid.The curve of the reaction was made with different
concentrations of pure CAT plus the reagents mentioned
above.TheODwas determined at 570 nmand the results were
expressed as CAT (U)/BBU [16].

2.4. Vero Cell Cytotoxicity Assay. The cytotoxicity of culture
supernatants was evaluated by Vero cells assay. Vero cells
were grown at 37∘C in Eagle’s minimal essential medium
(MEM) supplemented with 10% (vol/vol) fetal calf serum,
100mg/liter penicillin, 200mg/liter streptomycin, and
2.2 g/liter NaHCO

3

in an atmosphere of 5% CO
2

. The
supernatant of each strain and culture conditions was
centrifuged at 17,228×g, 10min at 4∘C, filtered with 0.22 𝜇m
membrane and 50 𝜇L of each one was inoculated in 96-well-
plates containing 4 × 104 freshly trypsinized Vero cells and
incubated 48 h at 37∘C in a 5% CO

2

atmosphere. The cell
monolayers were fixed with 10% (v/v) formaldehyde and
then stained with 0.2% (w/v) CV in PBS [6, 7]. The cytotoxic
effects were evaluated after 24 h by lightmicroscopy.Then, for
each sample, images from three randomly selected positions
were obtained and analyzed using an Olympus Fluoview
FV 1000. For image analysis, three investigators (N.A.V.,
I.A., and M.G.P.) evaluated the images independently in
a blinded retrospective manner. Results are expressed as
damage percentage (%) with respect to controls± SD LPS.
E. coli EDL 933 (strain N∘ 3) was used as positive control,
and a strain Stx positive without cytotoxic effect was used as
negative control (E. coli serotype O15 : H21) [23].

2.5. Statistical Analysis. All experiments were performed
in triplicate, and numerical data are presented as means
with error bars representing standard deviations. The data
were statistically analyzed by using ANOVA followed by the
Student-Newman-Keuls test for multiple comparisons. The
differences between means were assessed with a ∗

𝑃

versus
TSB < 0.01 and #

𝑃

versus thioglycollate medium < 0.01
being considered statistically significant.

3. Results

3.1. Influence of Different Culture Conditions on Oxidant
Metabolites and Antioxidant Defenses in Biofilms. A quanti-
tative analysis of biofilm formation indicated that the three
STEC strains showed “weak biofilm producer” (according
to the scale described in Materials and Methods) biofilm
formation in TSB (Figure 1(a)).When we studied the effect of
adding 0.5% glucose to TSB on the production of biofilms, a
significant increase in biofilm production “moderate biofilm
producer” was seen in E. coli O157 :H7 (strain N∘ 1) (BBU =
1.31 ± 0.02 to 3.23 ± 0.07) and a smaller but still significant
increase in both E. coli O111 (strain N∘ 2) (BBU = 1.52 ±
0.06 to 1.82 ± 0.06) and E. coli EDL 933 (strain N∘ 3)
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(BBU = 1.50 ± 0.07 to 1.93 ± 0.05) ( ∗
𝑃

versus TSB < 0.01).
Biofilm formation was increased similarly with the addition
of mannose to TSB (data not shown).

To evaluate other culture conditions in which the oxygen
tension was smaller (reduction and atmospheric conditions),
biofilms were grown in thioglycollate medium. The resulting
values of BBU were for strain N∘ 1 (BBU = 1.41 ± 0.05),
N∘ 2 (BBU = 1.59 ± 0.04), and N∘ 3 (BBU = 1.58 ± 0.03).
No difference was observed between TSB and thioglycollate
medium (∗

𝑃

versus TSB < 0.01). When assays were
performed with thioglycollate medium in aerobiosis with the
addition of glucose, an increase in biofilm formationwas seen
in strain N∘ 1 (BBU = 1.87 ± 0.05), N∘ 2 (BBU = 2.16 ± 0.07),
and N∘ 3 (BBU = 1.97 ± 0.07) too ( #

𝑃

versus thioglycollate
medium < 0.01).

Data in Figure 1(b) indicate that STEC produced
detectable amounts of ROS in the biofilms evaluated by NBT
and these assays were useful in determining the relationship
between ROS and the biofilm formation (BBU). When
glucose was added in TSB medium, biofilm formation
increased and the production of ROS was reduced, with an
important 14-fold decrease observed in strain N∘ 3 and an
8-fold in the others. We also observed that when the assays
were performed with thioglycollate medium, the biofilm
formation resulted in less production of ROS compared to
TSB and the glucose influence was not so markedly (3 to
6-fold) (#

𝑃

versus thioglycollate medium < 0.01).
The production of detectable amounts of RNI (NO) in

the biofilm is shown in Figure 1(c).We found similar patterns
of stress metabolites (ROS and NO) in the biofilms with
the addition of glucose. When this medium was replaced by
thioglycollate medium, a decrease of NO was also observed.

The SOD and CAT activities were studied to attempt to
correlate biofilm formation with changes in ROS and RNI
production under different culture conditions (Figure 2).The
SOD and CAT activity were decreased significantly in TSB
with the addition of glucose and in thioglycollate medium
and correlated with low levels of ROS.

The total production of biofilm, oxidant metabolites, and
antioxidant enzymes in TSB or thioglycollate medium was
found to be approximately the same for both aerobic and
microaerobic conditions (data not shown).

In order to assess the oxidative imbalance, H
2

O
2

was
added as exogenous stressor. In Figure 3, the results obtained
with strain N∘ 1 are represented, similar results were obtained
with strains N∘ 2 and the reference strain. H

2

O
2

significantly
reduced the biofilm BBU after 24 h of incubation and it
was concentration-dependent, with less biofilm formation
occurring at 30mM. A reduction of the levels of ROS and
RNI was also detected (Figure 3(a)). The H

2

O
2

added seems
to have the capacity to stimulate SOD and CAT activity in
biofilms (Figures 3(b) and 3(c)). The change in the levels of
antioxidant defenses was increased, as a protective response
to stressful conditions due to the ROS and RNI levels.

3.2. Cytotoxic Effects on Vero Cells. To further evaluate the
potential damage induced by Stx, the percentage of cytotox-
icity was evaluated on Vero cells. The results summarized in
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Figure 2:Antioxidant defenses in biofilms of STEC: (a) SODactivity
(%)/BBU and (b) CAT (U)/BBU in TSB; with addition of 0.5%
glucose; in thioglycollate medium and in thioglycollate medium
with addition of 0.5% glucose. Each column shows the mean± SEM
of three independent experiments. ∗

𝑃

< 0.01 respect to TSB and #
𝑃

versus thioglycollate medium < 0.01.

Figure 4 indicate that the Stx release was observed from the
biofilms in different growing conditions, being proportional
to the stress observed of biofilms and it resulted into a
significant increase in cellular toxicity. However, the maxi-
mum effect of cytotoxicity was observed with the supernatant
treated with H

2

O
2

.

4. Discussion

Although outbreaks of STEC infections have been primarily
associated with eating undercooked ground beef, a variety of
other foods have also been implicated as vehicles. Moreover
cross-contamination of foods can occur in food-processing
plants and during subsequent handling and preparation,
resulting in a wide range of foods being implicated in
outbreaks of STEC infections. The ability of bacteria to
attach to and produce biofilms on surfaces may influence
their persistence during manufacturing and retail, as well
as their ability to cause disease, with biofilm cells often
being more resistant to various stresses than their planktonic
counterparts [9, 10, 24].

Many investigations have disclosed that the presence of
an appropriate sugar source is essential for the production of
a polysaccharidematrix, with a low sugar concentration often
being a limiting factor. Glucose, over a narrow concentration
range, has been previously reported to increase biofilm
formation [13, 25], and our results are in agreement with
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Figure 3: Biofilm formation with H
2

O
2

treatment (range of 2.5 to 30mM) of strain N∘ 1. (a) Biofilm biomass units (BBU) (-⧫-), relation of
ROS and BBU (ROS/BBU) (-◼-), and NO and BBU relation (NO/BBU, nitrite expressed in 𝜇M) (-󳵳-); (b) SOD activity (%)/BBU (-∙-); and
(c) CAT (U)/BBU (-∘-). Each line shows the mean± SEM of three independent experiments.

these results, since the clinical strain of E. coli O157 :H7 (N∘
1) increased by 2.5-fold the biofilm formation, with other
strains also leading to a higher formation, but to a lesser
extent compared to strain N∘ 1. We also found that mannose
increased the biofilms. Biofilms formed under favorable
conditions may protect STEC against the sanitizers used to
decontaminate and produce processing environments [10].

Microcolony structures, due to endogenous oxidative
stress, are specific sites within biofilms where enhanced
genetic adaptation and evolutionary change take place [26].
In addition, Boles and Singh showed that endogenous oxida-
tive stress in biofilms promotes antibiotic resistance and that
the addition of antioxidants reduces the diversity of biofilms
[27]. Recently, it was observed that the increased production
of oxidative stress causes changes in the extracellular polysac-
charide (EPS) in biofilms of S. aureus [13]. In STEC, our
results demonstrated that in presence of sugars or low oxygen
there was an increase in biofilms respect to basal conditions,
and this could have been related to the low production of ROS
and NO observed in the present investigation.

The role of the periplasmic antioxidant enzymes of the
Shiga toxin-producing E. coli O157 :H7 in the formation of

biofilms was studied by proteomic analyses, and significantly
higher expression levels of zinc superoxide dismutase and
thiol peroxidase were found in STEC cells grown under
biofilm conditions than these under planktonic conditions
[28]. We found in STEC, that SOD and CAT levels are low
under favorable conditions, because the levels of ROS are also
low in these biofilm cells.

Mai-Prochnow et al. [26] have suggested that H
2

O
2

allows to (directly or indirectly) kill a subpopulation of cells
and increase in DNA damage and mutation frequency of the
remaining live cells and shown that high CAT activity can
prevent penetration of hydrogen peroxide into biofilms of
Pseudomonas aeruginosa at a concentration of 50mM. In our
work, it was observed that biofilm development is influenced
by the production of oxidants metabolites and the levels
of antioxidant defenses, which can be variable in different
environmental conditions. We found that SOD and CAT
levels are low under favorable conditions, because the levels
of ROS are also low in these biofilm cells. We suggest that
when this balance was altered by unfavorable conditions, an
increase in the ROS production induces an overproduction
of cellular stress, resulting in higher levels of SOD and CAT
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Figure 4: Vero cell cytotoxicity assay. (a) The percent specific cytotoxicity was determined by microscopic quantification after staining the
cells. (b) Micrographs of one representative independent experiment of strain N∘ 1 are depicted (right). ∗

𝑃

versus TSB < 0.01 and #
𝑃

versus
thioglycollate medium < 0.01 being considered statistically significant.

being able to successfully detoxify the ROS generated by
H
2

O
2

.
Our results show that there was release of toxin from

biofilms, with this being the first report in STEC.This release
was influenced by different culture conditions and a link was
found between this release and the stress present in sessile
cells. In conclusion, in the present study, we have observed
that biofilm development was influenced by the production
of oxidants (ROS and RNI) and the levels of antioxidant
defenses (SOD and CAT), which may have been affected
by environmental conditions and this has an effect on the
release of Stx. This oxidative imbalance produced by the
alteration of biofilm environmentmay have an important role
in the pathogenesis of infections caused by E. coli strains that
produce this toxin. In future, an improved understanding
of the mechanisms involved in the release of toxins during
biofilm formationwould contribute to a better understanding
of the pathogenesis of STEC.
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[7] D. Fernández, A. Krüger, R. Polifroni et al., “Characterization of
Shiga toxin producing Escherichia coli O130:H11 and O178:H19
isolated from dairy cows,” Frontiers in Cellular and Infection
Microbiology, vol. 8, pp. 3–9, 2013.

[8] W. Costerton, R. Veeh, M. Shirtliff, M. Pasmore, C. Post, and
G. Ehrlich, “The application of biofilm science to the study
and control of chronic bacterial infections,” Journal of Clinical
Investigation, vol. 112, no. 10, pp. 1466–1477, 2003.

[9] J.-H. Ryu, H. Kim, and L. R. Beuchat, “Attachment and biofilm
formation by Escherichia coliO157:H7 on stainless steel as influ-
enced by exopolysaccharide production, nutrient availability,
and temperature,” Journal of Food Protection, vol. 67, no. 10, pp.
2123–2131, 2004.

[10] J.-H. Ryu and L. R. Beuchat, “Biofilm formation by Escherichia
coli O157:H7 on stainless steel: effect of exopolysaccharide and
curli production on its resistance to chlorine,” Applied and
Environmental Microbiology, vol. 71, no. 1, pp. 247–254, 2005.

[11] R. C. Santos Mendonça, A. M. F. Morelli, J. A. M. Pereira, M.
M. de Carvalho, and N. L. de Souza, “Prediction of Escherichia
coli O157:H7 adhesion and potential to form biofilm under
experimental conditions,” Food Control, vol. 23, no. 2, pp. 389–
396, 2012.

[12] A. Reisner, K. A. Krogfelt, B. M. Klein, E. L. Zechner, and
S. Molin, “In vitro biofilm formation of commensal and
pathogenic Escherichia coli strains: impact of environmental
and genetic factors,” Journal of Bacteriology, vol. 188, no. 10, pp.
3572–3581, 2006.

[13] J. E. Arce Miranda, C. E. Sotomayor, I. Albesa, and M.
G. Paraje, “Oxidative and nitrosative stress in Staphylococcus
aureus biofilm,” FEMS Microbiology Letters, vol. 315, no. 1, pp.
23–29, 2011.

[14] J. L. Baronetti, N. A. Villegas, M. G. Paraje, and I. Albesa,
“Nitric oxide-mediated apoptosis in rat macrophages subjected
to Shiga toxin 2 from Escherichia coli,” Microbiology and
Immunology, vol. 55, no. 4, pp. 231–238, 2011.

[15] J. L. Baronetti, N. Angel Villegas, V. Aiassa, M. G. Paraje, and
I. Albesa, “Hemolysin from Escherichia coli induces oxidative
stress in blood,” Toxicon, vol. 70, pp. 15–20, 2013.

[16] V. Aiassa, A. I. Barnes, and I. Albesa, “Resistance to cipro-
floxacin by enhancement of antioxidant defenses in biofilm
and planktonic Proteus mirabilis,” Biochemical and Biophysical
Research Communications, vol. 393, no. 1, pp. 84–88, 2010.

[17] C. Albrecht, M. G. Pellarin, J. Baronetti, M. J. Rojas, I.
Albesa, and A. J. Eraso, “Chemiluminescence determination
of antioxidant property of Zizyphus mistol and Prosopis alba
during oxidative stress generated in blood byHemolyticUremic
Syndrome-producing Escherichia coli,” Luminescence, vol. 26,
no. 6, pp. 424–428, 2011.

[18] G. A. O’Toole and R. Kolter, “Initiation of biofilm formation
in Pseudomonas fluorescens WCS365 proceeds via multiple,
convergent signalling pathways: a genetic analysis,” Molecular
Microbiology, vol. 28, no. 3, pp. 449–461, 1998.

[19] A. N. Hassan and J. F. Frank, “Attachment of Escherichia coli
O157:H7 grown in tryptic soy broth and nutrient broth to apple
and lettuce surfaces as related to cell hydrophobicity, surface
charge, and capsule production,” International Journal of Food
Microbiology, vol. 96, no. 1, pp. 103–109, 2004.

[20] J. D. Baldeck and R. E. Marquis, “Targets for hydrogen-
peroxide-induced damage to suspension and biofilm cells of
Streptococcus mutans,” Canadian Journal of Microbiology, vol.
54, no. 10, pp. 868–875, 2008.

[21] L. Rivas, G. A. Dykes, and N. Fegan, “A comparative study
of biofilm formation by Shiga toxigenic Escherichia coli using
epifluorescence microscopy on stainless steel and a microtitre
plate method,” Journal of Microbiological Methods, vol. 69, no. 1,
pp. 44–51, 2007.

[22] M. G. Paraje, S. G. Correa, I. Albesa, and C. E. Sotomayor,
“Lipase of Candida albicans induces activation of NADPH
oxidase and l-arginine pathways on resting and activated
macrophages,” Biochemical and Biophysical Research Commu-
nications, vol. 390, no. 2, pp. 263–268, 2009.

[23] V. I. Landoni, M. de Campos-Nebel, P. Schierloh et al., “Shiga
toxin 1-induced inflammatory response in lipopolysaccharide-
sensitized astrocytes ismediated by endogenous tumor necrosis
factor alpha,” Infection and Immunity, vol. 78, no. 3, pp. 1193–
1201, 2010.

[24] J. Chen, S. M. Lee, and Y. Mao, “Protective effect of exopolysac-
charide colanic acid of Escherichia coliO157:H7 to osmotic and
oxidative stress,” International Journal of FoodMicrobiology, vol.
93, no. 3, pp. 281–286, 2004.

[25] Y. Lim, M. Jana, T. T. Luong, and C. Y. Lee, “Control of glucose-
and NaCl-induced biofilm formation by rbf in Staphylococcus
aureus,” Journal of Bacteriology, vol. 186, no. 3, pp. 722–729,
2004.

[26] A. Mai-Prochnow, P. Lucas-Elio, S. Egan et al., “Hydrogen
peroxide linked to lysine oxidase activity facilitates biofilm
differentiation and dispersal in several gram-negative bacteria,”
Journal of Bacteriology, vol. 190, no. 15, pp. 5493–5501, 2008.

[27] B. R. Boles and P. K. Singh, “Endogenous oxidative stress
produces diversity and adaptability in biofilm communities,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 105, no. 34, pp. 12503–12508, 2008.

[28] Y. H. Kim, Y. Lee, S. Kim et al., “The role of periplasmic antiox-
idant enzymes (superoxide dismutase and thiol peroxidase)
of the Shiga toxin-producing Escherichia coli O157:H7 in the
formation of biofilms,” Proteomics, vol. 6, no. 23, pp. 6181–6193,
2006.



Submit your manuscripts at
http://www.hindawi.com

Scientifica
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013

Toxins
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN 
Pain

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Antibiotics
International Journal of

Toxicology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

BioMed Research 
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Volume 2013

ISRN 
Medicinal 
Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in 
Pharmacological 
Sciences

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Pharmaceutics

ISRN 
Pharmaceutics

Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 Autoimmune 
Diseases

ISRN 
Pharmacology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Drug Delivery
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Emergency Medicine 
International
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Anesthesiology
Research and Practice

Medicinal Chemistry
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN 
Toxicology

Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013

The Scientific 
World Journal


