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Abstract

Wheat and rice are the most important food crops in agriculture providing 
around 50% of all calories consumed in the human diet. While both are C3 
species, the evolution and domestication of wheat and rice occurred in very 
different environments, resulting in diverse anatomical and metabolic adapta-
tion. This review focuses on the current understanding of their adaptation in 
an agronomic context. The similarities and differences between wheat and rice 
are discussed, focusing on traits related to phenology, photosynthesis, assimilate 
partitioning, and lodging resistance, these being the main abiotic drivers of yield 
expression in most agro-ecosystems. Currently, there are significant knowledge 
gaps in the major biological processes that account not only for differential 
adaption among cultivars within each species, but even between the two species. 
By addressing what is known as well as where gaps exist in a comparative 
context, this review aims to highlight translational research approaches that 
could provide insights into the genetic improvement of both crops.

Introduction

Wheat and rice are important cereal crops providing more 
than 50% of daily caloric intake worldwide. Taxonomically, 
wheat and rice represent different subfamilies of the 
Poaceae: Pooideae and Bambusoideae, respectively, and 
represent important models for comparative studies of 
the grasses because various aspects of their biology have 
been well studied (Sorrells et  al. 2003; Shingaki-Wells 
et  al. 2011; Cantu et  al. 2013). Both wheat and rice have 
been domesticated in different climates, wheat is almost 
exclusively a dry-land winter crop, whereas rice is typi-
cally grown under tropical climates where most of the 
production comes from anaerobic/flooded soils (Nagai and 
Makino 2009; Shingaki-Wells et  al. 2011). Such distinct 
evolutionary backgrounds triggered differential anatomical 
and developmental aspects resulting in various optimal 
growth conditions, yet they operate similar central meta-
bolic processes (C3 metabolism).

In the recent decades, the comparative biology between 
wheat and rice has been the subject of many studies 
(Sorrells et  al. 2003; Shingaki-Wells et  al. 2011; Cantu 
et  al. 2013; for review, see Valluru et  al. 2014). The 
study of two species may be useful in highlighting 
mechanisms of yield potential and stress adaptation in 
view of their domestication. Such distinct knowledge 
bases can lead to new knowledge, hypotheses, and pre-
dictions about related species and contribute to our 
knowledge of crop species evolution and adaptation to 
environment. Crop improvement programs can use 
comparative biology to transfer information on “traits” 
between relatively close species as well as more distant 
taxonomic groups. The genetic and molecular bases of 
yield-related traits were recently presented as a useful 
comparative biology approach between wheat and rice 
for application in translational research (Valluru et  al. 
2014). This review compares agronomic and physiologi-
cal traits in two crop species.
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Grain Yields of Wheat and Rice: 
Genetic Gains and Impacts

Genetic gains for wheat yields in the post Green Revolution 
period are widely reported to be in between 0.5% and 
0.8% per year and globally the average annual absolute 
genetic gain of spring wheat reached about 
40  kg  ha−1  year−1 (Morgounov et  al. 2010) despite the 
similar relative gains in irrigated and rainfed environments 
(Rajaram and Braun, 2008). Genetic gains in spring wheat 
continue to date (1995–2010) in both irrigated (Sharma 
et  al. 2012) and rainfed environments (Manès et  al. 2012) 
at an average of 0.6% and 1.0% p.a., respectively. Genetic 
gains in winter wheat appear to be stagnating in many 
parts of the world including the great plains of North 
America and the Europe (Brisson et  al. 2010; Graybosch 
and Peterson 2010).

In rice, absolute yield gain in the range of 16–80 
kg ha−1 year−1 were reported, being greater for Philippines 
(75–80  kg  ha−1  year−1) and smaller for Brazil (16–45 
kg  ha−1  year−1) during the period 1966–1981 (Peng et  al. 
2000; Breseghello et al. 2011). The hybrid super rice shows 
10–20% yield gain in China (Peng et  al. 2008), while at 
IRRI tropical hybrids have showed 11–14% yield gain in 
Philippines (Fischer and Edmeades 2010). A recent com-
parison between hybrids and inbreds found 14–18% yield 
advantage for the hybrids (Bueno and Lafarge 2009). 
Overall, improvements in yield gain have been achieved 
through an ideotype approach (e.g., shorter plants, more 
fertile tillers, high early vigor, and CGR [crop growth 
rate], larger panicles) and the development of hybrid rice 
(which itself benefited from the ideotype approach).

Agronomic and Physiological Trait 
Associated With Yield Potential

With recent emphasis on food security, two major avenues 
have been highlighted to improve the genetic potential 
of yield in wheat: (1) increasing photosynthetic capacity 
and efficiency to raise the biological threshold in terms 
of total plant mass available for yield formation; and (2) 
optimizing partitioning to grain while maintaining lodging 
resistance such that increased genetic potential is realized 
as agronomic gains (Reynolds et  al. 2009; Foulkes et  al. 
2011; Parry et al. 2011). Prebreeding to combine favorable 
expression of yield potential traits – focused on achieving 
a more optimal balance between assimilation capacity 
(source) and grain sites (sink) – has been successful in 
increasing yield levels in international trials (Reynolds 
et  al. 2015).

In rice, trait-based selection was used to add specific 
traits into new plant types (e.g., NPTs) whereby NPTs 
served as a basis for the generation of high-yielding 

cultivars/hybrids with larger panicles and higher tillering 
fertility (Peng et  al. 2008). However, yield-based selection 
has shown to be more effective in increasing grain yields 
in rice than trait-based selection; although some research-
ers question the relevance of the traits used (Yuan et  al. 
2011) like the higher tillering fertility that may be inversely 
correlated to the tillering capacity (Lafarge and Bueno 
2009). Here, we briefly summarize important agronomic 
and physiological traits contributing to yield potential.

Crop phenology

For cereals, reproductive growth is clearly the most critical 
physiological function to understand and modify thereby 
permitting accumulation of biomass to be translated into 
maximal expression of yield. While wheat exhibits a great 
plasticity for phenology (Sadras et  al. 2009), it is yet to 
achieve its theoretical maximum harvest index of 0.6, and 
typically expresses values between 0.4 and 0.5, suggesting 
major opportunities for yield improvement without even 
changing RUE (radiation use efficiency) or biomass 
(Foulkes et  al. 2011). Breeding efforts during the 20th 
century have reduced sowing to anthesis duration in durum 
wheat in Spain (8  days) and Italy (2  days) (Álvaro et  al. 
2008; Isidro et  al. 2011), although this trend has reversed 
in some recent CIMMYT cultivars (Fischer 2001; Underdahl 
et  al. 2008). The duration between sowing to terminal 
spikelet decreased while the duration between booting to 
anthesis increased, which diminished floret abortion (24%), 
increased grain number (23%) and grain set (13%) from 
old to modern cultivars (Isidro et  al. 2011). Furthermore, 
the stem elongation period has been shown to exhibit 
the greatest sensitivity to environment, independent of 
the major phenological genes (Garcia 2011). It is known 
that earliness per se affects the duration of preanthesis 
phases and spike development in cereals (Faricelli et  al. 
2009; Borràs-Gelonch et  al. 2011, 2012). These studies 
suggest that earliness per se could be important to 
understand phenological phase plasticity to the environ-
ment, and it remains to be determined to what degree 
environmental effects confound or interact with genetic 
expression of phenological phases.

In rice, the genetic variation in postflowering period 
(from flowering to maturity) is relatively small for a given 
environment (Peng et  al. 2000), while the preflowering 
phase (from sowing to flowering) varies greatly (Vergara 
and Chang 1985; Yin et  al. 1997a). The cultivars released 
at IRRI since 1980s show slightly decreased crop duration 
(6  days) than the cultivars released before 1980s (Peng 
et  al. 2000) due to shortened vegetative period, while the 
reproductive and grain-filling periods were largely unaf-
fected. One of the objectives of the reduced crop cycle 
in the tropics is to grow three crops a year. In Texas, 
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rice cultivars (1944–1992) showed a 12–18  days decrease 
in heading time (Tabien et  al. 2008). The Brazilian cul-
tivars (1984–2009) showed an average genetic loss of 
−0.25  day  years−1 in days to heading (Breseghello et  al. 
2011). Taken all together, both wheat and rice breeding 
programs have affected phenological pattern with crop 
duration and the length of the preanthesis period slightly 
decreased in both crops.

Photosynthesis and related traits

Light interception

LAI (leaf area index) beyond 3 is generally considered 
not an option for increasing light interception in wheat 
(Parry et  al. 2011) because no apparent improvement in 
percent of light interception was observed in historical 
cultivars (Acreche et  al. 2009). In contrast, LAI reaches 
9 in rice depending on the developmental stage (Lü et  al. 
2007; Zheng et  al. 2008; Zhang et  al. 2009). Recent 3D 
models suggest that mean leaf inclination angles of rice 
cultivars range between 65° and 75° (70–90 in the upper 
canopy, while it is 30–60 in the lower canopy) (Zheng 
et  al. 2008).

Modern rice and wheat cultivars have more erect and 
longer leaves in the upper canopy (flag-leaf). On average, 
rice plants receive 700–800  μmol photons m−2  sec−1 at 
the canopy top, with a total light interception of 80% of 
incident (Zheng et  al. 2008). It has been estimated that 
leaves, panicles, and stems contribute about 80%, 15%, 
and 0.5% to the total light interception in rice (Saitoh 
et  al. 2002). Reducing the panicle height to below top 
leaves or removing panicles (this allowed top leaves to 
access more light) have shown to increase leaf gas exchange 
rate about 15–50% (Setter et  al. 1995; Saitoh et  al. 2002). 
While more erect leaves/smaller leaves may allow light 
distribution to the lower canopy (Horton 2000), the ge-
netic manipulation of leaf position, size, and thickness/
density still needs to be explored since its manipulation 
is not straightforward.

Leaf photosynthesis

The relationship between the Amax (light-saturated only) 
and grain yield is not straightforward (Long et  al. 2006) 
although the differences in Amax and its genetic variation 
can moderately contribute to variations in yields (Nelson 
1988). Since modern hexaploid wheat species have lower 
Amax (postulated to be due to an inhibitory effect of D 
genome on gene expression in the A and/or B genomes 
and larger mesophyll cell sizes) than diploid and tetraploid 
species (Koç et  al. 2003), these genetic pools may serve 
as sources for increasing Amax. For example, emmer wheat 

(Triticum dicoccoides) shows a large genetic diversity for 
Amax, which is independent of leaf anatomy (Carver and 
Nevo 1990). Genetic advances in wheat yield does not 
appear to be related to changes in photosynthesis rate 
on an area basis when measured in the flag-leaf or the 
spike, but only to a higher, whole spike photosynthesis 
rate (Zhou et  al. 2014), suggesting that under potential 
yield conditions, the spike with respect to its size, may 
contribute more than the flag-leaf to yield formation. The 
awns of wheat are an important photosynthetic and tran-
spiration organ on the spike. It has been reported that 
the pathway for assimilation movement from awns to the 
kernels is minimal (Evans et  al. 1972). Furthermore, the 
activity of PEP carboxylase is much higher in awns than 
in flag leaves throughout ontogeny, and is particularly 
high at the late stages of grain filling (Li et  al. 2002, 
2006).

In rice, increasing Amax has been proposed to be a 
more effective strategy for increasing RUE than improving 
canopy architecture as modern rice varieties are believed 
to have an optimal canopy architecture in terms of light 
and N distribution (Peng and Ismail 2004). A large geno-
typic variation exists for Amax in rice and its relatives 
(Cook and Evans 1983) particularly in diploid wild species 
(Yeo et  al. 1994). Such large variation in Amax is associ-
ated with variation in stomatal conductance (gs) at mid-
day conditions, Rubisco content, specific leaf area, and 
total leaf protein (Hubbart et  al. 2007). Amax at each 
developmental stage was better explained by gs, especially 
under mid-day conditions while N content explains changes 
in Amax associated with crop development (Ohsumi et  al. 
2007). Interestingly, since genotypic variation in N is 
unrelated to gs; these two traits could be modified inde-
pendently to increase Amax. Nevertheless, under light-
saturated conditions, gs generally decreases due to decreased 
leaf water potential, therefore increasing leaf hydraulic 
conductance under saturated light should be targeted in 
breeding (Taylaran et  al. 2011).

The physiological regulation of two parameters, TPU 
(triose phosphate utilization) involved in inorganic phos-
phate (Pi) recycling, and gm, the mesophyll conductance, 
has received far less attention. Limited sink strength results 
in the accumulation of photoassimilates in the leaf, as a 
signal for downregulation of photosynthesis, reducing TPU 
(Zhu et  al. 2010; Nebauer et  al. 2011). This points to 
the value of exploring genetic variability in TPU regula-
tion. Also, the reduction in gm, standing for the diffusive 
conductance of CO2 from the stomata to the chloroplast, 
significantly limits photosynthesis (Flexas et  al. 2008; 
Griffiths and Helliker 2013) with variation in leaf anatomy 
assumed to be a major factor (Tomas et al. 2013). However, 
despite substantial evidence for large genotypic variability 
of gm, exactly how leaf anatomy interacts with gm to 
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determine leaf [CO2] status remains unclear. Overall, these 
studies suggest that while both crops exhibit different 
limitations to increase net photosynthesis, manipulating 
specific trait dynamics may improve photosynthesis rate 
in both crops (Fig.  1).

Canopy photosynthesis and N distribution

Canopy photosynthesis is largely a function of the vertical 
distribution of light and nitrogen (light-harvesting proteins 
and Rubisco), as well as sink activity (Dreccer et  al. 2000; 
Bertheloot et  al. 2008). The relationship between plant 
height and photosynthetic capacity is always not consistent 
(Gent and Kiyomoto 1984; Gent 1995; Bishop and Bugbee 
1998). Semi-dwarf wheat often shows higher canopy pho-
tosynthesis at anthesis, which may be linked to stronger 
sinks associated with more efficient assimilate partitioning 
at anthesis (Bishop and Bugbee 1998), suggesting that in 
tall genotypes, the rate of photosynthesis might be partly 
constrained by assimilate export from leaves. In addition, 
cultivars with greater capacity to store N in nonphoto-
synthetic tissues may improve canopy N distribution 
(Dreccer et  al. 1998) particularly if it follows the light 
gradient (Dreccer et  al. 2000; Bertheloot et  al. 2008). 
Recently, the contribution of ear photosynthesis to grain 
filling was highlighted, especially in situations of source 
limitation (Maydup et  al. 2012).

In rice, an improved canopy structure has increased 
canopy photosynthesis particularly during the grain-filling 
period (Zhang and Kokubun 2004). However, the rela-
tionships between canopy net photosynthetic rate and 
biomass, and yield were inconsistent (Peng 2000) probably 
due to a high genetic variation in canopy photosynthesis 
during postanthesis (Zhang and Kokubun 2004). With 

LAI of 5, erect leaves allow higher canopy photosynthesis, 
while with LAI lower than 3, droopy leaves can allow 
higher canopy photosynthesis (Peng and Ismail 2004). 
Therefore, an ideal phenotype should have a prostrate-leaf 
canopy in the very early growth stage to intercept PAR 
effectively, while more erect leaves at the later stages would 
allow light to penetrate more efficiently. Moreover, rice 
leaves can efficiently maintain lower canopy temperature 
via efficient transpiration cooling given sufficient water 
availability (Wassmann et  al. 2009; Gao et  al. 2011). 
Depending on the N concentration, either linear ((Makino 
et  al. 1988) or curvilinear (Cook and Evans 1983) rela-
tionship with photosynthesis was observed (Shimoda 2012). 
Modeling studies suggest that if leaf N content can be 
increased above 1.8 g N m−2 in upper leaves, daily canopy 
photosynthesis rate can be increased regardless of plant 
density and light condition (Shiratsuchi et  al. 2006). Such 
steeper gradient of leaf N in the canopy increases daily 
canopy photosynthesis by 20–25%. Both leaf area and 
tillering capacity should be large at early stages (Lafarge 
and Bueno 2009), but restricted during grain filling to 
avoid strong mutual shading and to allow radiation to 
reach deeper leaf layers to realize gains in canopy pho-
tosynthesis with increasing leaf N content. In this regard, 
it is particularly interesting that new plant types have 
very erect leaf orientation and relatively small number of 
productive tillers that could be useful to increase canopy 
photosynthesis (Horton 2000).

Radiation use efficiency

Until last century, RUE during preanthesis has not been 
significantly improved in modern wheat cultivars 
(Gutierrez-Rodriguez 2000). In irrigated environments, no 

Figure 1.  Proposed avenues for 
enhancing photosynthesis rate in 
wheat and rice.

1. Stomatal conducatnce (Baroli et al., 2008)
2. Chlorophyll content (Ort et al., 2011)
3. Alternative chlorophyll pigments (Chl D, Chen & Blankenship, 2011)
4. Mesophyll conductance (Pons et al., 2009)
5. Alternative LHC (Peers et al., 2009)
6. Antenna size (Zhu et al., 2010)
7. PsbS proteins (Logan et al., 2008)
8. Cytochrome c6 (Chida et al., 2007; Yamori et al., 2011)
9. Altered cyclic electron flow (DalCorso et al., 2008; Peterhansel et al., 2008)
10. Linear electron flow via PC (Peers et al., 2009; Chida et al., 2007)
11. NADH generation via E.coli glycolate catabolic pathway (Kebeish et al., 2007)
12. Binding between Fd and pFNRII (Hajirezai et al., 2007; Bowsher et al., 2012)
13. Photoprotection (Murchie & Niyogi, 2011; Lintala et al., 2012)
14. SBPase (Rosenthal et al., 2011)
15. Bicarbonate pump (Lieman-Hurwitz et al., 2003)
16. RubisCO necleotide diversity and polymorphism (Christin et al., 2008)
17. RubisCO structural diversity (Liu et al., 2010; Ishikawa et al., 2011)
18. RubisCO activase activity (Kurek et al., 2008)
19. RubisCO activase structure and regulation (Henderson et al., 2011)
20. Triose-Phosphate Utilization (Nebauer et al. 2011)
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differences in RUE or light interception between old and 
modern cultivars were found, while modern lines were 
shown to have higher RUE after anthesis (Calderini et  al. 
1997) largely driven by high sink. Cultivars with cooler 
canopy temperature exhibit an enhanced gas exchange 
rate (Ayeneh et al. 2002); hence, cooler canopy can increase 
crop yields especially under mild stress (Ayeneh et  al. 
2002). A 2.5°C range in canopy temperature depression 
at anthesis has been reported for Iranian wheat cultivars 
(Karimizadeh and Mohannadi 2011). Although diverse 
mechanisms may theoretically explain genetic variation in 
canopy temperature (Rebetzke et  al. 2012), so far only 
root depth and capacity has been implicated through direct 
measurement (Lopes and Reynolds, 2010) and genetic 
studies in dry residual moisture and hot, irrigated 
environments (Pinto et  al. 2010; Pinto et  al. 2014). These 
studies suggest that RUE can still be improved in both 
crops and the underlying mechanisms of CTD differing 
between genotypes need to be explored.

In rice, RUE has reported to increase from old cultivars 
to modern cultivars. New indica varieties expressed more 
RUE (2.14  g  MJ−1) than traditional (1.8  g  MJ−1) and 
japonica varieties (1.8  g  MJ−1) (Boschetti et  al. 2006) due 
to differences in morphophysiological characters (Kiniry 
et  al. 2001). However, RUE in rice is considered to be 
lower (under aerobic conditions, ~1  g  MJ−1; in flooding, 
~2.2  g  MJ−1) as compared to the average quantum 
requirement of C3 species (2.9  g  MJ−1)(Katsura et  al. 
2010). This may underlie the poor association between 
RUE and yield superiority of super hybrid rice varieties 
(Katsura et  al. 2008, 2010). Nevertheless, a higher RUE 
especially during postanthesis can increase thousand-grain 
weight (Sadras and Lawson 2011). In wheat, photosynthetic 
capacity can be improved by increasing green leaf area 
duration and chlorophyll content of tissue, while stomatal 
conductance and a cooler canopy temperature are indica-
tive of improved RUE (Sadras and Lawson 2011; Xiao 
et  al. 2012).

Leaf senescence

In wheat, leaves contribute about 40% to the daily rate 
of grain N accumulation at mid grain filling (Simpson 
et  al. 1983). Hence, a delayed leaf senescence or stay 
green, which maintains active photosynthesis for longer 
period may increase grain yields (Gregersen et  al. 2008; 
Bogard et  al. 2011). In contrast, accelerated senescence 
leads to low C but high N remobilization indicating the 
plasticity of senescence linked to carbon and N remobi-
lization. Such senescence regulation of C and N could 
be a viable strategy to alter both C and N remobilization 
to the actively developing grains. While several patterns 
of senescence were proposed (Thomas and Howarth 2000), 

an ideal senescence phenotype in wheat, in general in 
cereals, still needs to be identified (Gregersen et  al. 2008; 
Bogard et al. 2011). The advent of high-throughput spectral 
tools such as the Greenseeker has made it more feasible 
to study total canopy N remobilization dynamics (Lopes 
and Reynolds 2012).

In rice, a functional stay-green phenotype exhibits higher 
light conversion efficiency and net photosynthetic rate at 
saturated light throughout grain filling (Fu and Lee 2012). 
It also maintains mesophyll conductance due to high 
chlorophyll content and delays the degradation of pho-
tosystem II. Interestingly, the stay-green trait is associated 
with high root activity so higher capacity to accumulate 
and maintain high N (Fu et  al. 2009) and with higher 
grain-filling rate under limited radiation conditions (Bueno 
and Lafarge, unpublished data). These studies suggest that 
the stay-green trait is beneficial to increase root activity 
and N accumulation during grain-filling period under 
favorable environments.

Nitrogen use efficiency and biological nitrification 
inhibition

Genetic gains in NUE under low N supply were associ-
ated with the improvements in NUpE (uptake efficiency) 
in spring wheat and to NUtE (utilization efficiency) in 
winter wheat (Brancourt-Hulmel 2003), while under high 
N, both components contribute approximately equally to 
NUE (Ortiz-Monasterio et al. 1997; Muurinen et al. 2006; 
Wang et  al. 2011). These studies indicate that NUpE may 
be influenced by G  ×  N interaction, while G  ×  E interac-
tion may influence NUtE. Although leaf senescence kinetics 
could explain the genetic variability associated with yield 
variation under low N (Gaju et al. 2011), the strong nega-
tive association between NUpE and NUtE highlights the 
necessity of understanding mechanisms influencing the 
uptake and utilization of N by crops. Modified root 
architecture associated with dwarfing genes is one param-
eter influencing NUE (Wojciechowski et al. 2009; Gooding 
et  al. 2012). Alternatively, BNI (biological nitrification 
inhibition) may improve NUE. The wild wheat, Leymus 
racemosus, shows higher BNI release rates ranging from 
20 to 30 allyl thiourea g−1 root dry wt. day−1 (Subbarao 
et  al. 2007). A locus for high BNI was transferred to 
cultivated wheat using chromosome addition lines of wild 
wheat, however, these lines carry many undesirable traits 
compromising yield potential.

In rice, a large genotypic variation in NUE has been 
reported, ranging from 38 to 84  kg  kg−1 for grain and 
100 to 160  kg  kg−1 for biomass, probably under aerobic 
and rainfed management (Koutroubas and Ntanos 2003). 
However, improving NUE for grain in favorable (irrigated) 
environments has been limited in breeding (Samonte 
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et  al. 2006). Indica cultivars generally have higher NUE 
for grain than japonica cultivars (Koutroubas and Ntanos 
2003). Such large variations could be related to yield 
potential because high-yielding cultivars show less genetic 
variation in NUE for grain (Samonte et al. 2006). Moreover, 
NUE for grain is also influenced by plant height, crop 
growing duration (short and late maturing cultivars have 
high NUE for grain than tall and early maturing varie-
ties; Koutroubas and Ntanos 2003), percentage of straw 
N, grain N concentration, and HI. At HI of 0.5, both 
straw and grain N equally contribute to NUE for grain; 
therefore, increasing HI would be associated with NUE 
for grain. However, genotypic variation in grain N con-
centration is low (0.95–1.2; Tirol-Padre et  al. 1996), 
therefore, it may not be feasible to improve NUE for 
grain by reducing grain N concentration using conven-
tional breeding as grain N concentration is affected more 
by environments than by genotypes (Ladha et  al. 1998). 
Genetic variability for nitrogen metabolism in the devel-
oping ear of maize has been suggested to improve yields 
(Cañas et  al. 2012). BNI improves N uptake and NUE 
due to its inhibitory effects on nitrification (Subbarao 
et  al. 2006). A significant genotypic variation in BNI 
(<10% to >50%) was reported (Pariasca Tanaka et  al. 
2010). However, traditional and upland varieties exhibit 
high BNI activity than the modern irrigated lowland 
varieties. While nitrification rates in paddy soils are lower 
compared to typical upland soils, application of synthetic 
nitrification inhibitors has been shown to increase yields 
(Li et  al. 2009) suggesting that BNI has the potential to 
improve yields in rice.

Source:sink regulation and lodging 
resistance

An approach to increase spike dry matter is to increase 
assimilate partitioning to spike at anthesis (Demotes-
Mainard and Jeuffroy 2004). To some extent, dwarf and 
semi-dwarf cultivars have achieved this by increasing 
assimilates partitioning to developing spikes (Álvaro et  al. 
2008; Foulkes et  al. 2011). For example, the dry matter 
partitioning to spikes at anthesis improved from 9% in 
old cultivars to 27% in modern semi-dwarf durum wheat 
in Italy and Spain (Álvaro et  al. 2008). The genetic range 
for partitioning to the respective plant organs at anthesis 
(spikes, 0.12–0.29; leaf lamina, 0.19–0.31; stems and leaf 
sheath, 0.48–0.63; as a proportion of above-ground bio-
mass; Reynolds et  al. 2009) suggests that there is a pos-
sibility to increase assimilate partitioning to spikes (Foulkes 
et  al. 2011). However, decreasing plant height further by 
developing double dwarfs may not provide any additional 
benefits because of reduced light interception and total 
biomass (Butler et  al. 2005). Moreover, reduced cell 

elongation and smaller cells have reduced seedling vigor 
in resource-poor environments (Botwright et  al. 2005).

AGB (above-ground biomass) was not systematically 
increased from old to modern cultivars until relatively 
recently (China [Zheng et al. 2011]; U.K. [Shearman et al. 
2005]; Australia [Sadras and Lawson 2011]; and Mexico 
[Aisawi et  al. 2015]). Increased AGB shows two common 
trends with yield components: thousand kernel weight or 
grain weight in cultivars of Australia (Sadras and Lawson 
2011) and Henan Province of China (Zheng et  al. 2011), 
and grains per unit area or spikes per unit area in cul-
tivars of U.K. (Shearman et  al. 2005) and Shandong of 
China (Xiao et  al. 2012). This suggests that biomass par-
titioning to yield components has been greatly modified 
resulting in distinct wheat ideotypes (Álvaro et  al. 2008). 
An increased AGB especially during postanthesis shows 
strong correlation with yield (Reynolds et  al. 2009). 
Nevertheless, the association between yield and biomass 
depends heavily on environment. Under stress, there is 
usually a strong association (Reynolds et  al. 2007) but 
less so often when conditions are favorable. In addition, 
higher WSC (water-soluble carbohydrates) at anthesis are 
associated with higher grain weight and lower WSC stor-
age is associated with increased grain number (Rebetzke 
et  al. 2008; Sadras and Lawson 2011). While this trend 
is consistent with most modern cultivars, often an op-
posite trend with higher WSC storage and grain number 
was reported (Shearman et  al. 2005; Xiao et  al. 2012). 
These studies did not report any changes in grain weight, 
hence the associations between WSCs and yield compo-
nents are unclear.

In rice, there has been a marked increase in HI and 
grain production by modification of the reproductive 
structures in the modern cultivars (Evans et  al. 1984; 
Mohapatra et  al. 2011) and hybrids (Yang et  al. 2007), 
suggesting an increased partitioning of assimilates to 
reproductive organs (Lafarge and Bueno 2009). Modern 
cultivars show increased biomass production over old 
cultivars. Yield improvement in cultivars released before 
1980 was associated with increases in HI, while the yield 
improvement in the cultivars released after 1980 was 
associated with increases in biomass (Peng et  al. 2000) 
although it largely depends on comparisons between either 
semi-dwarf and traditional or among semi-dwarfs (Evans 
et al. 1984; Yamauchi 1994; Peng et al. 1998). Also, higher 
yields of hybrids were attributed to both high HI (Bueno 
and Lafarge 2009) and biomass (Bueno and Lafarge 2009; 
Zhang et  al. 2009) mainly through higher growth rate of 
priority sinks and higher sink regulation, that is the tim-
ing and magnitude of the successive sink activities over 
crop growth (Bueno et  al. 2010), to the favor of stem 
biomass at the end of the vegetative phase, panicle biomass 
at the end of the reproductive phase, and remobilization 
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from stem to panicle at the beginning of the filling phase 
(Lafarge and Bueno 2009; Bueno et  al. 2010). Yet, it was 
reported that higher yield was attributed to higher biomass 
accumulation under favorable conditions and to higher 
HI under suboptimal conditions in the tropics (Peng et al. 
2003). A recent study conducted on 32 high-yielding 
contrasted genotypes (hybrids and inbreds) from diverse 
geographical origin, and respective of their maturity groups, 
highlighted, however, that relevant traits were those favor-
ing light capture in the favorable (dry) season and short 
plant height and delayed leaf senescence in the suboptimal 
(wet) season (Bueno and Lafarge submitted).

It has been estimated that during heading to maturity, 
an inbred rice allocates dry matter about 39.5% to panicles, 
4.3% to leaves, 33.5% to stems, 6.5% to late tillers, and 
6.7% to roots (Kato et  al. 2006), suggesting that panicles 
have high demand for dry matter partitioning (Zhao et  al. 
2008). Indeed, in favorable conditions, hybrid rice shows 
a higher partitioning coefficient to culms in the late veg-
etative and early reproductive while lower partitioning 
coefficient to culms and higher partitioning coefficient to 
panicles in the later reproductive phases as compared to 
inbreds (Lafarge and Bueno 2009). This suggests a strong 
sink regulation and remobilization capacity with hybrids 
over the crop cycle (Bueno et  al. 2010) through larger 
biomass partitioning to culm at late reproductive phase 
and HI. Indeed, in high-yielding recently bred varieties, 
equipped with large panicles (Fujita et  al. 2013), grain 
filling of late flowering basal spikelets is particularly poor 
(Panda et  al. 2009). Both NSC accumulation in the stems 

at heading (Fu et  al. 2011) and reduction in ethylene 
concentration in the basal spikelets (Wang et  al. 2012) 
enhances sink strength of the basal spikelets at early grain 
filling by increasing number of endosperm cells and activi-
ties of sucrose synthase and AGPase (adenosine diphos-
phoglucose pyrophosphorylase). These studies suggest that 
increasing NSC accumulation in the stems and reducing 
ethylene production in the basal spikelets will induce fast-
synchronized filling within the panicle and higher yield 
potential. In addition, there is growing evidence that the 
T6P (trehalose-6-phosphate) plays a central role in regulat-
ing carbohydrate and starch metabolism in plants as it 
indirectly reflects sucrose concentration and has been widely 
accepted as an indicator of sucrose status (O’Hara et  al. 
2013; Yadav et  al. 2014). By regulating sucrose export to 
the grain, T6P could then increase sink strength in case 
of its higher concentration within the grain and has been 
shown to increase grain yields (Nuccio et  al. 2015).

Lodging resistance

Strategies to raise HI should consider assimilate partition-
ing to structural organs to avoid any stem and root lodg-
ing. Models describing lodging resistance in wheat have 
highlighted stem thickness, stem wall material strength, 
and area of root plate in the stem and root lodging 
resistance (Berry et al. 2003b, 2007) (Fig. 2). Interestingly, 
lodged plants exhibited stronger source limitation during 
grain filling than unlodged ones (Acreche and Slafer 2011), 
highlighting the importance of photosynthetic activity 

Figure 2.  An ideotype design for 
lodging-resistant wheat and rice.
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during grain filling to avoid any stem or root lodging. 
Reducing unproductive tiller number could also reduce 
lodging problems and increase grains per spike (9%) but 
decrease grain yields (8%) (Duggan et al. 2005; Gaju et al. 
2011), as observed in China (Zheng et al. 2011) and Spain 
(Royo et  al. 2006; Álvaro et  al. 2008). The net redistribu-
tion of N and C to surviving shoots after their death is 
inconsistent being negative (Berry et al. 2003a) or positive 
(Thorne and Wood 1987). Although the efficiency of such 
transport is unknown, a high, early tiller production may 
enhance grain yields in cereals (Pasuquin et  al. 2008).

Rice exhibits a large genetic variability in lodging resist-
ance. Several lodging-related traits were identified (Islam 
et  al. 2007). Lodging resistance was strongly correlated 
with the culm diameter and wall thickness of the basal 
internodes (Chuanren et  al. 2004). A stem diameter of 
5.3–5.5  mm (plant height of 114  cm under typhoon con-
ditions) (Chuanren et  al. 2004; Ishimaru et  al. 2005) and 
stem wall thickness of 0.49 (Chuanren et  al. 2004) were 
associated with lodging resistance. While plant height was 
not necessarily an important factor (Ishimaru et al. 2007), 
leaf sheath and the extent of wrapping (breaking strength 
of the shoot was increased by 30–60%) will be an im-
portant trait for selection against lodging at all develop-
mental stages as shown in rice (Setter et  al. 1994). In 
addition, mechanical properties such as tensile breaking 
point and the tensile elastic modulus are associated with 
lodging resistance (Chuanren et  al. 2004). Clearly, while 
plant height is not necessarily being reduced, increasing 
stem wall thickness and mechanical properties can con-
tribute to enhance lodging resistance.

Trait Differences and Similarities 
Between Wheat and Rice

Over the last two decades, the linear rate of yield change 
for wheat has been 25  kg  ha−1  year−1, while it is 
38  kg  ha−1  year−1 for rice. However, the relative rates of 
yield increase seem to be the same (0.9%) for both crops 
(Fischer and Edmeades 2010). While reduction in plant 
height, increased biomass, and HI commonly resulted in 
yield gain in both crops, increased kernel number per 
unit area in wheat and increased CGR in rice are largely 
associated with yield gains (Fischer and Edmeades 2010; 
Pozo et  al. 2014). The CGR between stem elongation and 
anthesis is increased in wheat particularly in the cultivars 
of Australia (Sadras and Lawson 2011), while CGR and 
early vigor (higher LAI) have been significantly increased 
in rice particularly in hybrids, which increased biomass 
accumulation and grain yield (Peng et  al. 1998; Bueno 
and Lafarge 2009). In addition, net photosynthesis and 
RUE have been slightly increased in modern wheat while 
hybrid rice has a lower net photosynthetic rate during 

vegetative and grain-filling phases because of lower leaf 
N concentration (Peng et  al. 1998).

Both wheat and rice crop phenophases are responsive 
to the environment. Breeding efforts have altered vegeta-
tive phase durations in both crops. The genetic factors 
such as earliness per se loci are absent in rice (Faricelli 
et  al. 2009, 2010). Both crops were domesticated in dif-
ferent climates and so differ significantly in their growth 
conditions; wheat shows appreciably faster growth rate 
and allocates more biomass to leaves than rice; however, 
the optimal temperature for biomass production is higher 
for rice than wheat (Nagai and Makino 2009). While 
both species significantly contrast in photoperiod sensitiv-
ity, the response of developmental processes to optimum 
temperature is similar in both species and is not affected 
by either natural selection or artificial breeding (Parent 
and Tardieu 2012). This would suggest a strong interac-
tion between developmental events and the environment 
in particular temperature per se.

Both species differ in LAI. Since both crops differ for 
leaf N content per unit area, they also differ for radiation 
conversion factor (Mitchell et  al. 1998). Interestingly, the 
correlation between leaf N content and grain number vary 
with genotype and growth conditions in wheat, while it 
is reported to be independent in rice (Wada and 
Matsushima 1962; Makino 2011). Since the N concentra-
tion in the straw and grain in rice is lower than wheat, 
the NUE for biomass and grain is higher in rice (Ladha 
et  al. 1998). Such differential N levels in the biomass 
and its allocation influence leaf senescence in both spe-
cies. Furthermore, awns are absent or short in cultivated 
rice (Luo et  al. 2013; Hua et  al. 2015), while awns have 
been shown to contribute to net ear photosynthesis in 
wheat (Evans et  al. 1972; Sanchez-Bragado et  al. 2014).

The source–sink regulation is different between two 
crops. In rice (hybrids), the source capture is relatively 
higher than that of wheat, while the sink strength is more 
efficient during grain-filling period. For example, biomass 
production before stem elongation was higher in rice than 
in wheat due to high early vigor and CGR (Bueno and 
Lafarge 2009; Bueno et  al. 2010). While assimilate parti-
tioning to panicles over other organs is larger in rice 
after heading (Kato et  al. 2006; Kumar et  al. 2006), this 
has been shown to be limited in wheat. Although the 
remobilized carbon reserve percentage and its contribution 
to grain appears higher in wheat than rice, the HI is 
lower in wheat than in rice probably due to the existence 
of alternative sinks (Yang and Zhang 2006). Moreover, 
stem structural differences exist; the width of the stem 
wall in wheat (0.65  mm) is greater than that in rice 
(0.45  mm), while stem diameter in wheat (4.7–4.9) is 
less than the stem diameter of rice (5.3–5.5 mm) (Chuanren 
et  al. 2004; Reynolds et  al. 2009; Wu et  al. 2011).
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By virtue of the growth conditions, the crop manage-
ment practices and environmental influences on crop growth 
and development differ between two species. While the 
conventional crop management practices in wheat have 
largely been unmodified, in rice, sound management prac-
tices have been in practice. Among others, planting patterns, 
planting density, and spacing have resulted in more open 
canopies, which increased the overall performance of the 
rice crop canopy in terms of leaf angle, tiller dynamics, 
light interception, and photosynthetic rate (Table  1).

A Research Gap Analysis for Future 
Research Priorities

Both, wheat and rice, crops have been explored in dif-
ferent ways. However, the genetic gains in yields of wheat 
and rice across the globe are less than 1% per annum. 
The following opportunities, but not limited to, may be 
promising to further increase in genetic gains in yields 
of both crops.

Yield components

Recent gains in crop yields has been achieved through 
larger panicle size with higher grain number per panicle 
in rice (Ying et  al. 1998), while increased grain number 
predominantly enhanced grain yields in wheat (Pozo et al. 
2014; Zhou et al. 2014). Historical data, however, support 
that grain number (either through extra panicles/spikes 
or extra grain per panicle/spike) needs to be increased 
in both crops. In addition, a number of genes important 

for yield formation have been identified in both crops 
(see review, Valluru et  al. 2014, table 3). For example, 
genes controlling leaf and panicle size (SPIKE) and grain 
assimilate accumulation (GIF1 and Rg5) have been identi-
fied in rice (Fujita et  al. 2013; Ishimaru et  al. 2005). In 
wheat, structural modification to AGPase gene has been 
proposed to increase starch accumulation in grain (Meyer 
et  al. 2007). Furthermore, GS3 and Gn1 controlling grain 
number and weight have been identified in rice. These 
genes have largely not been explored in both crops (Valluru 
et  al. 2014).

Harvest index

Increasing HI is not a strong candidate, as it is already 
high, above 0.5 in high-yielding varieties and sink regula-
tion is also high and effectively expressed in hybrid rice 
(Ying et  al. 1998; Lafarge et  al. 2010). In wheat, an aver-
age HI reported is 0.45 (Zheng et  al. 2011; Xiao et  al. 
2012). Increasing HI above the current values may lead 
to high risk of lodging unless plants have a lower center 
of gravity (i.e., are shorter), but then this would reduce 
light interception, consequently reducing biomass. More 
rigid stems involving anatomical changes like increasing 
concentrations of structural carbohydrates like lignin could 
be a long-term breeding objective.

Biomass

Increasing biomass accumulation may be a promising 
avenue in both crops. In rice, hybrids have significantly 

Table 1. Trait similarities and differences between wheat and rice.

Trait Wheat References Rice References

Preanthesis period Preanthesis period reduced 
in modern genotypes

Álvaro et al. (2008); Isidro 
et al. (2011)

Preanthesis period reduced in 
modern genotypes

Peng et al. (2000)

Earliness per se Earliness per se locus are 
present in wheat

Gouis et al. (2011) Earliness per se locus are 
reported to be absent in rice

Faricelli et al. (2009); 
(Faricelli et al. 2010)

LAI LAI is lower Acreche et al. (2009); Parry 
et al. (2011)

LAI is higher Zheng et al. (2008); Zhang 
et al. (2009)

RUE RUE increased in modern 
cultivars particularly 
during postanthesis 
period

Calderini et al. (1997) RUE increased in modern 
cultivars

Boschetti et al. (2006)

Awns Awns are reported to 
contribute to net ear 
photosynthesis

Evans et al. (1972); 
Sanchez-Bragado et al. 
(2014)

Awns are absent or short in 
the cultivated rice

Luo et al. (2013); Hua et al. 
(2015)

Leaf senescence Leaf senescence is slightly 
delayed in modern 
cultivars due to the 
presence of nonfunc-
tional grain protein 
content gene

Gregersen et al. (2008) Indica and Japonica exhibit 
different leaf senescence 
patterns, early and late, 
respectively

Abdelkhalik et al. (2005)

LAI, leaf area index; RUE, radiation use efficiency.
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higher aboveground biomass (10–12%) than inbred 
cultivars (Peng et  al. 2008);(Bueno and Lafarge 2009). 
In wheat, biomass has, on average, a lower genetic 
gain (0.3), suggesting that biomass production may 
still be the main way forward to increase yields (Fischer 
and Edmeades 2010; Sylvester-Bradley et  al. 2012). 
However, the key question that needs to be addressed 
would be whether the key driver of yield is, biomass 
accumulation or sink strength? Would higher biomass 
accumulation induce better sink strength or better sink 
strength support higher biomass accumulation? A cross-
ing program at CIMMYT that combines high source 
with high sink traits is showing genetic gains for yield 
and biomass in international trials, suggesting that 
source and sink balance is important (Reynolds et  al. 
2015).

Leaf and crop photosynthesis

Improving TPU is promising in both crops. If sink 
strength is higher, photosynthate could be exported 
quicker from the source leaves to the sink to reduce 
downregulation of photosynthesis. Similarly, improving 
mesophyll conductance could be promising. Changes in 
leaf anatomy could facilitate CO2 diffusion between the 
leaf compartments to also reduce downregulation of leaf 
photosynthesis. Further reducing night respiration could 
be important although few studies report limited diversity 
for this trait and limited effect on the overall perfor-
mance (Peraudeau et  al. 2015a,b). If the plant could 
uptake more N (via higher fertilization and/or better 
root system and/or improved water management for 
better uptake), with N being more available to fill grain, 
then so leaf senescence can be delayed and crop pho-
tosynthesis maintain for a longer duration. Numerous 
proposed avenues for enhancing photosynthesis rate in 
C3 species are given in Figure  1.

Sink strength

Increasing sink strength through improving panicle/spike 
architecture could be important. Reducing hormonal 
(especially ethylene) regulation that delays the filling of 
basal spikelets could be promising for efficient grain 
filling. In addition, increasing the role of T6P, as sugar 
regulator, could facilitate the export of carbohydrates to 
the panicles/spikes.
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