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Common salt (NaCl) is frequently used by the food industry to add flavor and to act as a humectant in order to reduce the water
content of a food product. The improved health awareness of consumers is leading to a demand for food products with reduced
salt content; thus, manufacturers require alternative water activity-reducing agents which elicit the same general effects as NaCl.
Two examples include KCl and glycerol. These agents lower the water activity of a food matrix and also contribute to limit the
growth of the microbiota, including foodborne pathogens. Little is currently known about how foodborne pathogens respond to
these water activity-lowering agents. Here we examined the response of Salmonella enterica serovar Typhimurium 4/74 to NaCl,
KCl, and glycerol at three time points, using a constant water activity level, compared with the response of a control inoculum.
All conditions induced the upregulation of gluconate metabolic genes after 6 h of exposure. Bacteria exposed to NaCl and KCl
demonstrated the upregulation of the osmoprotective transporter mechanisms encoded by the proP, proU, and osmU (STM1491
to STM1494) genes. Glycerol exposure elicited the downregulation of these osmoadaptive mechanisms but stimulated an in-
crease in lipopolysaccharide and membrane protein-associated genes after 1 h. The most extensive changes in gene expression
occurred following exposure to KCl. Because many of these genes were of unknown function, further characterization may iden-
tify KCl-specific adaptive processes that are not stimulated by NaCl. This study shows that the response of S. Typhimurium to
different humectants does not simply reflect reduced water activity and likely involves systems that are linked to specific
humectants.

Addition to foods of compounds known as humectants that
function to control water activity (aw) is an age-old process of

enhancing stability, adding flavor, and limiting food spoilage. The
oldest and most widely used of these humectants is common salt
(NaCl) and various sugars, such as sucrose and fructose. Other
humectants that can be used include glycerol, sorbitol, and KCl.
Many Gram-negative bacteria, including Salmonella, require an
aw of �0.93 for growth, with optimum growth occurring at aws of
0.995 to 0.98 (1, 2). However, this pathogen has the ability to
persist within food production environments, wherein the water
activity levels are often carefully controlled. Further, Salmonella is
the etiological agent in the majority of outbreaks linked to low-
water-activity foods (3–5). Some studies have begun to shed light
on the mechanisms by which Salmonella survives within a dry
factory environment (6–8). Similarly, a study of the response(s) of
Salmonella in a low-water-activity food product reported that the
bacteria enter a dormant state during which �5% of the genome is
transcribed (9).

When bacterial cells sense a decrease in the moisture availabil-
ity of the external environment, they must respond rapidly to
balance the internal osmotic pressure in order to maintain viabil-
ity. Initially, it was believed that the type of response was not
dependent on the nature of the osmolyte and that an increase in
potassium influx was a common feature of adaption (10–12).
However, Shabala et al. demonstrated that the osmotic response
of Escherichia coli is highly dependent on the nature of the solute
(13). In the latter investigation, the response of E. coli to NaCl and
sucrose was examined after 10 min, with 40% of the differentially

expressed genes sharing no similarity between the two solutes
studied (13). These authors concluded that osmotic challenge,
whether it is from ionic or nonionic humectants, can elicit rather
different responses (13).

The response elicited by Gram-negative bacteria upon expo-
sure to elevated levels of NaCl has been a topic of investigation for
many years (14–18). Due to the harmful health effects (such as
elevated blood pressure and cardiovascular disease) associated
with high levels of NaCl consumed in the diet, improved con-
sumer awareness of these negative health effects has resulted in the
demand for products with much lower salt contents, and this con-
sumer-driven pressure has led manufacturers to seek out alterna-
tive humectants. Two such alternative compounds are KCl and
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glycerol. The transcriptional mechanisms by which Salmonella re-
sponds to the stress exerted by these humectant compounds have
not been thoroughly examined.

Both NaCl and KCl are classified as ionic humectant com-
pounds; hence, it is hypothesized that the bacterial transcriptional
response to these chemicals may be very similar. In contrast, glyc-
erol is a nonionic sugar alcohol (polyol) that freely permeates the
cytoplasmic membrane (19). How Salmonella responds to glycer-
ol-induced low-water-activity conditions is unknown.

The aim of this study was to examine the transcriptional re-
sponse of Salmonella enterica serovar Typhimurium 4/74 to the
three humectants NaCl, KCl, and glycerol while the water activity
level was maintained at a sublethal level (aw � 0.95) over a 24-h
period. This particular strain was chosen for analysis as it has been
widely used as a model bacterium in the context of transcriptomic
analysis, allowing comparison of the data obtained by transcrip-
tomic analysis with data obtained by other methods, such as by
desiccation (6), and under other infection-relevant conditions
(20). These data may help food manufacturers develop and vali-
date improved food safety measures for low-moisture foods.

MATERIALS AND METHODS
Bacterial strains and inoculum preparation. S. Typhimurium 4/74 was
used throughout this study (21). This isolate was stored on cryobeads
(Technical Service Consultants Ltd., Heywood, Lancashire, England) at
�80°C, resuscitated from storage directly on Luria-Bertani (LB) agar
(Difco), and incubated overnight at 37°C.

Similar to the experiments described previously by Finn et al., a setting
with a static system of growth at 24°C was used throughout the study to
model a storage setting that may be encountered by these bacteria within
a low-moisture food and its production setting (6). A standard early-
stationary-phase (ESP) inoculum was prepared in LB medium using a
previously described method (6). Briefly, 10 ml of LB medium was inoc-
ulated using one colony from an LB agar plate and incubated statically at
24°C for 48 h. The culture was then diluted 1:100, and 200 �l of this cell
suspension was used to inoculate 500 ml LB medium to yield approxi-
mately 4 � 103 CFU/ml. The culture was incubated statically at 24°C until
it reached early stationary phase (approximately 17 h) and served as the
inoculum for further study.

Exposure to humectants and RNA extraction. The MICs of NaCl,
KCl, and glycerol for isolate 4/74 were previously determined (22). On the
basis of these results, sublethal concentrations of all three compounds
were prepared in Luria-Bertani broth without NaCl (LO; 10 g/liter tryptone,
5 g/liter yeast extract) as follows: 6% (wt/vol) NaCl (aw � 0.951), 9.25%
(wt/vol) KCl (aw � 0.953), and 10% (vol/vol) glycerol (aw � 0.951). Each of
these medium preparations was measured using a LabMaster-aw meter (No-
vasina AG, Lanchen, Switzerland).

Samples (10 ml) of the inoculum culture were centrifuged at 3,200 �
g for 10 min. The supernatant was discarded, and the cell pellet was
washed three times with phosphate-buffered saline (PBS). Finally, the
cells in the pellet were resuspended in 10 ml of NaCl, KCl, or glycerol
medium and incubated statically at 24°C for 1, 6, or 24 h. These time
points were chosen to examine the cellular changes that take place at a
relatively early exposure (1 h) and the adaptive mechanisms that take
place after a longer-term exposure (24 h).

To extract RNA from the samples indicated above, cells were harvested
by centrifugation at 3,200 � g for 10 min; the majority of the supernatant
(approximately 9 ml) was discarded and the pellet was resuspended in the
remaining liquid (approximately 1 ml). The cell suspension was then
transferred to a 1.5-ml microcentrifuge tube and centrifuged for 1 min at
20,800 � g. The supernatant was subsequently discarded, and the cell
pellet was resuspended on ice in 1 ml TRIzol reagent (Invitrogen). Total
RNA was extracted as described by Kröger et al. (20) and treated with
DNase I as described by Finn et al. (6). RNA was adjusted to a final con-

centration of �1,300 ng/�l with RNase-free water, as determined using a
NanoDrop ND-1000 spectrophotometer (NanoDrop, Wilmington, DE,
USA).

An Agilent RNA 6000 Nano kit (catalog no. 5067-1511) was used to
assess RNA quality using an Agilent 2100 bioanalyzer (Agilent, Stockport,
United Kingdom) per the manufacturer’s instruction.

Microarray preparation and transcriptome analysis. Microarray
slides were prepared, scanned, and analyzed as outlined previously (6).
Methods are described in brief below. A SALSIFY2 array was used in this
study (Agilent microarray design identifier [AMADID] 037367; Agilent
Technologies, Santa Clara, CA). A previously described common refer-
ence approach which avoids the use of dye-swap experiments and allows
comparison of the data obtained under different conditions was used
(23–25). In this case, S. Typhimurium 4/74 genomic DNA (gDNA) was
used as the standard reference. RNA was reverse transcribed to cDNA and
fluorescently labeled with Cy3-dCTP, while S. Typhimurium 4/74 gDNA
was fluorescently labeled with Cy5-dCTP. The labeled gDNA and cDNA
were hybridized to the array for 18 h at 65°C and washed according to the
manufacturer’s instructions (Agilent). Scanning was carried out using an
Agilent microarray scanner (Agilent Technologies, Santa Clara, CA) at a
5-�m resolution, with the green and red photomultiplier tube (PMT)
values being set to 100% and the extended-dynamic-range (XDR) value
being 0.1. The data were then extracted from the resulting multi-image
TIFF files using Feature Extraction software (Agilent Technologies) and
analyzed using GeneSpring (version 7.3) software (Agilent Technologies,
Santa Clara, CA).

The whole experiment was carried out in triplicate. Expression profiles
were normalized to the profile of the inoculum ESP culture. Genes with
statistically significant (P � 0.05) changes in expression above or below a
3-fold cutoff were identified using a t test. Only genes that were found by
two or more probes to have changes in expression above or below the
3-fold cutoff were included in the analysis.

qRT-PCR. Quantitative reverse transcriptase (RT) PCR (qRT-PCR)
was used for validation of the microarray results. The oligonucleotide
primers used are listed in Table S1 in the supplemental material. On the
basis of the results obtained from the analysis of the microarray data, two
upregulated genes and two downregulated genes from each sample were
selected, and the corresponding expression, normalized to the expression
of the nondifferentially expressed 16S rRNA gene, was determined by
qRT-PCR. Due to the degree of differential expression observed, it was not
possible to use the same genes for validation across all time points. A
Qiagen QuantiTect SYBR green RT-PCR kit (Qiagen, Hilden, Germany)
was used for the preparation of samples, and reactions were carried out in
a Mastercycler ep realplex real-time PCR system (Eppendorf, Hamburg,
Germany). In brief, the amplification reaction mixtures were as follows:
12.5 �l 2� QuantiTect SYBR green RT-PCR master mix, 10 pmol of each
forward and reverse primer (see Table S1 in the supplemental material),
50 ng of each RNA sample taken at a designated time, and 0.25 �l of
QuantiTect reverse transcription mix, along with RNase-free water in a
final volume of 25 �l. Cycling conditions were as follows: 30 min at 50°C
(to allow the synthesis of cDNA) and 95°C for 15 min, followed by 40
cycles of 15 s at 94°C, 30 s at 60°C, and 30 s at 72°C. Three biological
replicates were carried out, and relative gene expression was calculated
using the 2���CT threshold cycle (CT) method (26).

Microarray data accession number. Data from this study have been
deposited in the NCBI Gene Expression Omnibus (GEO) database and
assigned GEO accession number GSE69857.

RESULTS

A comparison of the overlap between the humectant-induced
gene expression profiles is outlined in Fig. 1. Full lists of the gene
expression changes detected after exposure to NaCl, KCl, and
glycerol are included in Data Sets S1, S2, and S3 in the supplemen-
tal material, respectively. Table 1 outlines the total number of
differentially expressed genes across all conditions. The transcrip-
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tomic data were confirmed by qRT-PCR (see Fig. S1 in the sup-
plemental material) and showed statistically significant (P � 0.05)
changes in the levels of expression of the genes tested compared to
those for the control. The same expression patterns of the selected
genes were observed both in the transcriptomic arrays and by
qRT-PCR, thereby validating these data.

Identification of differentially expressed genes after 1 h of
exposure to the three humectants. To determine the changes in
gene expression relative to that of the inoculum, transcriptomic
data were compared to those from an early-stationary-phase
(ESP) culture. After 1 h, cells exposed to glycerol showed the most
extensive changes in gene expression, with 363 genes being up-
regulated and 343 genes being downregulated in comparison to
the gene expression profile in the control inoculum. This was fol-
lowed by NaCl (with which 222 genes were differentially ex-
pressed) and, finally, KCl (with which 165 genes were differen-
tially expressed). Interestingly, although the aw measurements of
all three medium preparations were nearly identical, no upregu-
lated genes were shared between all three conditions after 1 h of
exposure. In contrast, a total of 40 of the same genes were upregu-
lated following a 1-h exposure to NaCl and KCl. A summary of the
transcriptional changes occurring in the bacterial cell at 1 h after
exposure is outlined in Fig. 2.

(i) Central metabolism and energy derivation after 1 h of ex-
posure. In the presence of glycerol, several changes in the expres-
sion of genes that control central metabolism occurred. Genes
involved in all reactions within the tricarboxylic acid (TCA) cycle
were significantly downregulated. The upregulation of both glu-
conate transporters (gntT and gntU) suggests that gluconate up-
take is increased in response to glycerol. This is supported by the
increased expression of the gntK, edd, and eda genes, which en-
code enzymes of the Entner-Doudoroff pathway, which subse-
quently converts gluconate to pyruvate and glyceraldehye-3-
phosphate. Upregulation of the purAB genes could indicate an
alternative method of fumarate formation mediated via the con-
version of L-aspartate. Genes involved with a nitrite reductase
complex (encoded by nirB and nirD) also showed increased ex-
pression, as did the nitrite transporter nirC, suggesting that nitrite
may function as an alternate electron acceptor.

Genes involved in fatty acid degradation exhibited increased
expression under KCl-induced stress and to a lesser extent under
NaCl-induced stress. Following NaCl exposure, the prpR regula-
tory gene showed increased expression, implying activation of the
prp-encoded system that catabolizes the short-chain fatty acid
propionate.

Finally, expression of the asnA and asnB genes suggests that

FIG 1 Comparison of genes differentially expressed over the course of the experiment. The numbers indicate the number of up- or downregulated genes. Red
circles, NaCl-exposed samples; blue circles, KCl-exposed samples; yellow circles, glycerol-exposed samples.

TABLE 1 Genes differentially expressed in comparison to expression of an ESP control

Time (h)

No. of genes differentially expressed in response toa:

NaCl KCl Glycerol

Upregulated Downregulated Total Upregulated Downregulated Total Upregulated Downregulated Total

1 63 159 222 47 118 165 363 343 706
6 170 311 481 334 409 953 160 290 450
24 71 183 254 207 472 679 77 179 256
a Differential expression was a �3-fold change with a P value of �0.05.
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FIG 2 Summary of proposed changes occurring after 1 h of exposure to NaCl (a), KCl (b), or glycerol (c).
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exposure to both KCl and NaCl caused an increase in L-asparagine
biosynthesis. NaCl-exposed cells also showed an increased level of
glnA expression, which is involved in glutamine synthesis. Glyc-
erol induced the upregulation of a number of histidine biosyn-
thetic genes.

(ii) Osmoadaptation after 1 h of exposure. Several genes as-
sociated with osmoadaptation were downregulated following ex-
posure to glycerol. These included the proP, proU, and osmU
(STM1491 to STM1494) osmoprotectant transporter genes as well
as genes for glutamate formation and trehalose biosynthesis (both
via otsAB and conversion via glycogen). In contrast, at this time
point the putP gene, encoding a proline permease, was upregu-
lated under KCl-induced stress, as was the case for other trans-
porters (proV, osmY) as well as putP under NaCl-induced stress.
Expression of the kdpE response regulator of the KdpD-KdpE
two-component system controlling the potassium transport
operon was depressed upon addition of KCl.

(iii) Membrane and motility changes after 1 h of exposure.
Extensive changes may be occurring in the structure of the cell
membrane following glycerol-induced stress, with many genes as-
sociated with membrane formation, lipopolysaccharide (LPS)
biosynthesis, O-antigen expression, and membrane stability being
upregulated (see Data Set S3 in the supplemental material). The
tol-pal system was also upregulated in the presence of glycerol
(27). The upregulation of flagellar gene expression was also noted.

In contrast to the findings for samples exposed to glycerol,
exposure to both KCl and NaCl caused the downregulation of a
number of genes associated with LPS synthesis (see Data Sets S1
and S2 in the supplemental material). The transcriptional activa-
tor rfaH, required for full expression of the rfb and rfa operons,
was downregulated by 3.8-fold in comparison to the control level
following KCl-induced stress, while expression of mdoC, the gene
responsible for the succinylation of osmoregulated periplasmic
glucans, decreased by 60-fold (28). Similarly, four genes of each of
the rfa (rfaI, rfaJ, rfaY, rfaZ) and rfb (rfbN, rfbU, rfbV, rfbX) loci
showed decreased expression following NaCl-induced stress. At 1
h after NaCl exposure, the upregulation of the periplasmic nega-
tive regulator of the CpxRA system, cpxP, was noted. It was also
observed that adrA, the regulator of cellulose formation, showed
significant downregulation when cells were exposed to NaCl.

(iv) Other stress response mechanisms observed after 1 h of
exposure. At 1 h, the phage shock genes pspABCD were upregu-
lated after NaCl- and KCl-induced stress. In contrast, glycerol
exposure reduced the expression of the regulator of this operon,
pspA, at this time point.

The upregulation of putrescine production via the conversion
of L-arginine by the speA and speB genes was observed in the pres-
ence of glycerol (although the downregulation of speF indicated
that formation via ornithine was unnecessary).

Identification of differentially expressed genes after 6 h of
exposure to the three humectants. In contrast to the results ob-
tained at 1 h after exposure to the three humectants, at 6 h after
exposure, KCl-exposed cells showed the most differentially ex-
pressed genes according to the change in expression of greater
than 3-fold (P � 0.05) compared with that of the ESP control,
with 334 genes being upregulated and 409 genes being downregu-
lated (total number of genes with changes in expression, 743)
(Table 1). In the case of exposure of the strain to NaCl and glyc-
erol, there were 481 and 450 differentially expressed genes, respec-

tively. Figure 3 summarizes the changes in expression in the bac-
terial cell occurring at 6 h postexposure to humectants.

(i) Central metabolism and energy derivation after 6 h of ex-
posure. After 6 h of exposure, samples exposed to all three humec-
tants showed increased expression of genes encoding gluconate
uptake and the degradative enzymes of the Entner-Doudoroff
pathway. Glycerol-exposed cells appeared to also generate pyru-
vate via the garL gene, which imparts the ability to cleave 5-de-
hydro-4-deoxy-glucarate and 2-dehydro-3-deoxy-D-glucarate to
yield tartronate semialdehyde and pyruvate, respectively. Similar
to the observations for the samples at 1 h after exposure, the py-
ruvate formate lyase activator was upregulated following exposure
to glycerol. In contrast, at this time point the repressor of the
pyruvate dehydrogenase complex, pdhR, was upregulated follow-
ing exposure to both KCl and NaCl. The NaCl-exposed samples
also showed an increase in the expression of the poxB gene, which
encodes the enzyme pyruvate dehydrogenase, which catalyzes the
conversion of pyruvate to acetate.

In contrast to the findings at the 1-h time point, the effect of
glycerol exposure on central metabolic pathways was somewhat
reduced after 6 h, with the levels of many genes involved in the
TCA cycle returning to control levels. At 6 h, the upregulation of
asrA and asrC, two components of the anaerobic sulfite reductase
(along with asrB), was noted after growth in glycerol. Some com-
ponents of other alternative respiration systems, such as nirB (ni-
trite reductase) and ttrB (part of tetrathionate reductase), were
also upregulated. Increases in the expression of pdu genes (which
functions in propanediol utilization) and the associated regulator
(pocR) were also noted in glycerol-exposed cells.

KCl-exposed cells displayed an increase in glutamine synthesis,
while it was noted that ethanolamine utilization was downregu-
lated under all conditions at this time point.

(ii) Osmoadaptation after 6 h of exposure. While NaCl- and
KCl-exposed cells revealed the significant upregulation of osmo-
protectant transport systems (proP, proU, osmU) and trehalose
biosynthesis, the opposite effect was observed under glycerol-in-
duced stress, which caused the decreased expression of all these
processes. Similarly, the osmotically inducible protein encoded by
osmC was upregulated following 6 h of exposure to NaCl, but the
same gene was downregulated in glycerol-exposed samples. The
mngB gene codes for the synthesis of the osmolyte mannosylglyc-
erate and was upregulated only in NaCl-exposed samples (29).

(iii) Membrane and motility changes after 6 h of exposure.
During glycerol exposure, the extensive gene expression changes
related to the cell membrane and LPS synthesis appeared to have
stabilized by 6 h, with the levels of regulation of the majority of
these returning to control levels (see Data Set S3 in the supple-
mental material). However, the opposite observation was made
following KCl treatment, which upregulated a number of genes
linked to LPS and O-antigen synthesis, as well as the wzzB O-an-
tigen chain length regulator. However, downregulation of the LPS
core biosynthesis regulator rfaH (also downregulated in NaCl-
exposed samples) and the rcsB and yojN (rscD) 2-component sys-
tem was also noted. The cpxP repressor of the cxpRA-regulated
envelope stress response was also upregulated in KCl-exposed
bacteria.

A range of flagellar genes, including the fliA sigma factor, as
well as a number of chemotaxis-associated genes was downregu-
lated under all three conditions, consistent with a reduction in
motility.

Finn et al.
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FIG 3 Summary of proposed changes occurring after 6 h of exposure to NaCl (a), KCl (b), or glycerol (c).
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(iv) Other stress response mechanisms observed after 6 h of
exposure. Heat shock protein-encoding genes hslSTUV and htpG
and the phage shock psp operon were upregulated in the presence
of both KCl and NaCl after 6 h of exposure. The katE and sodC
genes were both upregulated in NaCl-exposed samples, indicating
a response to oxidative stress within these cells; in contrast, katE
was again downregulated in glycerol-exposed cells.

A number of DNA repair genes were upregulated in samples
exposed to NaCl (nfo, recN) and KCl (mutS, nei, nfo). Similarly,
the groEL, groES, and dnaK chaperone genes were also upregu-
lated, perhaps reflecting the presence of misfolded proteins.

It was found that the ramA global regulatory gene was overex-
pressed after both KCl and NaCl exposure, while both rpoE and
rpoH were upregulated by KCl exposure alone. Glycerol-exposed
samples continued to show the downregulation of the rpoS sigma
factor.

(v) Inorganic ion transport and metabolism changes after 6 h
of exposure. Several genes involved in the transport of inorganic
and transition metal ions were upregulated in KCl- and NaCl-
exposed samples. These included the chaA Ca2	/H	 antiporter
and the copA Cu(I) transport P-type ATPase. Also, NaCl-induced
stress uniquely resulted in the upregulation of the Na	/H	 anti-
porter (nhaA) and its activator, nhaR. In contrast, the zntA and
mgtB P-type ATPase-encoding genes were upregulated under
KCl-induced stress alone.

Identification of differentially expressed genes after 24 h of
exposure to the three humectants. Following 24 h of exposure,
cells were compared to the control inoculum in order to discern
what overall changes occurred following inoculation. These re-
sults are described below and summarized in Table 1 and Fig. 4.

(i) Central metabolism and energy derivation after 24 h of
exposure. Among the genes involved in the TCA cycle, downregu-
lation was recorded for the isocitrate dehydrogenase-encoding
gene (icdA) in both NaCl- and glycerol-exposed samples, while
the malate dehydrogenase (mdh) gene showed a significant de-
crease across all three exposure conditions. The poxB gene, which
catalyzes the conversion of pyruvate to acetate, was upregulated
only in KCl-exposed samples. Genes involved in the Entner-Dou-
doroff pathway no longer showed any significant change in ex-
pression in cells exposed to the three humectants in comparison to
their expression in the control inoculum.

Compared to the gene expression in the control inoculum,
histidine biosynthetic genes were upregulated after 24 h of expo-
sure to all three humectants. Conversely, the eut genes required for
ethanolamine utilization were significantly downregulated in each
sample.

(ii) Osmoadaptation after 24 h of exposure. After 24 h, only
samples exposed to KCl showed any significant changes in the
expression of genes related to osmoregulation compared to their
expression in the control inoculum. These included the proU os-
moprotectant transporter genes, the osmotically inducible osmC
gene, and the mngB gene, responsible for the formation of the
osmolyte mannosylglycerate. In KCl-exposed cells, the upregula-
tion of genes involved in galactose metabolism and the subsequent
conversion of galactose to UDP-glucose was noted. The formation
of UDP-glucose also links in with the biosynthesis of the disaccha-
ride trehalose, the gene for which was also upregulated.

(iii) Membrane and motility changes after 24 h of exposure.
Similar to the data observed at an earlier time point, the cpxP
repressor of the Cpx envelope stress response was upregulated by

KCl exposure compared to its level of exposure in the control
inoculum. However, contrary to the results obtained after 6 h of
KCl exposure, after 24 h a number of genes involved in O-antigen
expression and LPS biosynthesis were downregulated, as were
genes for a number of outer membrane proteins (nmpC, ompC,
ompS, ompW), when their expression was normalized to that of
the ESP inoculum.

(iv) Other stress responses observed after 24 h of exposure.
Similar to the findings at previous time points, after 24 h the psp
phage shock genes showed a significant induction in the presence
of both NaCl and KCl compared to that in the control inoculum
culture. In KCl-exposed samples, the mutM gene, involved in
DNA repair, as well as the groEL, groES, and dnaJ chaperone-
encoding genes, which are responsible for preventing the aggrega-
tion of misfolded proteins under stress, were upregulated. Simi-
larly, the hslORSTUV and htpG heat shock protein-encoding
genes, as well as the katE and sodC genes highlighted above, were
upregulated by more than 3-fold in the KCl-exposed samples.

Samples exposed to all three humectants showed the down-
regulation of genes responsible for flagellar assembly and che-
motaxis (including the fliA sigma factor), comparable to the ef-
fects observed at the 6-h time point.

DISCUSSION

In the context of the modern food industry, consumer awareness
about the adverse health effects linked to a diet containing high
levels of salt has resulted in pressure being placed on manufactur-
ers to formulate low-aw food matrices that contain reduced
amounts of NaCl. The humectant compounds KCl (an ionic hu-
mectant) and glycerol (a nonionic humectant) may offer an ac-
ceptable alternative and could thus be considered. Currently, little
is known about the bacterial response to either KCl or glycerol.

In this investigation, the transcriptomic response of S. Typhi-
murium 4/74 following exposure to NaCl, KCl, and glycerol was
studied. The response to NaCl-induced stress has been the main
focus of investigations of osmoregulation in S. Typhimurium (14,
30, 31) and was included here to directly compare the transcrip-
tomic responses across all three conditions.

Shabala et al. challenged the previously held view that bacteria
respond to the stress imposed by all osmotic compounds in the
same manner, for example, by inducing an initial increase of K	

influx, regardless of whether that compound is ionic or nonionic
(13). That study investigated the response of E. coli to NaCl (ionic)
and sucrose (nonionic) after a 10-min osmotic shock. The data
indicated that only 57% of the same genes were upregulated after
exposure to the two compounds (13). These data are generally
supported by the findings of this study, insofar as NaCl and KCl
(ionic compounds) induced changes in gene expression that were
more comparable than the changes found in cells exposed to glyc-
erol (nonionic) under the same aw conditions.

Previous studies have focused on the effect(s) of equal molar
concentrations of ionic salts (rather than equal aw levels) to inves-
tigate their impact on the growth of Listeria monocytogenes (32,
33). These studies reported that different ionic compounds can
have various bacteriostatic effects when applied at the same molar
concentrations. However, Boziaris et al. demonstrated that al-
though equal molar concentrations of NaCl and KCl have similar
aw values, they appear to exert similar effects on growth (32). In
this study, our focus was to investigate the transcriptional re-
sponses arising from the use of three humectants applied at the
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FIG 4 Summary of proposed changes occurring after 24 h of exposure to NaCl (a), KCl (b), or glycerol (c).
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same aw, comparing the effects of two ionic compounds with the
effect of a nonionic compound, glycerol.

A summary of the changes in gene expression occurring at each
time point are broadly summarized in Fig. 2, 3, and 4. The key
findings are discussed below.

Alterations in metabolic pathways. The transcriptomic data
obtained in this study suggest that the addition of humectants
gives rise to the upregulation of gluconate transport and the deg-
radative components of the Entner-Doudoroff pathway respon-
sible for catalyzing the interconversion of gluconate to form
pyruvate and glyceraldehyde-3-phosphate. This upregulation oc-
curred at an earlier time point in response to glycerol than the time
of its occurrence in response to NaCl and KCl. These data suggest
that the cells are switching to gluconate as their primary carbon
source in response to glycerol. Interestingly, this pathway has also
been found to be upregulated in S. Typhimurium during macro-
phage infection, and it is also necessary for E. coli colonization of
the murine large intestine, suggesting a virulence-associated role
(34, 35). In the current study, we show that induction of the Ent-
ner-Doudoroff pathway may also be linked to changes in the water
activity of the environment. These enzymatic reactions may also
provide the cell with reducing power in the form of NADPH,
which can be utilized by other cellular reactions (36).

During glycerol-induced stress, it appears that cells may be
reducing their oxygen consumption by upregulating alternative
(anaerobic) respiration systems. This is reflected by the down-
regulation in the expression of genes encoding the enzymes of the
TCA cycle and the concomitant upregulation of the pyruvate for-
mate lyase activator enzyme. When active, pyruvate formate lyase
catalyzes the nonoxidative conversion of pyruvate to formate and
acetyl coenzyme, which can then act as a substrate for mixed acid
fermentation. The downregulation of acetate formation by poxB
was also observed. Similarly, if the cells shift to an anoxic metab-
olism format, alternative terminal electron acceptors are required
in order to support the provision of cellular energy. In line with
this hypothesis, over the course of the study it appeared that glyc-
erol-exposed cells may have been using alternative respiration sys-
tems involving fumarate, nitrite, sulfite, and also, possibly, tetra-
thionate. However, other studies have reported that these systems
can sometimes show elevated expression independently of
whether the relative electron acceptors are present (37). This ob-
servation will require further investigation in the future. Similarly,
in KCl- and NaCl-exposed cells, the corresponding components
of the terminal electron transport chain exhibited signs of reduced
activity after 6 h of incubation.

It is important to consider the fact that the metabolic shift to a
more anoxic state that is observed may also result from the storage
conditions rather than the humectants themselves. As stated
above, conditions were chosen to simulate a probable storage en-
vironment of a food matrix; therefore, no aeration was used. Re-
cently, Metris et al. demonstrated that E. coli experiences a switch
from aerobic to fermentative metabolism in the presence of os-
motic stress (38).

Osmoprotection. When bacteria are exposed to osmotic
stress, cells need to rapidly respond in order to cope with and
adjust to the changes in external osmolarity that are occurring.
This ability to adapt is integral to prevent the loss of water from the
bacterial cell and ultimately aid survival. A common method of
adaptation for bacteria is the accumulation of osmoprotectant
molecules, including proline and glycine betaine (4, 16, 39). These

low-molecular-weight solutes prevent water loss from the cell
and, due to their neutral charge, can be transported into the cell
and accumulate to high concentrations without affecting cellular
function (16). Previous reports have outlined the contributions of
the ProP, ProU, and OsmU osmoprotectant transport systems to
survival under NaCl-induced stress (14, 17, 18, 40–42). The up-
regulated transcription of proP and proU only 6 min after NaCl
addition was reported previously (14). The data from NaCl-ex-
posed samples obtained in this study support and further validate
these models. However, under KCl-induced stress, the induction
of all three transporters did not appear to be among the initial
responses of these cells, as little increase in expression was ob-
served at 1 h postexposure. In contrast, all were significantly up-
regulated after 6 h. This response of the bacterial cell to the os-
motic conditions imposed by KCl begins to suggest that
alternative osmoregulatory mechanisms may exist to cope with
the initial stages of KCl exposure. In support of this observation,
another gene coding for an alternative proline transporter, putP,
showed significant upregulation at 1 h after KCl addition. How-
ever, this transporter is thought to transport proline only for use as
a carbon or nitrogen source and may not play a role in osmoad-
aptation (43–46). As these studies concentrated on the response to
NaCl, it is possible that the PutP transporter may have an osmo-
protective role in the presence of KCl during the early stages of
osmotic shock, which is a unique observation.

Conversely, glycerol induced the downregulation of proP,
proU, and osmU. Although these cells were exposed to the same aw

levels, these data highlight the differential responses occurring in
relation to osmoadaptation in the presence of alternative humec-
tants, in this case, ionic compounds versus a sugar alcohol.

Trehalose is another compatible solute commonly synthesized
in response to an osmotic downshift (14, 39, 47, 48) and has also
been found to play a role in desiccation tolerance (6, 8). As ex-
pected, the expression of the trehalose biosynthetic genes in re-
sponse to both KCl- and NaCl-induced stress increased at 6 h
postexposure. Once again, glycerol demonstrated an alternative
effect, with trehalose-related gene expression being reduced at 1
and 6 h, again highlighting the unique features in the mechanisms
of the response to these humectant compounds, even though wa-
ter activity remained constant.

The upregulation of fatty acid catabolism was previously doc-
umented for Salmonella cells desiccated onto stainless steel, where
it was postulated that this may occur because glucose is diverted
into trehalose biosynthesis (6). As such, it was believed that the
bacterial cell may switch to fatty acid catabolism to generate the
energy needed for biological reactions. Both KCl and NaCl expo-
sure induced a similar scenario, by which increased trehalose syn-
thesis was coupled with an increase in the expression of fad genes,
but only after 1 h of exposure.

Taken together, these data highlight the fact that S. Typhimu-
rium 4/74 does not appear to respond to a reduction in water
activity in a uniform manner, as the changes observed following
exposure to glycerol did not follow traditional osmoadaptive re-
sponse mechanisms.

Membrane. The ability of bacterial cells to stabilize and rein-
force the membrane structure is key to survival under osmotic
pressure. If the bacterial cell is unable to cope with the turgor
pressure encountered, cell lysis and death will result. Changes in
the expression of membrane-associated genes may be exerted in
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order to combat alterations in osmolarity due to the presence of
glycerol and the associated reduction in intracellular water.

In this study, the addition of glycerol led to the significant
upregulation of a large number of genes associated with LPS (rfa
locus) and O-antigen (rfb gene cluster) biosynthesis as well as the
oafA gene, required for the acetylation of the O antigen, as mea-
sured after 1 h of exposure (49–51). Linked with this, the Tol-Pal
system, consisting of seven genes, ybgC-tolQ-tolR-tolA-tolB-pal-
ybgF, also elicited significant increases in expression. This system
appeared to have a variety of functions related to the stability and
function of the outer membrane. It is also thought to be required
for the import of group A colicins across the cell envelope (52).
Aside from its role in membrane integrity, other functions of this
system include the export of cell envelope proteins through the
periplasm and the assembly of outer membrane proteins, and
TolA has also been shown to play a role in the expression of the O
antigen (27, 53–55). Gerding et al. reported that the Tol-Pal pro-
teins have a role to play in cell division in E. coli, where they
localize to the site of division and appear to promote proper in-
vagination of the outer membrane (56).

The upregulation of the biosynthesis of putrescine was re-
corded after 1 h of exposure to glycerol. This divalent cation is
essential for growth and exerts a number of functions within the
cell. In regard to membrane and surface structures, this polyamine
is one of the constituents of the outer membrane of Salmonella
species (57, 58). It also plays a role in the regulation of the pore size
of outer membrane proteins, including OmpF and OmpC, with
binding of putrescine causing closure and a resulting decrease of
outer membrane permeability (59).

The CpxRA system is an important factor controlling several
genes in response to envelope stress (37). In terms of activation,
this system is usually in an active state and is controlled by the
activity of CpxP, which acts like a switch in order to turn off
activity (37). The cpxP gene, coding for this periplasmic negative
regulator, exhibited increased expression following exposure to
both NaCl and KCl, suggesting that this particular envelope stress
pathway is not required during osmotic challenge with these ionic
compounds.

In contrast to the cellular effects observed following exposure
to glycerol, 1 h of exposure to either NaCl or KCl resulted in a
decrease in expression of genes associated with LPS biosynthesis.
Conversely, after 6 h of exposure to KCl, a number of genes be-
longing to the rfa and rfb loci and the wzzB O-antigen length
regulator were upregulated. However, decreases in the expression
of the LPS core biosynthesis regulator (rfaH) and the rcsB and
yojN (rscD) two-component system controlling capsule, cell divi-
sion, and the expression of wzz genes were observed (60, 61).
Deletion mutants of S. Typhimurium lacking the rfaH gene have
been used as vaccine candidates in mice (61). As such, the decrease
in expression of this regulator under NaCl- and KCl-induced
stress may be associated with a decrease in the virulence of the
pathogen. Overall, the effect and extent of membrane changes
following KCl-induced stress remain unclear and may require fur-
ther investigation.

In regard to membrane stress responses, both NaCl and KCl
induced a significant upregulation of the psp genes at both 1 and 6
h postexposure. This system was first described in E. coli and was
linked to filamentous phage infection (62). It has since been
shown to play a role in the response to other stressors, such as
ethanol, heat, and osmotic shock, where it is believed that the

dissipation of the proton motive force (PMF) is an inducing signal
(37, 63, 64). Induction of this system suggests that it may be the
primary method of preservation of the membrane and the PMF
when Salmonella cells are exposed to both NaCl and KCl.

The 
E regulator, encoded by rpoE, showed a significant induc-
tion only under KCl-induced stress. This gene plays a pivotal role
in the regulation of genes involved in the response to envelope
stress, like that encountered under a variety of environmental
stress conditions, such as heat, starvation, and osmotic shock with
NaCl (65–68). Recent studies have also shown that this regulator is
required for long-term desiccation survival (6, 7). Here, we dem-
onstrate that this gene may also function in the response to enve-
lope stress induced by KCl.

Overall, these data show that while the water activity has an
effect on the cell membrane, the type of effect is highly dependent
on the solute in question.

Ion transport. KCl-stressed bacteria also showed significant
increases in the expression of a Zn2	 export gene, zntA. Similar to
copper, zinc is also essential for growth but can become toxic at
high levels, thereby leading to the induction of export pumps (69).
Interestingly, in comparison to the findings for the control inoc-
ulum, all three humectants were shown to induce increases in the
expression of zraP, a zinc resistance gene, after 6 and 24 h of
exposure. ZraP is a membrane-bound protein that undergoes
cleavage under high Zn2	 concentrations, leading to the release of
the zinc-binding region into the periplasm (70). These results in-
dicate that under these growth conditions, zraP may be important
in sustaining viability.

Other differentially expressed regulatory mechanisms. Sig-
nificant changes in the expression of a number of (global) regula-
tory genes were also observed. Interestingly, ramA was induced
under NaCl- and KCl-induced stress but not in response to glyc-
erol. Overexpression of this gene can lead to an increase in the
level of resistance to certain antimicrobial compounds due to in-
creased AcrAB-TolC expression and decreases in OmpF expres-
sion (71–73). Bailey et al. demonstrated that the involvement of
the RamA regulon may not be restricted to antimicrobial resis-
tance-related genes/mechanisms alone but may also play a role in
virulence; however, this was not tested in vivo (73). Nonetheless,
whether alterations in environmental aw levels exert an effect on
the antibiotic resistance profile of Salmonella has not been de-
scribed and may prove an interesting avenue for future investiga-
tion.

Conclusions. In conclusion, this study investigated the tran-
scriptomic response of S. Typhimurium 4/74 to three humectants
used in the modern food industry. It compared differential gene
expression in response to all three compounds at a common water
activity level. These data document the differential responses ob-
served following exposure to ionic (NaCl, KCl) and nonionic
(glycerol) water-reducing agents. In comparison to the differen-
tial gene expression achieved by exposure to NaCl and glycerol,
cells exposed to KCl showed overall higher levels of differential
gene expression. As many of these genes were of unknown func-
tion, further characterization may uncover specific survival mech-
anisms in response to KCl. After exposure to all three humectants,
cells showed increases in gluconate metabolism and zraP expres-
sion. Cells exposed to NaCl and KCl demonstrated increases in
osmoprotectant transport along with increases in the expression
of the ramA and psp genes. In contrast, glycerol induced the down-
regulation of osmoprotectant transporters but gave rise to an ini-
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tial increase in the expression of membrane-associated genes, per-
haps indicating stabilization of the outer membrane.

Finally, the test conditions applied in this study were not typ-
ical of those used to completely inhibit growth, and it is also the
case that organisms such as Salmonella would not be controlled in
foods by preventing or slowing growth; complete elimination
would be the goal. The significance of the work reported here
should be considered in this context, and further work that builds
on these findings should take account of this. Nevertheless, it is
hoped that this information will allow food manufacturers to gain
a deeper understanding of how foodborne microorganisms may
respond when introduced to alternative water-limiting ingredi-
ents.
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