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ABSTRACT: The safety of food worldwide remains challenged by the potential for emergence of new pathogens
and re-emergence of known pathogens. Microorganisms have an inherent ability to evolve—to mutate and adapt to
environmental stressors—allowing them to survive otherwise lethal conditions. The Institute of Food Technologists
(IFT),1 the 22000-member nonprofit scientific and educational society, convened a panel of internationally renowned
experts to address the concern that the use of antimicrobials in food production, manufacturing, and elsewhere may
lead to the emergence of foodborne pathogens that are resistant to antimicrobials, thus compromising the ability to
subsequently control them, whether in production agriculture, food processing, or human medicine. The outcome
of the panel’s deliberations is presented in this Expert Report. IFT’s objective for this Expert Report is to increase
the understanding—among IFT members, senior policy officials, and other interested groups—of the state of the
science on the public health impact of the use of antimicrobials in the food system, and development and control of
antimicrobial resistance. This report is the fourth Expert Report produced by IFT.
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Introduction
The availability of antibiotics to treat infectious diseases has

radically improved human and animal well being, and to a mi-
nor degree, plant health. Paradoxically, this very success threat-
ens the future utility of antibiotics. The discovery of penicillin in
1940 ushered in the era of “modern medicine.” Numerous an-
timicrobials, including most structural classes of antibiotics were
discovered during 1920 to 1970. Chemical modification of many
of these compounds led to new entities with superior activities.
Because of the great success in antibiotic discovery, by the late
1970s, many proclaimed that the war on infectious diseases had
been won, leading ultimately to de-emphasis of antibiotic discov-
ery during the 1980s and a decline in the 1990s. At the same time,
however, widespread antibiotic resistance was emerging and re-
sulting in impaired treatment of human diseases (Neu 1992). As
the genomes of bacteria, especially pathogens, have become in-
creasingly available, the prospect of using them to identify new
targets for antibiotic discovery has renewed interest in such in-
vestigations between the public sector and large pharmaceutical
and biotechnology companies. Many of the larger companies and
much of the public sector, however, have redirected research ef-
forts toward noninfectious disease targets.

All uses of antibiotics in human medicine and animal hus-
bandry create selective pressure that favors emergence of antibi-
otic resistance among microorganisms, which could undermine
the effectiveness of the antibiotics and potentially give rise to a
“postantibiotic” era. The selection for antibiotic-resistant bacte-
ria in agricultural production environments and the subsequent
impact on animal and human health has become a major con-
cern and is the subject of many reports (Table 1). This document
focuses on the use of antimicrobial agents to control bacteria in
the food system; other microorganisms are considered as well,
however. This document builds upon the IFT Scientific Status
Summary “Resistance and Adaptation to Food Antimicrobials,
Sanitizers, and Other Process Controls” (IFT 2002a), to inform
readers about the various types of antimicrobial agents, includ-
ing antibiotics, food antimicrobial agents, and sanitizers that are
used at various stages of the food system, and the mechanisms
that microorganisms, particularly foodborne pathogens, have for
surviving the stress of exposure to these substances in their en-
vironments. Trends in antimicrobial resistance, and the resultant
human health, economic, and clinically relevant environmental
impacts are also addressed.

Classification of antimicrobials
For the purposes of this report, “antimicrobial” is a general term

used broadly to refer to any compound, including antibiotics,
food antimicrobial agents, sanitizers, disinfectants, and other sub-
stances, that acts against microorganisms. The definitions and use
of each of these terms differ among various groups. Legal defini-
tions exist for use in a regulatory context.

The term antibiotic is used in this report to refer to drugs
used to treat infectious disease in humans, animals, or plants,
by inhibiting the growth of or destroying microorganisms; such
substances may be naturally occurring, semisynthetic, or syn-
thetic. Antibiotics are also used in food animals to prevent in-
fectious disease and improve the efficiency of feed utilization.
Within the antibiotic classification are synthetic antimicrobials
such as quinolones, that differ from other substances such as
streptomycin, which are natural products or fermentation derived
antibiotics. Antibiotics are legally classified as such only when
used in humans. They are classified as “veterinary antimicrobial
drugs” when used in animals and as “pesticides” when used in
plants.

“Biocide” is a general term that refers to chemical agents, such
as disinfectants and sanitizers, which are usually broad spectrum.
Because biocides vary in antimicrobial activity, other terms may
be used to more specifically describe the nature of the antimi-
crobial activity. For example, terms ending in the suffix “-static,”
such as “bacteriostatic,” are used for agents that inhibit micro-
bial growth without killing the microbes, and terms with the
suffix “-cidal,” such as “fungicidal,” refer to agents that kill the
target microbe (McDonnell and Russell 1999). “Disinfectants”
destroy or irreversibly inactivate infectious fungi and vegetative
bacteria (growing or nonsporeforming), and are used in hospitals,
food processing facilities, restaurants, and elsewhere for general
purposes (EPA 2005). In the legal connotation, disinfectants in-
clude “any oxidant, including but not limited to chlorine, chlo-
rine dioxide, chloramines, and ozone, added to water in any
part of the treatment or distribution process, that is intended to
kill or inactivate pathogenic microorganisms” (40 CFR §141.2).
“Sanitizers,” comprised of 2 categories—no-rinse food contact
surface sanitizers and nonfood contact surface sanitizers—refer
to substances that reduce microbial contamination and destroy
vegetative pathogens of public health significance on treated
inanimate surfaces. “Sterilants,” such as peroxyacetic acid, re-
fer to substances that eliminate all forms of microbial life, in-
cluding bacterial spores, fungi, and viruses. IFT uses the legal
connotation “food antimicrobial agent” to refer to antimicrobial
substances, such as nisin and other bacteriocins, including mold
inhibitors, which are used to preserve food by preventing micro-
bial growth and subsequent spoilage. Antibiotics cannot legally
be used as food additives; thus, they are specifically excluded
from this classification.

Classification of resistance
Discussion of antimicrobial resistance, by necessity, must in-

clude defining what is meant by resistance. While it would
seem that defining resistance would be a simple matter, many
definitions exist (Davison and others 2000). Resistance to most
traditional, regulatory-approved, or naturally occurring food an-
timicrobial agents is difficult to characterize because of the lack
of a precise definition for such resistance. From a functional per-
spective, resistance correlates with failure of a given antimicro-
bial treatment, whereas from a laboratory perspective, resistance
is denoted through a “Minimal Inhibitory Concentration” (MIC)2

value that exceeds a threshold value, which may or may not
be associated with a clinical outcome. Chapman (1998) stated
that a microorganism is resistant if it exhibits “significantly re-
duced susceptibility” when compared with that of the “original
isolate” or a group of sensitive strains. In this report, resistance

2 MIC is the lowest concentration of an antimicrobial drug, expressed in μg/ml
or mg/L, which under defined in-vitro conditions within a defined period of time
inhibits growth of the microbial inoculum.
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Table 1 --- Reports of antimicrobial use, resistance, and human health impact

Country or
Date International Report source Report title URL address (if applicable)

1969 United Kingdom English Parliament The Report to Parliament by the Joint
Committee on Antibiotic Uses in
Animal Husbandry and Veterinary
Medicine (“Swann Report”)

1980 United States National Research Council (NRC) The Effects on Human Health of
Subtherapeutic Use of Antimicrobials
in Animal Feed

http://fermat.nap.edu/catalog/
21.html

1981 United States Council for Agricultural Science &
Technology

Antibiotics in Animal Feeds, Report 88

1981 United States Institute of Medicine (IOM) Human Health Risks with the
Subtherapeutic Use of Penicillin or
Tetracyclines in Animal Feed

1989 United States IOM Committee on Human Health
Risk Assessment of Using
Subtherapeutic Antibiotics in
Animals

Human Health Risks with the
Subtherapeutic Use of Penicillin or
Tetracyclines in Animal Feeds

1997 International World Health Organization (WHO) The Medical Impact of the Use of
Antimicrobials in Food Animals

http://whqlibdoc.who.int/hq/1997/
WHO EMC ZOO 97.4.pdf

1998 United Kingdom UK Ministry of Agriculture,
Fisheries, and Food

A Review of Antimicrobial Resistance in
the Food Chain

1998 United States United States Food and Drug
Administration (FDA) Center for
Veterinary Medicine (CVM)

A proposed framework for evaluating
and assuring the human safety of the
microbial effects of antimicrobial new
drugs intended for use in
food-producing animals

http://www.fda.gov/cvm/VMAC/
antimi18.html

1998 International WHO Use of Quinolones in Food Animals and
Potential Impact on Human Health:
Report and Proceedings of a WHO
Meeting

http://www.who.int/bookorders/
anglais/detart1.jsp?sesslan=
1&codlan=1&codcol=93&codcch=
157

1999 European Union The European Agency for the
Evaluation of Medicinal
products

Antibiotic Resistance in the European
Union Associated with
Therapeutic Use of Veterinary
Medicines

1999 European Union EU Scientific Steering Committee Opinion of the Scientific Steering
Committee on Antimicrobial
Resistance

http://www.europa.eu.int/comm/
dg24/health/sc/ssc/out50 en.html

1999 United States FDA Risk Assessment on the Human Health
Impact of Fluoroquinolone-resistant
Campylobacter Associated with
Consumption of Chicken

http://www.fda.gov/cvm/
Risk asses.htm (revised as
of January 5, 2001)

1999 United States NRC National Academy of
Sciences Committee on Drug
Use in Food Animals and the
Panel on Animal Health, Food
Safety, and Public Health

The Use of Drugs in Food Animals:
Benefits and Risks

http://fermat.nap.edu/catalog/
5137.html

1999 United States U.S. General Accounting Office
(GAO)

Food Safety: The Agricultural Use of
Antibiotics and Its Implications for
Human Health

http://www.gao.gov/archive/1999/
rc99074.pdf

1999 United Kingdom Advisory Committee on the
Microbiological Safety of Food

Report on Microbial Antibiotic
Resistance in Relation to Food Safety

http://www.poultry-health.com/
library/antimicrobials/acmsf996.
htm (a synopsis)

1999 Australia Joint Expert Advisory Committee
on Antibiotic Resistance

The Use of Antibiotics in Food-Producing
Animals: Antibiotic Resistant Bacteria
in Animals and Humans

http://www.health.gov.au/internet/
wcms/publishing.nsf/content/
2A8435C711929352CA256F
180057901E/$File/jetacar.pdf

1999 European Union European Commission Opinion of the Scientific Steering
Committee on Antimicrobial
Resistance, May 28, 1999

1999 International WHO The Medical Impact of the Use of
Antimicrobials in Food Animals

(continued on next page)
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Table 1 --- Continued

Country or
Date International Report source Report title URL address (if applicable)

2000 United States Centers for Disease Control and
Prevention
Interagency Task Force on
Antimicrobial Resistance

A Public Action Health Plan to Combat
Antimicrobial Resistance

http://www.cdc.gov/
drugresistance/actionplan/

2000 International WHO WHO Global Principles for the
Containment of Antimicrobial
Resistance in Animals Intended for
Food

http://www.who.int/salmsurv/
links/en/GSSGlobalPrinciples
2000.pdf

2000 International Food and Agriculture
Organization of the United
Nations (FAO)/WHO Codex
Committee on Residues of
Veterinary Drugs in Foods

Antimicrobial Resistance and the Use of
Antimicrobials in Animal Production

ftp://ftp.fao.org/codex/ccrvdf12/
rv00 04e.pdf

2001 International Office International Des
Epizooties (OIE)

Antimicrobial Resistance: Reports
prepared by the OIE Ad Hoc Group of
Experts on Antimicrobial Resistance

http://www.oie.int/eng/publicat/
ouvrages/a 106.htm

2001 International WHO WHO Global Strategy for Containment of
Antimicrobial Resistance

http://www.who.int/drugresistance/
WHO Global Strategy English.pdf

2001 International WHO Monitoring Antimicrobial Usage in Food
Animals for the Protection of Human
Health

http://www.who.int/salmsurv/links/
en/GSSMontitoringAMRuseOslo.
pdf

2002 United States Alliance for the Prudent Use of
Antibiotics

The Need to Improve Antimicrobial Use
in Agriculture: Ecological and Human
Health Consequences (“FAAIR
Report”)

http://www.journals.uchicago.edu/
CID/journal/contents/v34nS3.html

2002 Canada Veterinary Drugs Directorate,
Health Canada Report of the
Advisory Committee on Animal
Uses of Antimicrobials and
Impact on Resistance and
Human Health

Uses of Antimicrobials in Food Animals
in Canada: Impact on Resistance and
Human Health

http://www.hc-sc.gc.ca/dhp-mps/
alt formats/hpfb-dgpsa/pdf/pubs/
amr-ram final report-rapport
06-27 e.pdf

2003 International WHO Department of
Communicable Diseases,
Prevention and Eradication and
Collaborating Centre for
Antimicrobial Resistance in
Foodborne Pathogens

Impacts of Antimicrobial Growth
Promoter Termination in Denmark

http://www.who.int/salmsurv/en/
Expertsreportgrowthpromoter
denmark.pdf

2004 International FAO, OIE, and WHO Joint FAO/OIE/WHO Workshop on
Non-Human Antimicrobial Usage and
Antimicrobial Resistance: Scientific
Assessment

http://www.who.int/foodsafety/
publications/micro/en/amr.pdf

2004 International FAO, OIE, and WHO Second Joint FAO/OIE/WHO Expert
Workshop on Non-Human
Antimicrobial Usage and Antimicrobial
Resistance: Management Options

http://www.who.int/foodsafety/
publications/micro/en/oslo
report.pdf

2004 United States GAO Federal Agencies Need to Better Focus
Efforts to Address Risk to Humans
from Antibiotic Use in Animals

http://www.gao.gov/highlights/
d04490high.pdf

means “temporary or permanent ability of a microorganism and
its progeny to remain viable and/or multiply under conditions
that would destroy or inhibit other members of the strain” (Cloete
2003). These terms and the different types of resistance are de-
scribed below.

As Courvalin (2005) describes, resistance can result from mu-
tations in housekeeping structural or regulatory genes, or alter-
natively, horizontal acquisition of foreign genetic information. In
some cases, resistance may manifest through multiple mecha-
nisms. For example, three different strategies are thought to be
involved in resistance to tetracycline (Schnappinger and Hillen

1996). Resistance can also be intrinsic, that is microorganisms
without known exposure to antimicrobial agents may be resis-
tant to some agents (see below).

If a resistant strain is isolated from an environment contain-
ing an antimicrobial or prepared in the laboratory by exposure
to increasing concentrations of an antimicrobial, resistance may
be due to a genetic alteration or a temporary adaptation. It
may be that temporary adaptation to an antimicrobial through
some type of homeostatic mechanism plays a much larger role
than true genetic mutation among food-related antimicrobials. To
date, research on resistance to food antimicrobials has focused
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almost exclusively on innate or intrinsic mechanisms of the target
microorganisms.

Innate (Intrinsic) resistance. As is the case for a natural prop-
erty of a microorganism, innate resistance is chromosomally con-
trolled (Russell 1991). Innate resistance is related to the general
physiology or anatomy of a microorganism and stems from pre-
existing mechanisms or properties. This type of resistance is most
likely responsible for differences in resistance observed among
different types, genera, species, and strains of microorganisms
in identical environmental conditions and concentrations. Innate
resistance may stem from the complexity of the cell wall, ef-
flux mechanisms (means by which microbes pump antimicro-
bials out of the cell [Gilbert and McBain 2003]), or enzymatic
inactivation of the antimicrobial (Russell 2001). For example,
because of the complexity of their cell walls, Gram-negative
bacteria generally have a higher level of resistance to antibac-
terial agents than typical Gram-positive bacteria (Russell and
Chopra 1996). More specifically, Gram-negative bacteria are in-
nately resistant to penicillin G by virtue of their double mem-
brane structure, which prevents the antibiotic from accessing the
cell wall target. Similarly, Mycobacterium species are more re-
sistant than other nonsporeforming bacteria due to high lipid
content in their cell walls and comparatively high hydrophobic-
ity. Other bacteria—Bacillus, Pseudomonas, Corynebacterium,
Micrococcus, and the fungus Aspergillus have innate resistance
to benzoate because they are capable of metabolizing the com-
pound to succinic acid and acetyl coenzyme A (Chipley 1993).
Innate resistance is not considered an important clinical problem
because antibiotics were never intended for use against intrinsi-
cally resistant bacteria.

There are certain circumstances in which antimicrobial agents
do not adversely affect bacteria that are generally susceptible
to the particular agent. Because the efficacy of most food an-
timicrobials and sanitizers is dependent upon and influenced
by the conditions of the application, some situations may per-
mit bacterial resistance that would not have occurred otherwise
(IFT 2002a). Exposure conditions, such as the environmental
conditions (temperature, pH, and food composition) of the an-
timicrobial application, or interaction of the antimicrobial with
components of the suspension medium or food product can in-
fluence the efficacy of the antimicrobial agent (Davidson 2001).
For example, organic matter can quench the hypochlorite ion
and therefore eliminate its efficacy at killing generally suscep-
tible bacterial populations (Kotula and others 1997). However,
microorganisms that are generally susceptible to antibiotics can
themselves also become temporarily resistant to an antimicrobial
through activation of silent, resident gene(s) that confer this re-
sistance. A good example of this occurring is observed with the
survivability of biofilm-associated cells versus planktonic (free
floating/living) cells (Frank and Koffi 1990; Mosteller and Bishop
1993; Mustapha and Liewen 1989). Microbial cells in biofilms
exhibit resistance primarily through the protection provided by
extracellular materials such as exopolysaccharides. Also, non-
growing bacterial cells are resistant to many antibiotics that target
cell wall synthesis. Once conditions again become favorable for
growth, these bacterial cells become susceptible again to these
cell wall inhibitors. Also, the few reports of resistance to food
antimicrobial preservatives and sanitizers are attributed to mi-
crobial stress responses to sublethal stressors, such as low or
high temperatures, acidity, osmolarity, low moisture, high atmo-
spheric pressure, low oxygen or anaerobic conditions, gas at-
mospheres, competing bacteria, and low nutrient environments
that trigger physiological changes and subsequently confer resis-
tance to these compounds (Abee and Wouters 1999; Archer 1996;
Samelis and Sofos 2003a; Sheridan and McDowell 1998; Sofos
2002a).

Acquired (Extrinsic) resistance. Acquired resistance results from
genetic changes that occur through mutation of the antimicro-
bial’s target site within the bacterium or acquisition of genetic
material encoding resistance via plasmids3 or transposons4 con-
taining integron sequences5 (Roe and Pillai 2003; Russell 1991,
1996; Russell and Chopra 1996). Acquired resistance, the most
common type of antibiotic resistance, has been well studied for
antibiotics, but has not been well studied for food antimicrobial
agents and sanitizers. Acquisition of genes for β-lactamase (an
enzyme capable of breaking down and inactivating β-lactam an-
tibiotics [penicillins and cephalosporins]) and mutation of one of
the subunits of DNA gyrase (the target of fluoroquinolones) are
examples of this type of resistance. Another example includes re-
sistance of some microorganisms to sanitizing compounds, such
as quaternary ammonium compounds (QACs), as a result of the
presence of plasmid-encoded efflux pumps that remove the QACs
(Russell 1997).

Although acquired resistance is of concern in the use of food
antimicrobial agents and sanitizers, occurrence of such resistance
appears to be rare. Unlike antibiotics, which generally have spe-
cific target sites, biocides (that is, disinfectants, sanitizers, antimi-
crobials) typically act nondiscriminately against multiple nonspe-
cific targets (Bower and Daeschel 1999); thus, single mutations
or biochemical alterations of cellular targets seldom confer resis-
tance to biocides.

Adaptation. For certain types of antimicrobials, adaptation may
be demonstrated by exposing a microorganism to a stepwise in-
crease in concentration of the substance. This type of resistance,
however, is often unstable; the microorganism may revert back
to the sensitive phenotype when grown in an antimicrobial-free
medium, termed “back-mutation” (Russell 1991). In the absence
of selection pressure, the mutations associated with resistance
may actually reduce fitness of the bacterial strain compared to
the wild type, parental strain. Stabilizing, secondary, compen-
satory mutations are sometimes needed to maintain resistance
and reduce fitness cost associated with the original “resistance”
mutation.

Antimicrobial Applications
During food production and manufacturing, a variety of antimi-

crobials, including antibiotics, antifungals, sanitizers, and food
preservatives, are applied to improve the efficiency of the sys-
tem, and increase the safety and quality of the product. The mul-
tiple points throughout the ecosystem where antimicrobials may
be used and subsequently impact the epidemiology of resistance
are shown in Figures 1 and 2. Microorganisms encounter and
are subjected to a variety of antimicrobial stressors as they move
throughout the food system, from the environment to the plant,
through food processing, shipping, distribution, storage, and into
kitchen food preparation areas. The variety of antimicrobial uses
at each of the various stages of the food system may create selec-
tive pressure that promotes resistance.

The major classes of antibiotics and their various uses in
animals, plants, and humans are listed in Table 2. Detailed in-
formation on the mechanism of action of specific classes of an-
timicrobials can be found elsewhere (Prescott and others 2000;
Walsh and others 2003). Some of the antibiotics and fungi-
cides used in agriculture have identical chemical counterparts
in human medicine. The majority of antibiotics used in food

3 plasmid: self-replicating, extrachromosomal double-stranded, circular DNA,
with exceptions
4 transposon: genetic element that physically moves from one genetic position
to another within the chromosome or plasmid in which it resides.
5 integron sequences: genetic elements similar to transposons
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animals belong to classes of antibiotics that are also used to treat
human illness; these include tetracyclines, sulfonamides, peni-
cillins, macrolides, fluoroquinolones, cephalosporins, amino-
glycosides (gentamicin and kanamycin), chloramphenicols, and
streptogramins (NARMS 2006).

Antibiotics are also used in companion animals, most often
for treating dermatological conditions, ear infections, respiratory
infections, urinary tract infections, and wounds. Applications in
companion animals are addressed in Appendix 1.

Production agriculture
Animal husbandry. Foods of animal origin have been a main-

stay of American agriculture. During the past half-century, food
animal production has increased dramatically as a result of ad-
vances in science and technology, including the use of antibiotics
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Figure 2 --- Application of antimicrobials from farm to table

in treating and preventing disease. Improvements in animal ge-
netics, housing, nutrition, biosecurity, husbandry, and veterinary
medicine, concurrent with more efficient business practices and
economies of scale, have allowed food animal production to meet
the demands of consumers. Antibiotics have been used in food
animals (primarily cattle, swine, and poultry) for more than 50
years to treat, prevent, or control infectious disease, or to im-
prove efficiency of feed utilization and weight gain (Gustafson
and Bowen 1997). Specific information on antimicrobial agents
used in animals can be found in the “Green Book” (listing the
FDA-approved animal drug products) or the Feed Additive Com-
pendium (Anonymous 2006a; FDA/CVM 1998). Administration
of these veterinary drugs to food animals is a critical component of
an overall management system that food animal producers use to
secure the health and welfare of the animals and ensure the safety
of the products that enter the food chain. Commensurate with
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Table 2 --- Examples of antimicrobial drugs and antibiotics, by major class, approved in the United States for animal,
plant, or human use

Food animal use
Antimicrobial,
drug class Mode of action/ Disease Disease Growth Plant Human
(selected examples) spectrum Animal Species treatment prevention promotion use use

Aminoglycosides
(gentamycin, neomycin,

streptomycin)

Inhibit protein
synthesis/broad
spectrum

Beef cattle, goats,
poultry, sheep, swine

� � � �

(Certain
plants)

Beta-lactams
penicillins (amoxicillin,

ampicillin)

Inhibit cell wall synthesis Beef cattle, dairy cows,
fowl, poultry sheep,
swine

� � � �

cephalosporins 1st
generation (cefadroxil)

Broad spectrum �

cephalosporins 2nd
generation (cefuroxime)

�

cephalosporins 3rd
generation (ceftiofur)

Beef cattle, dairy cows,
poultry, sheep swine

� � � �

Chloramphenicol Inhibit protein synthesis/ �

(Florfenicol) broad spectrum

Inhibit protein synthesis/
broad spectrum

Beef cattle �

Cycloserines
(cycloserine)

Inhibit cell wall
synthesis/narrow
spectrum

�

Glycopeptides
(vancomycin)

Inhibit cell wall
synthesis/narrow
spectrum

�

Ionophores
(monensin, salinomycin,

semduramicin, lasalocid)

Disrupts osmotic balance
/narrow spectrum

Beef cattle, fowl, goats,
poultry, rabbits, sheep

� � �

Lincosamides
(lincomycin)

Inhibit protein
synthesis/narrow
spectrum

Poultry, swine � � �

Macrolides
(tylosin, tilmicosin

erythromycin)

Inhibit protein
synthesis/narrow
spectrum

Beef cattle, poultry, swine � � � �

Monobactrams
(aztreonam)

Inhibit cell wall synthesis
broad spectrum

�

Polypeptides Inhibit cell Fowl, poultry, � � � �

(bacitracin) wall synthesis swine � � �

narrow spectrum

Fluoroquinolones Inhibit DNA Beef cattle � �

(enrofloxacin, danofloxacin) synthesis/broad
spectrum

Streptogramins
(virginiamycin)

Inhibit protein
synthesis/narrow
spectrum

Beef cattle, poultry, swine � � � �

Sulfonamides
(sulfadimethoxine

sulfamethazine
sulfisoxazole)

Inhibit folic acid
synthesis/broad
spectrum

Beef cattle, dairy cows,
fowl, poultry, swine,
catfish, trout, salmon

� � �

Tetracyclines
(chlortetracycline

oxytetracycline
tetracycline)

Inhibit protein
synthesis/broad
spectrum

Beef cattle, dairy cows,
fowl, honey bees,
poultry sheep, swine,
catfish, trout, salmon,
lobster

� � � � �

(Certain
plants)

(Continued on next page)
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Table 2 --- Continued

Food animal use
Antimicrobial,
drug class Mode of action/ Disease Disease Growth Plant Human
(selected examples) spectrum Animal Species treatment prevention promotion use use

Others
Bambermycin Inhibit cell wall

synthesis/narrow
spectrum

Beef cattle, poultry, swine � � �

Carbadox Inhibits DNA swine � �

synthesis/narrow
spectrum

Novobiocin Inhibits DNA Fowl, poultry � � �

gyrase/narrow
spectrum

Spectinomycin inhibit protein Poultry, swine � �

synthesis/narrow

aPoultry includes at least one of the following birds: broiler chickens, laying hens, and turkeys.
bFowl includes at least one of the following birds: ducks, pheasants, and quail.
(adapted and modified from GAO 1999)

increased food animal productivity is the inevitable shift to more
intensive production systems, most notably in beef cattle, poul-
try and swine, to meet the expectations and needs of a growing
number of people. Antibiotic use in food animals as an overall
strategy to prevent and treat infectious disease is most relevant
to antibiotic use in intensive production systems, in which the
health of food animals is linked to consumer need for plentiful
amounts of food animal products, food safety, and public health.

In modern production systems, food animals are generally
raised in groups (NRC 1999). Typically chickens are raised in
barns accommodating 10000 to 20000 birds, pigs are maintained
in multiple-pen buildings, and beef cattle are raised outdoors in
large pens in feed yards. Given the close proximity of the ani-
mals to one another (commingling), physiological and environ-
mental stressors, and immature immune systems, any underlying
viral infections, or bacterial respiratory or enteric diseases that
may occur in a few animals can spread to others, including en-
tire herds or flocks. Within the limits of the production system,
and depending on the nature of the disease, the producer and/or
veterinarian may intervene in such situations by medicating the
entire group via the feed or water rather than treating each af-
fected animal. Feed medication is more efficient for long-term
prophylaxis, whereas medication of water is more effective for
treating disease outbreaks due to its rapid intake and clinical re-
sponse elicitation. Medicated water is also a more effective means
for treating sick animals, which often continue to drink despite
not continuing to eat. Administration of medication via water
also allows large numbers of animals to be treated in an efficient
manner, and avoids worker safety issues associated with injecting
large numbers of animals.

Therapeutic uses. Therapeutic antimicrobial regimens include
treatment, control, and prevention of disease (NCCLS 2002).
Treatment is the administration of an antimicrobial to an animal or
group of animals exhibiting frank, clinical disease (NCCLS 2002).
Control is the administration of an antimicrobial to animals, usu-
ally as a herd or flock (metaphylaxis), in which morbidity and/or
mortality has exceeded baseline norms, that is, early in the course
of disease onset in the population. For example, as beef calves
arrive at the feedlot, some of the animals disembarking from
the truck may exhibit signs of clinical disease, for which treat-
ment is necessary. While the other animals from the truck appear
healthy, they have likely been exposed to the inciting pathogen

and would otherwise “break” with disease if not also treated. The
control concept is based on the premise that because the risk
of disease spread from an individual animal or small group of
diseased animals to the large susceptible population is substan-
tial, it is appropriate that all animals be medicated. Prevention
or prophylaxis is the administration of an antimicrobial to ex-
posed at-risk healthy animals, generally in a herd or flock situa-
tion rather than on an individual animal basis, prior to the onset of
a disease for which no etiologic agent has been cultured. An ex-
ample of antimicrobial prophylaxis is the intramammary infusion
of antibiotics to all dairy cows in a herd at the end of the lac-
tation cycle, known as “dry-cow therapy,” to prevent mastitis at
parturition.

Occurrence of risk factors for a particular disease, herd/flock
history, and the appearance of clinical signs in some animals
may be sufficient indication that empirical antibiotic therapy is
warranted to limit potential spread among an animal popula-
tion. Empirical treatment is based upon the experience of the
veterinarian or food animal producer, and involves consideration
of such factors as animal species and its susceptibility to sus-
pected pathogen(s), pathogen virulence, treatment cost, and any
applicable antibiotic withdrawal times.6 In such circumstances, a
bacteriological diagnosis is most often made retrospectively from
a necropsy specimen from a dead animal, although a culture from
a live animal within the exposed population sometimes is recog-
nized by analysis. Upon pathogen identification, the diagnostic
laboratory will perform antimicrobial susceptibility testing, the
results of which will further guide the veterinarian in antibiotic
selection.

All of the newer injectable and water-soluble antibiotic prod-
ucts, including ceftiofur, enrofloxacin, and florfenicol, must be

6 Withdrawal times are regulatory determinations of the Food and Drug Admin-
istration (FDA) concerning medication of all food-producing animals which sets
forth the period of time in which an antibiotic cannot be administered to food
animals prior to milk or egg collection or slaughter of the animal for human con-
sumption. The regulations are designed to ensure that no unsafe concentration
of drug residue is present in the food animals at the time of slaughter. Adherence
to the drug withdrawal times can be ensured only through use as directed by the
manufacturer on the drug label. Withdrawal times may vary dependent upon
factors such as the species and age of the animals, as well as type of food com-
modity. Meat, meat products, milk, and eggs that are found to contain violative
residues are condemned to ensure they do not enter the food chain.
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obtained by prescription from or dispensed by a veterinarian.
Antibiotic agents intended for growth promotion or therapeutic
use in feed are usually incorporated into the feed at the feed mill
and fed directly to the animals without direct veterinary involve-
ment. An exception, however, is a prescription-like order signed
by a veterinarian, through the Veterinary Feed Directive, that is
processed and “filled” at the feed mill.

Extra-label7 drug use is also a legal option for specific circum-
stances in food animal production. Such use of a drug differs
from its approved labeling, which addresses species, indication,
dosage levels, and frequency or route of administration. Under
strict provisions that include a veterinarian-client-patient relation-
ship, veterinary uses of extra-label drugs are acceptable to the
FDA as long as the regulatory requirements are met, including
that any tissue residues of the drug in meat or meat products are
less than predetermined limits. Extra-label drug use, however, is
not permitted for drugs added to feed (21 CFR §530).

Performance improvement uses. In the 1950s, it was shown that
antibiotics administered at low levels for an extended time pe-
riod promote growth rate and feed efficiency (growth promotion)
in healthy livestock, primarily cattle, swine, and chickens (Jukes
1971). The beneficial effects of antibiotics on feed efficiency and
growth rate have since been demonstrated for all major livestock
species (Hays 1991). The use of an in-feed antibiotic for growth
promotion occurs most often in young, growing animals. Use in
older animals has a lessened effect. The use of antibiotics for
growth promotion is intended to allow farmers to produce food
animals at less cost because the amount of feed required for an
animal to reach production weight is reduced.

A number of mechanisms for the growth promotion effects
of antibiotics have been proposed. Possible mechanisms have
been reviewed by Gaskins and others (2002) and Shryock (2000).
The potential mechanisms are thought to be physiological, nutri-
tional, and metabolic in nature and relate to antibiotic inhibition
of the normal microflora, enabling more energy to be expanded
for nutrient use and increased conversion to weight gain. Stud-
ies with germ-free animals have suggested that growth promo-
tion results from antibacterial activities within the gastrointestinal
system (Feighner and Dashkevicz 1987). Since the only known
common factor among the various structurally and mechanisti-
cally distinct antibiotics used for growth promotion is the ability
to kill bacteria, this mechanism seems plausible. Further, the three
antibiotics (tetracycline, tylosin, and bacitracin) most commonly
used for growth promotion act by inhibiting bacterial protein or
cell wall synthesis. Moreover, the intestinal microflora of animals
affects gut physiology in a number of ways, influencing for ex-
ample, water uptake, immune response, and nutrient availability
(Savage 1977).

Collier and others (2003) found that tylosin decreased total bac-
teria within the digestive tract and reported that the decrease may
reduce host-related intestinal or immune responses, which would
divert energy that could otherwise be used for growth. Modulation
of the intestinal microflora of animals, resulting in selective en-
richment for certain “optimal” bacteria, could enhance gut physi-
ology by optimizing metabolism or nutrient uptake. Thus, it is also
thought that the optimal microflora assist in maintaining animal
health, and subsequently public health as well, by selectively
excluding pathogens through either occupation of the physical
intestinal microhabitat or acting as microbial antagonists. Collier
and others (2003) also reported that the ability of tylosin to im-

7 extra-label use: actual or intended drug use in an animal in a manner, such as
increased dose or treatment duration, that is not in accordance with approved
labeling, either because labeled drugs are unavailable for the condition or they
are considered no longer effective

prove animal growth may relate to its apparent selection for lacto-
bacilli, commensals8 known to competitively exclude potentially
pathogenic species from colonizing the intestine.

The use of antibiotics for growth promotion, however, has been
a target for elimination. In the European Union (EU), growth pro-
motion claims for human use class feed additive antibiotic labels
were withdrawn in the 1990s, and nonhuman use class feed ad-
ditive antibiotics followed in January 2006. In the United States
some large restaurant corporations (for example, McDonalds,
Oak Brook, Ill., U.S.A.) have developed antibiotic use policies
that exclude human-use antibiotic classes for growth promotion
purposes in flocks and herds of suppliers from whom they pur-
chase poultry and beef products.

Poultry. The poultry industry is the most integrated of all of
the major food animal industries in the United States. With inte-
gration, a single company controls the entire production cycle,
from breeders to retail market. Approximately 8.4 billion chick-
ens (broilers) and 264 million turkeys were produced in 2004
(USDA/NASS 2005). In most hatcheries, day-old chicks are in-
jected with vaccines or an antibiotic, such as gentamicin or ceftio-
fur, to prevent opportunistic bacterial infections. Broiler chickens
(typically six to eight weeks of age and five to eight pounds) are
typically raised in pens containing 10000 to 20000 birds; turkeys
are typically raised in groups of 5000 to 10000 (Lasley 1983;
Lasley and others 1983). The majority of drugs used in poultry
are administered via feed or water. Ionophores9 or arsenicals are
used as coccidiostats and antibiotics are used as growth promot-
ers (NRC 1999).

Starter and grower rations may contain up to three drugs—a
prophylactic coccidiostat, an antibiotic growth promoter, and an
arsenical compound having both anticoccidiostat and growth-
promoting properties. One or more drugs may be deleted from
grower and finisher rations, however, to reduce cost and com-
ply with drug withdrawal times to prevent tissue residues (NRC
1999). Table 2, which lists the antimicrobials approved for use in
the United States, identifies a number of antibiotics (for example,
bacitracin, bambermycin, chlortetracycline, penicillin, and vir-
giniamycin) that are approved for use for growth promotion and
feed efficiency in broilers, turkeys, and layers. Several antibiotics,
administered as feed additives, are approved for treating intesti-
nal infections, such as necrotic enteritis (caused by Clostridium
perfringens) and coccidiosis (a common parasitic poultry disease
caused by Eimeria species). Bacitracin and virginiamycin, for ex-
ample, are used to treat necrotic enteritis, and monensin, salino-
mycin, narasin, and semduramicin are used to treat coccidiosis.
Respiratory disease, such as air sacculitis caused by Escherichia
coli, is treated with tetracycline. A variety of other antimicro-
bial agents are used for various conditions in poultry production
(Merck 2003).

Swine. In 2004, 103 million hogs were slaughtered for food
use (USDA 2005a). To control their environment and reduce dis-
ease, swine are often raised in confinement, sometimes from birth
to slaughter (farrow to finish), or in age-segregated management
systems where they are moved to different farms for various pro-
duction stages (nursery, grower, and finishing, for example). In-
creasingly, management systems are undergoing transition to the
all-in/all-out system in which pigs of similar ages are housed to-
gether to limit spread of infectious disease among animals with
different age-dependent immune systems. Operations with more

8 Commensals include such bacteria as generic Escherichia coli, lactic acid bac-
teria, or Enterococci occurring naturally in the intestinal tracts of humans and
animals or on raw foods or used as starter cultures for fermentation.
9 ionophores: compounds that facilitate transmission of an ion, calcium for ex-
ample, across a lipid membrane based on the definition from Merriam Webster’s
Medline Plus: www.nlm.nitgov/medlineplus

Vol. 5, 2006—COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY 79



CRFSFS: Comprehensive Reviews in Food Science and Food Safety

than 5000 head accounted for more than 75% of the swine in the
United States in 2001, compared with only 27% in 1994 (USDA
2003). Several major pork production companies are fully inte-
grated, but most production is still segmented.

The majority of drugs for swine are administered via feed or
water. Breeding sows and pre-weaning pigs, however, are an ex-
ception, with antibiotics generally administered to individual an-
imals. Most swine receive an antibiotic in feed (“starter rations”)
after weaning, when they are most vulnerable to infectious dis-
ease (caused by antecedent viral infections predisposing the ani-
mals to mycoplasma and/or bacterial superinfection) that may be
related to the stress of weaning and movement within the pro-
duction unit (Dewey and others 1997). Pneumonia is an impor-
tant problem in swine production; antibiotics such as ceftiofur,
tilmicosin, penicillin, lincomycin, tetracyclines, and tiamulin are
used to treat and prevent clinical cases and outbreaks. Gentam-
icin, carbadox, tetracyclines and neomycin are sometimes used to
control diarrhea caused by bacteria such as E. coli and C. perfrin-
gens. Ileitis (caused by Lawsonia intracellularis) may be treated
with antibiotics such as lincomycin, tiamulin, or tylosin. Feed ef-
ficiency and growth promotion can be achieved with bacitracin,
tylosin, virginiamycin, tetracyclines, and penicillin. A variety of
other conditions, for which other antimicrobial agents are used,
exist in swine production (Merck 2003).

Beef cattle. More than 37 million head of cattle were slaugh-
tered in 2004 (USDA 2005a). In contrast to the highly integrated
poultry industry, the beef cattle industry is still quite segmented,
with many calves changing ownership and shipped multiple
times during their lifetime. Calves from many sources are com-
bined via auction or sale barns, transported, and commingled at
the feed yard. Upon entering a feedlot, young cattle are given vac-
cinations against gastrointestinal and respiratory diseases, as well
antihelminthic drugs. During stressful events, such as weaning or
transportation and commingling, calves often develop pneumo-
nia or diarrhea—major causes of mortality—and are often treated
via individual or group medication.

In the U.S. beef industry, the majority of antibiotics are used
on feedlots (USDA 2000). In 1999, the U.S. Dept. of Agricul-
ture (USDA) conducted a survey of U.S. feedlots to determine
antibiotic treatment practices. For treatment of individual ani-
mals, approximately 50% of feedlots used tilmicosin and/or flor-
fenicol and/or tetracyclines as part of the initial therapy. The
feedlots also used cephalosporins (38.1%), penicillins (31.1%),
fluoroquinolones (32.1%), and macrolides (17.4%) for individ-
ual animal therapy. Approximately 41% of feedlots administered
antibiotics for metaphylactic therapy; those most commonly used
were tilmicosin, oxytetracyclines, and florfenicol (among 70.3%,
31.9%, and 22.1% of feedlots, respectively; USDA 2000). An es-
timated 83% of feedlots administered at least one antibiotic to
cattle in feed or water for disease prophylaxis (tylosin for liver
abscesses, for example) or to increase feed efficiency. A variety
of other antimicrobial agents are used for a variety of conditions
in beef cattle production (Merck 2003).

Dairy cattle and veal calves. There were 9.12 million cattle in
dairy production in 2001 (USDA 2002). Dairy herd health is
closely associated with milk production and economic sustain-
ability. Therefore, maintenance of herd health is closely depen-
dent upon disease prevention and therapeutic drug use for a range
of diseases. Severe diarrhea and pneumonia are two main causes
of morbidity and mortality in dairy heifers. Most dairy heifers are
vaccinated against a range of gastrointestinal and respiratory dis-
eases to minimize the need for antibiotics. Other conditions such
as footrot and reproductive diseases may require antibiotic treat-
ment specific to the diagnosis (Merck 2003). Administration of
antibiotics to lactating cows, however, must be done with care
to avoid milk residues. Mastitis is the most costly disease among

dairy cattle, and intramammary infection is the most costly dis-
ease in U.S. food animal production (NRC 1999). Acute mas-
titis must be diagnosed in individual cows and can be treated
with intramammary infusions of several antibiotics, for example,
β-lactams, pirlimycin, and erythromycin. Except for mastitis
caused by environmental pathogens (coliforms, for example),
which does not always require antibiotic therapy, antibiotics to
prevent mastitis are often administered through intramammary
infusions at the beginning of the “dry (nonlactating) period” on
a routine basis to all animals in the herd (Gibbons-Burgener and
others 2000).

To reduce transmission of disease from the dam, the majority of
dairy calves are separated from dams within 24 hours of birth and
provided an initial feeding of colostrums, often pasteurized, from
the initial milking to provide maternal antibodies and immunity.
Most calves are housed in individual hutches or pens to control
infection, and are fed milk or milk replacers (that may be med-
icated with an antibiotic) until weaning at 6 to 8 weeks of age,
after which time they are generally housed in groups. The males
and excess females are sometimes used for veal production.

The majority of veal calves are raised in the United States indi-
vidually in stalls until they are 16 to 18 weeks of age. Due to their
young age and confinement rearing, respiratory and gastrointesti-
nal diseases are major causes of illness and death. Although a
number of antibiotics are available for use, few data on the rel-
ative frequency of treatment with these antibiotics in the veal
industry are available (Sargeant and others 1994). Milk-based liq-
uid starter diets fed to veal calves usually contain antibiotics for
disease prophylaxis, until about 4 to 6 weeks of age when they
are fed a milk-based liquid grower diet that does not contain an
antibiotic (NRC 1999).

Minor species (sheep, goats, and bison). In the United States,
minor species are defined by exclusion, as animals other than
cattle, horses, swine, chickens, turkeys, dogs, and cats. In January
2005 the U.S. inventory of sheep and lamb totaled 6.14 million
head (2.84 million slaughtered for food use), compared with cattle
and calf inventory in July 2004 of 103.6 million (USDA 2005a,
2005b).

Six antibacterial drugs are approved for use in sheep, one
of which—chlortetracycline—is approved for growth promotion
and feed efficiency (NRC 1999). The focus of antibiotic treatment
in sheep is the prevention and control of respiratory diseases, in-
cluding shipping fever. Methods for administering drugs to sheep
flocks include incorporation into feed or water, injection, and
oral dosing. Treatment methods in goats are similar to those in
sheep except that goats tolerate oral drenching less well, and
in the United States it is common for goats to be treated as in-
dividuals rather than as herds. As ruminants, these species also
receive protocols for the prevention and treatment of mastitis.
Two antibiotics, neomycin and penicillin/streptomycin, are ap-
proved for use for enteritis and various infections, respectively;
four drugs are approved for use for coccidiosis and parasites (NRC
1999).

Currently there are approximately 350000 head of bison in
North America (NBA 2005); about 30000 head were slaughtered
for food production in the United States in 2004 (USDA 2005a).
Use of antibiotics in bison production is generally discouraged;
and occurs only for treatment purposes. The Source Verification
Program of the National Bison Association, which provides the
standards for “certified buffalo products,” prohibits administra-
tion of low doses of antibiotics over a long period of time. Med-
icated feeds are only permitted at “treatment” levels prescribed
by a veterinarian.

While there are several other minor species used for food pro-
duction, because their contribution to antimicrobial resistance is
relatively small they are outside the scope of this report.
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Food Animal Slaughter

Food animal slaughtering facilities in the United States apply carcass sanitization or physical or chemical decontamination
treatments immediately before and after hide removal, at the end of the dressing process (before carcass chilling), and potentially
after chilling; EU regulations, however, do not allow use of chemical decontamination agents in slaughter facilities (Koutsoumanis
and others 2006; Sofos 2002b; Stopforth and Sofos 2006).

Some chemical agents may be incorporated into cleaning or washing solutions to reduce hide contamination. Solutions eval-
uated for this purpose include cetylpyridinium chloride, lactic acid, sodium hydroxide, ethanol, trisodium phosphate, acidified
chlorine, and phosphoric acid. Chemical dehairing is a patented cattle hide decontamination process that involves use of a
sodium sulfide solution followed by neutralization with hydrogen peroxide. This process is expected to minimize the importance
of animal hides as sources of environmental and carcass contamination (Sofos and Smith 1998; Stopforth and Sofos 2006).

A number of interventions exist for sanitizing or decontaminating carcasses or fresh meat and poultry in the United States.
These include water or steam (that is, hot water, pressurized steam, steam-vacuum) and chemical solutions, especially organic
acids. These interventions significantly reduce bacterial populations, including those of enteric pathogens such as Escherichia
coli O157:H7 and Salmonella. Such bacterial reductions allow the industry to meet regulatory (USDA/FSIS 1996) and contractual
criteria. Spraying or rinsing of carcasses with an organic acid solution (for example, lactic and acetic acids) before evisceration
and chilling reduces total bacterial populations and pathogen prevalence, and may also result in residual antimicrobial activity
during product storage (Koutsoumanis and Sofos 2004a; Koutsoumanis and others 2004; Sofos and Smith 1998). Although this
intervention reduces the prevalence and probably the concentration of E. coli O157:H7 on meat carcasses, concern has been
raised that the treatment may select for, lead to adaptation of, or enhance the inherent tolerance of pathogen cells to acid
(Samelis and Sofos 2003a, 2003b). In vitro studies have indicated the potential for sublethal organic acid rinsing treatments,
which depend upon pH, acid type, and exposure duration, to cause acid stressing and selection of acid-resistant survivors in
fresh meat decontamination runoff fluids. A potential concern is that any survivors may create niches in the plant environment
for cross-contaminating subsequent batches of fresh meat (Samelis and others 2001a, 2002a, 2002b, 2003, 2004a, 2005b).

Additional chemical solutions for fresh meat and poultry decontamination include chlorine-based compounds and trisodium
phosphate, which are used in the poultry industry, and acidified (usually with citric or lactic acid) sodium chlorite, hydrogen
peroxide, ozonated water, activated lactoferrin, and peroxyacetic acid-based preparations. A variety of other tested chemical
compounds such as polyphosphates, benzoates, propionates, sodium hydroxide, sodium metasilicate, and sodium bisulfate have
shown various rates of success for decontaminating meat and poultry (Sofos 2002b; Stopforth and Sofos 2006).

Within a multiple hurdle approach to microbial control, fresh meat decontamination may involve the simultaneous sequential
application of treatments that act synergistically or additively. Described by Leistner and Gould (2002) and Sofos and Smith
(1998), a hurdle technology approach is the application to food of multiple physical, chemical, and biological antimicrobial
factors at individually sublethal levels, rather than as a single hurdle at a higher, lethal level. When used in proper combinations,
sublethal levels of antimicrobials are adequate for pathogen control, that is, microbial inactivation or growth inhibition. The
multiple hurdles are designed to collectively lead to pathogen inactivation through metabolic exhaustion or growth inhibition for
a certain period of time (Leistner and Gould 2002). For example, in fresh meat decontamination, the multiple hurdle approach
may involve the simultaneous (for example, warm acid solutions) or the sequential (for example, hide cleaning, carcass steam
vacuuming, pre-evisceration carcass washing, hot water, steam treatment, and organic acid rinsing treatments before carcass
chilling, spray chilling of carcasses, and post-chilling-before-boning chemical treatments) application of treatments (Stopforth
and Sofos 2006).

Effectiveness of hurdles may depend on the number and type of treatments, their intensity, and application sequence. For
example, lactic acid rinsing of beef after hot water washing is more effective for microbial reduction and, especially, control of
microbial growth during storage than before hot water washing (Koutsoumanis and Sofos 2004a; Koutsoumanis and others 2004;
Koutsoumanis and others 2006; Sofos and Smith 1998). Synergism of an acid-heat-dehydration hurdle system was shown effective
for inactivating E. coli O157:H7, Salmonella and Listeria monocytogenes inoculated pre- or post-drying on beef subsequently
used to produce jerky, a North American dried meat snack (Calicioglu and others 2002a, 2002b, 2003a, 2003b, 2003c, 2003d;
Yoon and others 2005). Selection of hurdles, their intensity, and sequence of application should aim at maximizing control
without pathogen stress-adaptation or selection of resistant cells (Samelis and Sofos 2003a).

Aquaculture. Various types of aquaculture involving many dif-
ferent food-fish species are practiced worldwide. The extensive
type of aquaculture practiced before 1980 has given way to
more intensive pond, cage, net-pen, raceway (flow-through), and
closed recirculating system culture. In the year 2000, salmon,
tilapia and hybrid striped bass production in the United States
reached 49 million, 20 million, and 10 million pounds, respec-
tively (Carlberg and others 2000; Posadas 2003a, 2003b). Total
production of channel catfish reached 630 million pounds and
the rainbow trout industry produced approximately 46 million
pounds of trout 12 inches or larger in 2003 (NWAC 2003; USDA
2004a).

Increase in demand and production capability has led to an
increased concern about diseases, especially bacterial diseases.
Antibiotics are only approved to treat disease as labeled and can-
not be used in aquaculture prophylactically or for growth pro-
motion. Antibiotics are incorporated into medicated feeds and
are never added to the water to treat bacterial disease. Man-
agement and control of bacterial diseases are accomplished by
administering medicated feeds or vaccines, and implementing
improved husbandry practices. In the United States, only four
antibiotics, Romet� (sulfadimethoxine/ormetoprim 5:1, Hoffman
LaRoche, Nutley, N.J., U.S.A.), Terramycin� (oxytetracycline,
Pfizer, Inc., U.S. Animal Health Operations, New York, N.Y.,
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U.S.A.), sulfamerizine (no longer manufactured or available for
aquaculture use), and Aquaflor� (florfenicol, Shering Plough
Animal Health, Kenilworth, N.J., U.S.A.) are approved for use
in aquaculture. Antimicrobials used in the U.S. aquaculture in-
dustry are regulated by the FDA.

In the United States, production of channel catfish, Ictalurus
punctatus, is the largest and most economically important form
of intensive aquaculture. A typical catfish farm contains brood-
fish holding and spawning ponds, a hatcher, fingerling nursery,
and grow out ponds. The ponds are earthen-bottomed and typ-
ically 10 to 20 acres in size. Catfish production has increased
from 500 fish/acre in the industry’s infancy to current levels of
10000 fish/acre. Of the losses caused by infectious disease in
food-size channel catfish, approximately 60% are the result of
single or mixed infections of Edwardsiella ictaluri, the causative
agent of enteric septicemia of catfish (ESC), and Flavobacterium
columnare, the causative agent of columnaris disease (Khoo
2001). Most catfish farmers are familiar with the clinical signs
of the common bacterial diseases of catfish, and at the first sign
of disease, a sample of sick fish is collected and shipped to the
nearest aquatic diagnostic laboratory. Diagnostic laboratories typ-
ically culture the causative agents of disease and perform antibi-
otic susceptibility testing on bacterial pathogens.

Antibiotic use in catfish culture escalated in 1981 with the
emergence of ESC, until approximately 1997, when management
trends began to change. Sulfadimethoxine/ormetoprim 5:1 has
traditionally been the most popular drug premix, because it is in-
corporated into a floating feed, but this situation may change with
the approval in 2005 of florfenicol medicated feed. Oxytetracy-
cline is only available in a sinking feed, which is less desirable
because feeding activity is difficult to monitor (MacMillan 2003).

The practice of stocking and growing tilapia and hybrid striped
bass at very high densities in closed recirculating aquaculture
systems has led to the emergence of several bacterial pathogens,
most notably Streptococcus iniae, as a limiting factor in produc-
tion. Cumulative mortality rates in young fish can reach 75% in
a matter of weeks although mortality is usually not as explosive
as for other bacterial diseases of fish (Plumb 1999). Currently no
antibiotics are approved by FDA for treating bacterial diseases in
tilapia or hybrid striped bass.

The rainbow trout industry has greater maturity than many
other forms of aquaculture and benefits from years of research
on the diseases of salmonids and best management practices
for those diseases. Many large trout producers have their own
staff of fish pathologists who are responsible for maintaining the
health of the fish stocks. The most prevalent bacterial diseases
of rainbow trout are enteric redmouth disease (ERM) caused
by Yersinia ruckeri, bacterial kidney disease caused by Reni-
bacterium salmoninarum, furunculosis caused by Aeromonas
salmonicida and coldwater disease caused by Flavobacterium
psychrophilum. Asymptomatic carriers are common with ERM
resulting in efficient disease spread. Once considered a major
problem in the farm-raised trout industry, ERM is largely con-
trolled today by good management practices and vaccination,
although oxytetracycline medicated feeds have also been suc-
cessfully used. Oxytetracycline medicated feeds have been used
successfully at 50–75 mg/kg of fish/day for 10 days followed by
a 21-day withdrawal period (Plumb 1999). ERM was one of the
first fish diseases to be managed by vaccination. Current practices
involve vaccination of 4 to 4.5 g fingerlings by immersion in a
killed bacterin (suspension of killed or attenuated bacteria for use
as a vaccine), which provides protection for 12 mo. The success
of the ERM vaccine has resulted in greatly reduced mortality, re-
duced antibiotic usage, and reduced feed conversion rates in U.S.
rainbow trout (Plumb 1999). Bacterial kidney disease remains dif-
ficult to manage, and is currently treated by chemoprophylaxis

by injecting brood stock with 20 mg/kg erythromycin. Manage-
ment of furunculosis involves the use of disease resistant strains
of fish, destruction of infected fish, facility sanitation, and restric-
tions on use of eggs from infected broodstock. Sulfadimethoxine/
ormetoprim medicated feeds have been used successfully at
50 mg/kg of fish/day for 5 d with a 42-d withdrawal period.
Vaccines have not been as successful commercially because in-
jectable vaccines are required to elicit adequate protection.

In salmonid mariculture (cultivation of marine organisms in
their natural environment), vibriosis has been implicated as an
important disease. Several species of vibrio bacteria, particularly
Vibrio anguillarum, V. ordalii, and V. salmonicida, are responsible
for the disease. Oxytetracycline has been used to treat vibriosis
with variable results. Bivalent vaccines with antigenic compo-
nents from V. anguillarum and V. ordalii are currently used with
great success.

In the early 1990s, several mariculture ventures were estab-
lished in brackish-water areas of south Louisiana where hybrid
striped bass, Morone saxatilis x M. chrysops, and red drum, Sci-
aenops ocellatus, were cultured in cages, net-pens, and ponds.
The emergence of Photobacterium damselae subsp. piscicida as
an important marine bacterial pathogen of hybrid striped bass,
led to the use of antibiotic medicated feeds in an attempt to
control mortality (Hawke and others 2003). Oxytetracycline,
sulfadimethoxine/ormetoprim 5:1, and amoxicillin at 50 mg/kg
fish/day were used to treat outbreaks of P. damselae subsp. pisci-
cida in red drum and in hybrid striped bass on mariculture farms.
The antibiotics were used after filing for permission from the FDA
but were unsatisfactory for several reasons—poor efficacy due to
rapid onset of disease and anorexia of sick fish, recurrent infec-
tions following the use of antibiotics, and rapid development of
antibiotic resistant strains of P. damselae subsp. piscicida due to
acquisition of R-plasmids (Hawke and others 2003).

In many instances, medicated feeds have not proven to be ef-
ficacious in aquaculture for a variety of reasons. Individual fish
infected with bacterial diseases tend to go off feed early in an epi-
zootic and will not receive a therapeutic amount of the antibiotic.
For antibiotic feeds to effectively control an outbreak of disease,
the majority of fish in the population must be actively feeding for
individuals to receive a therapeutic dose. For this reason, early
diagnosis and initiation of therapy are paramount. Additionally,
maintenance of good water quality and parasite control are im-
portant to keep feeding responses high.

Plant agriculture. The types of antimicrobials used in plant agri-
culture include antibiotics for control of certain bacterial diseases,
and fungicides for control of fungi. Fungi and viruses are the
most prevalent microorganisms causing diseases of plants; bac-
teria are relatively minor in importance, with some notable ex-
ceptions. Fruit trees account for most antibiotic use on plants in
the United States (McManus 2000). In the United States, strep-
tomycin and oxytetracycline have been used for more than 40 y
as preventative treatments to control bacteria, primarily, affecting
fruits and vegetables. Trees are generally sprayed during blos-
som time, when they are most susceptible to infection by Erwinia
amylovora (causal agent of fire blight) and Pseudomonas syringae
pathovar papulans (causal agent of apple blister spot). The edible
fruit is not sprayed. Although streptomycin is registered by the
EPA for use on 12 fruit, vegetable, and ornamental fruit crops,
and oxytetracycline is registered for use on 4 fruit crops (Vidaver
2002), a limited number of fruit tree species—apple, pear, and
peach—are treated in such a manner by antibiotics.

Most antimicrobials used in plant agriculture are fungicides.
The top 12 economically severe fungal diseases are: cereal rusts,
cereal smuts, ergot of rye and wheat, late blight of potato, brown
spot of rice, southern corn leaf blight, powdery and downy
mildews of grapes, downy mildew of tobacco, chestnut blight,

82 COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY—Vol. 5, 2006



Antimicrobial resistance . . .

Table 3 --- Sanitizers commonly used in the food industry (Davidson and others 2005; McDonnell and Russell 1999)

Active ingredient Environmental surfaces Food contact surfaces Food tissues Restroom Handcare

Alcoholsa + + +
Oxidizing compoundsb + +
Hypochlorite + + + – –
Quaternary ammonium compounds + + ± + –
Phenolics – – – + –
Acid anionics + + – – –
Acidified sodium chlorite ± ± + – –
Chlorine dioxide + + + – –
Triclosan – – – – +
Para-chloro-meta-xylenol – – – – +
Chlorhexidine – – – – +
aIncludes ethyl alcohol (ethanol, alcohol), isopropyl alcohol (isopropanol, propan-2-ol), and n-propanol.
bIncludes hydrogen peroxide and peracetic acid.

Dutch elm disease, and pine stem rusts. Some of these diseases
are worldwide and some are more restricted, due to host and
climate (Agrios 2005).

Of the approximately 135 fungicides in 40 chemical classes
(FRAC 2003), a large number are chemically classified as azoles.
These popular fungicides are relatively cheap, have broad spec-
trum systemic activity for both preventative and curative effects,
and are relatively stable (Hof 2001). The azoles are effective
against mildews and rusts of grains, fruits, vegetables, and or-
namentals; powdery mildew in cereals, berry fruits, vines and
tomatoes; leaf spots and flower blights in flowers, shrubs and
trees, and several other plant pathogenic fungi (Hof 2001). At
present, there are no cross-over chemicals with those used in
human medicine to treat serious systemic mycoses. However, al-
though the formulations differ in their imidazole or triazole ring
or in the side chain, in all cases the fungal target site (the en-
zyme lanosterol 14α-demethylase) is the same (Dismukes 2000).
Fungicide resistance in plant pathogens may be of concern to
those treating medical mycoses.

Residues of antibiotics and fungicides on fruits and vegetables
are monitored by the Environmental Protection Agency (EPA); the
residues have not been considered of concern with respect to an-
timicrobial resistance. Treated microorganisms, however, may be
present on fruit and produce. Thus, antimicrobial resistance of
plant pathogens and resistance of microbes in the treated envi-
ronment raise questions about the potential for compromise in
the use of these antimicrobials in human disease treatment.

Genes coding for antibiotic resistance have been used as mark-
ers in transgenic plant production, which is used to indirectly re-
cover the desired trait(s), that is trait(s) not previously achievable
through conventional plant breeding. Thus, a desired trait from
an unrelated plant, animal, or microbial source may be added to
a plant’s replication machinery in single-cell technology, but the
transformed cells may not be selectable directly when grown as
tissue culture in vitro. After initial indirect selection, some mark-
ers can be eliminated as the plant is allowed to grow normally.
These recombinant DNA derived plants have raised questions
about the potential transfer of antibiotic resistance to animals or
humans, although there has been no conclusive evidence of gene
transfer from plant chromosomes to animals or humans. The risk
of transfer of antibiotic resistance markers and the corresponding
hazard was reviewed by Bennett and others (2004), and found to
be “remote” and “slight.” Nevertheless, under the impetus of the
EU, genes expressing resistance to antibiotics used in medical or
veterinary treatment as markers will be phased out between 2004
and 2008.

Food processing
Several different types of antimicrobial agents (Tables 3 and 4)

are used in food manufacturing to either clean or sanitize to pre-
vent cross-contamination in food processing facilities, or ensure
food quality and safety. Food antimicrobials were traditionally
used to prevent food spoilage, and only recently have been ap-
plied to control pathogen growth. Unlike the approval process for
use of antibiotics in animals, which requires a risk assessment of
resistance acquisition, the potential for the development of resis-
tance to food antimicrobial agents is not considered during their
approval for food use.

Cleaning and sanitation. Equipment surfaces and the surround-
ing environment inevitably become soiled and require cleaning
during food processing. In addition to detergents and soaps, an-
tibacterial agents (biocides) are used as sanitizers, disinfectants,
and handcare products throughout the food system. These sub-
stances are used to reduce the level of microorganisms on food
contact surfaces, in food formulations, on ready-to-eat (RTE) food
product surfaces, environmental surfaces, food tissue surfaces,
and human skin. Formulations for these uses contain one or more
antibacterial agents, commonly referred to as active ingredients,
as well as other components including surfactants, pH buffer-
ing agents, and water conditioning agents. The active ingredients
of sanitizers and various common uses in the food industry are
shown in Table 3. Overviews of the cellular targets and inactiva-
tion mechanisms of biocides are provided in Figure 3 and 4.

Detergents may be classified into inorganic alkali (sodium
hydroxide and sodium carbonate, for example), inorganic and
organic acids (phosphoric and citric acids, for example), surface-
active agents (for example, synthetic detergents—either anionic,
cationic, non-ionic, or amphoteric [capable of reacting chem-
ically as either an acid or base]), and sequestering agents
(polyphosphates, ethylenediamine tetra acetic acid [EDTA, for
example]). Modern detergents contain a mixture of different
chemicals, each contributing to the desired properties of the for-
mulation. Sanitizers used in the food industry can be classified
into chlorine releasing compounds, QACs, iodophors10 and am-
photeric compounds.

Quality and safety. Sanitization or decontamination treatments,
similar to those applied on raw beef, may also be used for fresh
produce (Beuchat and Ryu 1997; Taormina and others 1999).

10 iodophor: complex of iodine and a surface-active agent that releases iodine
gradually and serves as a disinfectant
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Table 4 --- FDA-approved food antimicrobials (IFT 2002a)

Compound(s) Microbial target Primary food applications Title 21 CFR designationa

Acetic acid, acetates,
diacetates, dehydroacetic
acid

Yeasts, bacteria Baked goods, condiments,
confections, dairy products,
fats/oils, meats, sauces

184.1005, 182.6197, 184.1754,
184.1185, 184.1721, 172.130

Benzoic acid, benzoates Yeasts, molds Beverages, fruit products, margarine 184.1021, 184.1733
Dimethyl dicarbonate Yeasts Beverages 172.133
Lactic acid, lactates Bacteria Meats, fermented foods 184.1061, 184.1207, 184,1639,

184.1768
Lactoferrin Bacteria Meats b

Lysozyme Clostridium botulinum, other bacteria Cheese, casings for frankfurters,
cooked meat and poultry products

184.1550c

Natamycin Molds Cheese 172.155
Nisin Clostridium botulinum, other bacteria Cheese, casings for frankfurters,

cooked meat and poultry products
184.1538d

Nitrite, nitrate Clostridium botulinum Cured meats 172.160, 172.170, 172.175,
172.177

Parabens (alkyl esters
(propyl, methyl, heptyl) of
p-hydroxybenzoic acid)

Yeasts, molds, Gram-positive
bacteria

Beverages, baked goods, syrups,
dry sausage

184.1490, 184.1670, 172.145

Propionic acid, propionates Molds Bakery products, dairy products 184.1081, 184.1221, 184.1784
Sorbic acid, sorbates Yeasts, molds, bacteria Most foods, beverages, wines 182.3089, 182.3225, 182.3640,

182.3795
Sulfites Yeasts, molds Fruits, fruit products, potato

products, wines
Various

aFood and Drug Administration designations in Title 21 of the Code of Federal Regulations. Food antimicrobials approved by the U.S. Department of Agriculture’s Food Safety and Inspection
Service for use in meat products are listed in sections 424.21 and 424.22 of Title 9 of the CFR.
bFDA/CFSAN GRAS notice 000067, Oct. 2001.
cFDA/CFSAN GRAS notice 000064, Apr. 2001.
dFDA/CFSAN GRAS notice 000065, Apr. 2001.

Combinations of thermal (hot water or steam) and chemical
interventions (organic acid solutions) in the form of sprays or
rinses are used successfully as sanitizing or decontaminating
treatments on fresh produce to reduce overall microbial contami-
nation and prevalence of pathogenic bacteria (Sofos 2002b; Sofos
and Smith 1998; Stopforth and Sofos 2006).

Processing and preservation technologies involving manipula-
tion of physical, chemical, and biological factors are used, often
in combination, by food processors. The objective of their use
is to ensure the stability and safety of foods by inactivating or
inhibiting growth of spoilage and pathogenic microorganisms.
For example, various combinations and sequences of sublethal
hurdles in RTE meat and poultry products may also be applied
to control post-lethality processing contamination with L. mono-
cytogenes during product storage (see side bar), as required by
new U.S. Dept. of Agriculture Food Safety and Inspection Service
regulations (USDA/FSIS 2003).

Chemical preservatives and treatments. While some chemical
food preservatives, such as common table salt, nitrites, and sul-
fites, have been in use for hundreds of years, most others have
been extensively applied only in recent decades. Food preser-
vatives used to prevent food deterioration caused by microbial
growth are termed “food antimicrobial agents.” The historical
function of food antimicrobial agents is inhibition of spoilage
microorganisms and extension of shelf life. The use of food antimi-
crobial agents to control pathogens is more recent and is increas-
ing (Davidson and Zivanovic 2003). Food antimicrobial agents
are generally not used alone to control foodborne pathogens,
but are included as components of the multiple hurdle approach
to microbial control. Exposure of E. coli O157:H7, Salmonella,
or L. monocytogenes–inoculated apple slices or other produce to
ascorbic and citric acid solutions, for example, enhanced destruc-
tion of the pathogens during subsequent drying (Burnham and

others 2001; Derrickson-Tharrington and others 2005; DiPersio
and others 2003, 2004; Yoon and others 2004). Other common
applications of food antimicrobials include use of sodium nitrite
to inhibit Clostridium botulinum in cured meats if product tem-
perature abuse occurs, organic acid solutions as spray sanitizers
to control pathogens on beef carcasses, nisin and lysozyme to
control C. botulinum in pasteurized process cheese, and lactate
and diacetate for L. monocytogenes control in processed RTE
meat and poultry products (USDA/FSIS 2000).

Naturally occurring antimicrobials. Food antimicrobial agents
may be classified as traditional or naturally occurring (Davidson
2001). Traditional food antimicrobial agents, listed in Table 4, un-
dergo review and approval for food use by many international reg-
ulatory agencies. Naturally occurring antimicrobials, however,
which include compounds from microbial, plant, and animal
sources (Table 5) are limited in approval and applications (Sofos
and others 1998). Nisin, natamycin, lactoferrin, and lysozyme are
among the few naturally occurring substances that are approved
by regulatory agencies in some countries for direct application to
foods.

Food biopreservation uses natural or controlled microflora
and/or their antibacterial metabolic end products to interfere
with undesirable microorganisms. Lactic acid bacteria (LAB), for
example, occur either in the initial natural microflora of fer-
mented or other foods or are added as starter cultures, where
their growth dominates over that of other microbes during fer-
mentation or retail case display and home refrigeration (vacuum-
packaged meat, for example). Growth of LAB interferes with
spoilage and pathogenic bacteria through nutrient and oxygen de-
pletion, and production of inhibitory metabolic substances such
as lactic and acetic acid, acetoin, diacetyl, hydrogen peroxide,
reuterin, and bacteriocins (Koutsoumanis and Sofos 2004a; Kout-
soumanis and others 2006).
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Controlling L. monocytogenes in Ready-to-Eat (RTE) Foods

Recalls of RTE meat and poultry products and foodborne illness outbreaks involving fatalities attributed to L. monocytogenes led to
the establishment of a new regulation for controlling the pathogen in meat and poultry products that may become contaminated
after processing, during slicing and packaging, and in which their growth may be supported during product distribution and
storage (USDA/FSIS 2003). According to the regulation, manufacturers of sensitive RTE meat and poultry products should select
one of three alternative approaches for preventing contamination and inactivating or controlling the pathogen’s growth during
storage. In addition to physical processes (for example, heat, high hydrostatic pressure), the alternatives may be based on
chemical compounds applied as antimicrobial agents or sanitizers. Substances such as potassium or sodium lactate, sodium
acetate, sodium or potassium diacetate, nisin, acetic acid, lactic acid, sodium or potassium benzoate or sorbate, acidic calcium
sulfate, and buffered citrate applied as formulation ingredients or postprocessing solutions are effective against the pathogen in
such RTE meat and poultry products. The most common approach for controlling L. monocytogenes in RTE meat and poultry
products combines sodium or potassium lactate with sodium diacetate in the product formulation (Tompkin 2002). Alternative
antimicrobial approaches may be based on combinations of physical and chemical antimicrobial hurdles applied as formulation
ingredients during processing, or as postlethality treatments, including spraying or dipping solutions during packaging (Barmpalia
and others 2004, 2005; Bedie and others 2001; Geornaras and others 2005; Samelis and others 2001c, 2002c, 2005a).

Figure 3 --- Microbial inactivation and resistance to biocides. Reprinted with permission from the American Society
for Microbiology (ASM News, January 2002, p 20–24).
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Figure 4 --- Mechanisms of inactivation by biocides. Thiol and amino groups in all microorganisms are susceptible to
the appropriate agents shown. In vegetative bacteria and fungi, ribosomes and DNA are susceptible to hydrogen
peroxide and iodine and to acridine dyes, respectively. Reprinted with permission from the American Society for
Microbiology (ASM News, January 2002, p 20–24).

Home products
Antimicrobials are increasingly more commonplace in con-

sumer products for home use. Levy (2001) reported that more than
700 antibacterial-containing products (for example, cleansers,
soaps, toothbrushes, dishwashing detergents, hand lotions, plastic
food storage containers, and bedding and bedding linens) were
being marketed for the home. Other uses include food contact
surfaces (cutting boards, for example), environmental surfaces,
personal hygiene products, and food tissue antimicrobial sprays.
Triclosan (TCS; 2,4,4′-trichloro-2′-hydroxydiphenylether), for ex-
ample, has been used in skin-care products (soaps, for example)
for some 30 y, and has also been used in handwashes and den-
tal hygiene products (Russell 2004). Triclosan and parachlosul-

fadimethoxine/ormetoprimaxylenol (PCMX) are the most com-
mon antimicrobials used in antimicrobial hand soaps. Triclosan
has also recently been incorporated into plastics such as cutting
boards and knife handles, which are used in both institutional and
industrial settings (Bhargava and Leonard 1996). This broad-scale
use has prompted widespread concerns over the development of
resistant organisms.

Human medicine
Antibiotics are used in humans in community and hospital

settings primarily to treat disease, but are also used to prevent
infection. The activity, action, and resistance of antiseptics and
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Table 5 --- Naturally occurring food-related antimicrobials and sources

Antimicrobial Source(s) Notes

Animal-derived
Avidin Eggs Binds vitamin biotin
Chitosan Shellfish, mushrooms, fungi Aminoglycoside; interaction with cell wall polysaccharides or

cytoplasmic membrane resulting in altered permeability or
transport

Conalbumin (ovotransferrin) Eggs Iron chelation
Lactoferrin Milk Iron chelation; alteration of membrane permeability; prevention

of binding
Lactoperoxidase Milk With H2O2 and hypothiocyanate forms inhibitor
Lysozyme Eggs, milk, biological secretions Catalyzes hydrolysis of 1,4-glycosidic linkages of peptidoglycan

of bacterial cell walls
Plant-derived

Caffeine, theophylline, theobromine Coffee, cocoa, tea Variable activity
Flavonoids (chalcones, flavones,

flavonols, flavanones, anthocyanins,
isoflavonoids)

Plants Variable activity

Humulon(e)/lupulon(e) Hops Some activity against Gram-positive bacteria and fungi
Isothiocyanates Brassicaceae (Cruciferae) ---

mustard family
Allyl isothiocyanate, horseradish extract; activity may be due to

enzyme inhibition
Phenolic/hydroxycinnamic acids Plants Caffeic, p-coumaric, ferulic, chlorogenic, protocatechuic,

vanillic, gallic
Oleuropein Olives Phenolic glycoside; cytoplasmic membrane disruption
Tannins Plants Hydrolyzable, condensed (proanthocyanidins)
Terpenes/terpenoids Spices Eugenol, thymol, carvacrol, cinnamic aldehyde, vanillin, pinene,

camphor, citral, borneol, thujone, menthol; interaction with the
cell membrane

Thiosulfinates Allium (onions, garlic) Inhibition of sulfhydryl containing enzymes

Microbially-derived
Bacteriocins Lactic acid bacteria Lactococcus, Pediococcus, Lactobacillus, Leuconostoc,

Carnobacterium and others; bind to and form pores in
cytoplasmic membrane

Natamycin Streptomyces natalensis Macrolide antifungal antibiotic; complexes with sterols in fungal
cell membranes, disrupts cell membrane

disinfectants used in hospitals and other health care settings for
a variety of topical and hard-surface applications were reviewed
by McDonnell and Russell (1999).

Quantitative Usage Data
For the reasons addressed below, it is difficult to estimate how

antibiotic usage is distributed among human, veterinary, and
plant applications, and the exact amount of antibiotics intro-
duced annually into the environment. Although the exact portion
of antibiotics used in production agriculture is unknown, it is cer-
tainly significant, and likely comparable to the amount used in
human medicine.

Animals
An Institute of Medicine (IOM) Committee on Human Health

Risk Assessment of Using Subtherapeutic Antibiotics in Animal
Feeds attempted to quantify the use of antibacterial agents in
livestock and poultry feeds (IOM 1989). Using International Trade
Commission (ITC) data from 1950 onward, the IOM committee
estimated that in 1985 total production of antimicrobials was
31.9 million pounds. The committee noted that the reliability of
the production data used in the analysis was unknown. It was

estimated that 16.1 million pounds were used for disease pre-
vention and growth promotion in animals and that 2.3 million
pounds were used for disease treatment. Comparable data have
not been available from the ITC since 1986, preventing updates
of this estimate. Although these often-cited figures are no longer
current, they provide a benchmark and demonstrate one method
for quantifying antimicrobial usage.

The Union of Concerned Scientists (UCS) derived antimicro-
bial use estimates for cattle, swine, and poultry on the basis of
drug label indications, estimates of herd size, and extent, inten-
sity, and duration of use in each commodity or sector (Mellon and
others 2001). The UCS integrated data from the USDA, National
Research Council, National Animal Health Monitoring System
(NAHMS), and IOM to estimate that 24.6 million pounds of an-
timicrobials were used for nontherapeutic uses (defined by UCS
to include uses for prevention and control of disease as well
as for growth promotion) in cattle, swine, and poultry in 1999.
Criticisms of the UCS method of assessment included their as-
sumptions, which were: (1) uniformity of production conditions;
(2) lack of variation in use practices across producers due to prod-
uct cost or personal preference; and (3) constant herd/flock size
from 1984 to the late 1990s (Jones and Ricke 2003).

More recent estimates of antimicrobial usage are available from
the Animal Health Institute (AHI), which estimates antibiotic use
(including ionophores and arsenicals) in farm and companion
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animals from data comprising responses to surveys of AHI mem-
ber animal health companies. The surveys ask for the total quan-
tity of active ingredients manufactured and sold in a calendar
year by drug class, and the estimated percentage sold for the
purpose of therapeutic and health maintenance (as measured by
improved growth rates or more efficient feed use). AHI estimates
show a general downward trend in total antibiotic use between
1999 and 2004. Production decreased from 24.9 million pounds
in 1999 (of which 88.3% was for therapeutic use), to 22 million
pounds in 2002 (of which 91% was for therapeutic use), and to
21.7 million pounds in 2004 (of which 95% was for therapeutic
use) (AHI 2002, 2004, 2005). The AHI estimates do not include
all quantities of generic antibiotics because many manufacturers
of generic drugs are not AHI members. Since the majority of an-
timicrobials used for growth promotion are approved for other
indications as well, it is difficult to determine how they were cat-
egorized by the survey respondents.

Although the AHI and UCS estimates for total use appear sim-
ilar, the AHI production estimates include total animal use for all
species and indications. The UCS estimates included solely non-
therapeutic use in only the three major food animal species–beef
cattle, swine, and broiler chickens. Thus, the UCS estimate for
nontherapeutic antimicrobial use in a limited number of species
is roughly 10 times the AHI estimate for all species. As noted,
the UCS categorization of drugs having multiple approved uses
is unclear, further complicating the interpretation of the figures.
Additional points relevant to the AHI and UCS estimates are:
(1) UCS used the term nontherapeutic to include prophylactic and
growth promotion uses in only food animals, while AHI included
growth promotion and therapeutic uses among all animals, in-
cluding companion animals; (2) UCS estimated the percentage
of a given food animal population that was medicated and mul-
tiplied by the product’s label dosage; however, some approved
products were never marketed, and others are used at varying
dosage rates; (3) AHI used data provided by companies on their
marketed products; other than an estimate of antimicrobials used
for growth promotion, no attempt was made to further character-
ize usage per animal species nor to factor in the dose or duration
of use; AHI did not include generic usage data; UCS may have;
(4) AHI combined products into groups of antibiotics to comply
with anti-trust regulations of trade associations. Therefore, de-
spite the AHI and UCS estimates, reliable data on the amount
of antibiotics used are not available, which makes assessment of
effects and management difficult.

In 1999, the Alliance for the Prudent Use of Antibiotics (APUA)
initiated the multidisciplinary Facts about Antibiotics in Animals
and the Impact on Resistance (FAAIR) Project, which identified
the critical gap in surveillance data on antimicrobial use in an-
imals and recommended that such data be made available to
improve risk assessment and better inform policy decisions on
antimicrobial use in animals (FAAIR 2002). Although the World
Organization for Animal Health (OIE) has proposed guidelines
for the collection of quantitative antibiotic usage data, a standard
method for assessing use has yet to be applied (OIE 2004). Follow-
ing up on FAAIR, APUA established the Advisory Committee on
Animal Antimicrobial Use Data Collection in the United States to
determine the most effective means for gathering data on antimi-
crobial use in food animals. Comprised of varied stakeholders,
from academia, government, the food animal production sector,
the animal health industry, human health industry, public interest
organizations, research community, and veterinarians, the com-
mittee identified methodological options for data collection. Four
major categories of antimicrobial use data were identified based
on the source of information and its proximity to actual use—end-
user data, prescription data, manufacturing data, and distribution
data.

The Advisory Committee concluded that the ideal animal an-
timicrobial use data collection strategy would likely combine
two or more of the methods identified by the committee. Be-
cause consensus could not be reached on the ideal combination
of data methods, experts comprising the committee individually
rated six methodological options. The methodological options
are: (1) all practices/producers record all prescriptions/use in-
definitely, (2) sentinel practices/farms track use electronically,
(3) selected practices/producers record all prescriptions/uses for
a defined period of time, (4) periodically survey a cross-section
of veterinarians/producers, (5) solicit production and sales infor-
mation from manufacturers, and (6) publicly disclose production
information obtained by FDA from manufacturers (DeVincent and
Viola 2006).

Aquaculture
A survey conducted by the National Aquaculture Association to

estimate the quantity of drugs used in the U.S. aquaculture indus-
try indicated that only 22680 to 31750 kg of active antibiotic in-
gredients are sold per year (MacMillan and others 2003). Because
of the small size of the U.S. aquaculture industry, and the fact that
there is only one manufacturer of sulfadimethoxine/ormetoprim
and one manufacturer of oxytetracycline, it is possible to accu-
rately estimate the amount used on farms. From January 2001
to February 2003, 36126 kg of sulfadimethoxine/ormetoprim 5:1
and 22334 kg of oxytetracycline were sold for incorporation into
medicated feeds for the aquaculture industry. Some minor use
occurs when medicated feeds are purchased in Canada for use
in U.S. salmon farms.

Plants
Fungicides are used more extensively on fruits than vegetables,

with 99% of tart cherry acreage, 96% of table grape acreage, and
94% of land used for raspberry production receiving fungicidal
treatment. Among vegetables, bulb onion, strawberry, and tomato
led in fungicide applications, on a percent treated basis, with
87%, 86%, and 86% of acres treated, respectively (USDA 2004b).
Fungicides are used much more extensively than antibiotics, with
about 24000 metric tons (26000 tons) used in the United States
per year.

The total amount of antibiotics used in plant agriculture has
stayed fairly constant over the last decade (McManus and others
2002). In 2003, 7500 kg (16500 lb) of streptomycin were applied
to about 15% of the apple and 32% of the pear acreage. Oxyte-
tracycline use has increased from 7270 to 12270 kg (16000 to
27000 lb) between 1997 and 2003 (USDA 2004b), probably due
to widespread streptomycin resistance of the target pathogens,
especially on the East and West Coasts of the United States. The
prevalence of imported produce necessitates an understanding of
practices in the rest of the world, which in many cases are not
known or reported.

Humans
Although estimates have been attempted, the quantity of hu-

man usage of antibiotics in the United States is unknown. Com-
prehensive estimates of total human use per annum in the United
States have been reported by the AHI and UCS through their re-
spective efforts to quantify antibiotic and antimicrobial use in
food animals. AHI reported in 2000 that 32.2 million pounds of
antibiotics are used annually in human medicine (AHI 2000). AHI
obtained this figure indirectly by subtracting its estimate for total
animal use (17.8 million pounds) from the 1989 IOM estimate
of 50 million pounds (extrapolated from trends in the 1970s and
1980s to the 1990s) of use in both animals and humans (IOM
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1989). The UCS estimate for human use (for inpatient and outpa-
tient disease treatment and as topical creams, soaps, and disinfec-
tants) was 4.5 million pounds. UCS estimates were based upon
data compiled by the CDC National Center for Health Statis-
tics (NCHS) survey of outpatient prescriptions and use, expert
consultation, and a national market survey of inpatient hospital
use (Mellon and others 2001).

Opportunities to acquire data on human use are greater than
for animal use. In the United States, data are collected through
several surveys conducted by the CDC’s NCHS and the National
Nosocomial Infections Surveillance (NNIS) System, comprising a
collection of nosocomial (originating or taking place in a hospital)
infection surveillance data from more than 300 hospitals. For the
purpose of analysis, grams of antibiotics used are converted into
the number of “defined daily dose(s)” (DDD) used each month in
each hospital area. As defined by the World Health Organization
(WHO), a DDD is an average daily dose in grams of a specific
drug administered to an average adult patient (Ronning 1999).
CDC also supports the collection of antibiotic use data through
the Medication-Associated Adverse Event Module of the National
Healthcare Safety Network (NHSN).

Private corporations are also sources of information. Under
a 5-y contract established with the FDA in 2001, IMS Health
(Fairfield, Conn., U.S.A.), an international corporation serving the
pharmaceutical and healthcare markets with data sources from
more than 29000 suppliers, has been providing market research
information on drug use and the impact of pharmaceutical prod-
ucts on patient outcomes. The specificity and public availability
of these data, however, are not yet known (IMS 2001).

Through the use of DDDs, it has been recently determined
that antibiotic prescription rates within Europe vary markedly
(Molstad and others 2002). In 2000, France and Germany con-
sumed higher numbers of DDDs per capita, while the Nether-
lands and Denmark consumed fewer DDDs (Patrick and others
2004). In contrast to the United States, several countries, such
as Denmark and Spain, have databases containing information
on all antibiotics prescribed for all patients (Patrick and others
2004).

More recently, increasing attention has been given to the types
of antibiotics being prescribed (Huang and Stafford 2002; Lin-
der and Stafford 2001; Piccirillo and others 2001). Unlike the
situation with animal usage, federal survey-based systems track
human prescriptions and may serve as data sources for estimat-
ing use in human medicine. Antibiotic sales data are available
from manufacturers, but there are limitations—sales data are not
synonymous with actual consumption data, methodology is pro-
prietary, production data are lacking.

During 2002 and 2003, penicillins were the most prescribed
class of antibiotics in hospital outpatient and physician office vis-
its in the United States (HHS/CDC/NCHS 2005). The number of
antibiotic prescriptions in adults and children in U.S. ambulatory
care settings declined from 151 million to 126 million between
1992 and 2000 (McCaig and others 2003). Also documented dur-
ing this time period was evidence of increasing outpatient use of
amoxicillin and cephalosporins (Steinman and others 2003). The
34% decrease in the rate of prescriptions written for children dur-
ing physician office visits, and lack of increase for adults during
a 20-y span may suggest that the efforts of the CDC, medical
associations, and other stakeholder groups may be having a ben-
eficial effect on prudent antibiotic use and overall prescription
writing.

Factors contributing to the overuse of antibiotics in humans in-
clude real or perceived pressure from adult patients and parents
of child patients to prescribe antibiotics, inadequate identifica-
tion of label indications for some drugs, lack of awareness of
prescription guidelines, the move toward managed healthcare,

and inadequate time for physicians to explain to patients that
antibiotics are often unnecessary (Hutchinson and Foley 1999;
Okeke and others 1999; WHO 2002). A Congressional Research
Service report noted that 96% of pediatricians surveyed reported
that parents of children in office visits specifically requested an
antibiotic prescription, and 33% prescribed an antibiotic without
a clinical basis simply to appease the parent (Vogt and Jackson
2001). Hamm and others (1996) stated that parents and patients
perceive that “they haven’t gotten their money’s worth” in ap-
pointments with primary care physicians that do not result in
a prescription being written. Additionally, Avorn and Solomon
(2000) pointed out that the number of patients seen per hour by
physicians is increasing due to increasing administrative demands
and that writing a prescription can serve as a termination strategy
for an office visit.

Mechanisms for Emergence and Dissemination of
Antimicrobial Resistance

Emergence
As pointed out by Courvalin (2005), resistance to antimicrobial

drugs is an unavoidable aspect of the general evolution of bacte-
ria that occurs by chance. Mechanisms for emergence of bacterial
resistance are quite diverse as are the modes of action of antimi-
crobials, which may include inhibition of various steps of DNA
replication, transcription, and translation, or action at the level of
the cell wall or cell membrane.

Microbial strategies for resisting the effects of antibiotics in-
clude impaired uptake, modification or overproduction of the
target sites of antimicrobials, bypass of sensitive steps, absence of
enzymes or metabolic pathways, and efflux of the antimicrobial
drug (Russell and others 1997). Further, bacteria can resist the
effects of antimicrobials by enzymatically degrading the drug be-
fore it reaches its target site, altering the protein(s) within the bac-
terium that serve as receptors for the antimicrobials, and chang-
ing their membrane permeability to the antibiotics (Cloete 2003;
Dever and Dermody 1991).

Efflux pumps. Called “multidrug efflux pumps,” these systems
for transporting substances out of cells often provide resistance
to a variety of structurally different antimicrobials, including an-
tibiotics, dyes, and surfactants. Along with impaired uptake, ef-
flux pumps are a main strategy that bacteria use to deal with
the stress of sanitizer exposure (Russell and others 1997). Gram-
positive and Gram-negative bacteria use the same efflux system
for ethidium bromide and QACs. Tetracycline resistance in E. coli
is at least partially due to an energy-dependent efflux mechanism
(McMurry 1980), and a similar mechanism has been implicated
in E. coli fluoroquinolone resistance (Cohen and others 1988,
1989; Hooper and others 1989). In addition, the genes for multi-
ple antibiotic resistance in Pseudomonas aeruginosa may be on
an efflux operon11 (Poole and others 1993). Efflux mechanisms,
however, do not pertain to bacteriocins, which do not accumulate
intracellularly.

Acid tolerance can be viewed in terms of efflux ability. The
mechanism by which organic acids inhibit microorganisms in-
volves passage of the undissociated form of the acid across the cell
membrane lipid bilayer. Once inside the cell, the acid dissociates
because the cell interior has a higher pH than the exterior. Pro-
tons generated from intracellular dissociation of the organic acid

11 operon: chromosome segment having an operator gene and the closely linked
structural gene or genes whose action it controls (IFH 2000).
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acidify the cytoplasm and must be extruded to the exterior. Yeasts
develop resistance to sorbic and other organic acids via several
mechanisms. They use the enzyme H+-ATPase along with ATP
(adenosine triphosphate) energy to remove excess protons from
the cell. Inhibition and/or inactivation of the yeasts may be due to
eventual loss of cellular energy or inactivation of critical cellular
functions due to low intracellular pH. To prevent energy deple-
tion, a membrane protein may be induced for decreasing ATPase
activity and thus conserve energy (Brul and Coote 1999). Expo-
sure of Saccharomyces cerevisiae to sorbic acid induces a multi-
drug resistance pump (membrane protein ATP-binding cassette
transporter Pdr12 [Holyoak and others 1999; Piper and others
1998]), which confers resistance by mediating energy-dependent
anion extrusion (Piper and others 1998). To circumvent the prob-
lem of extruded anions and protons reentering the cell upon
recombining in the extracellular medium, adapted yeasts appar-
ently reduce diffusion of the weak acids, most likely by altering
cell membrane structures to reduce passage of the acids into the
cell (Brul and Coote 1999). Similar mechanisms likely also exist
for bacteria capable of developing resistance to sorbic or other
organic acids.

Enzymatic degradation. A common phenomenon, enzymatic
degradation, is the primary mechanism of resistance to β-lactam
antibiotics via the hydrolysis of the β-lactam ring (Bush and
Sykes 1984) and the resistance mechanism for chloramphenicol
and aminoglycosides. Resistance to chloramphenicol, a broad
spectrum antimicrobial, occurs through acetylation catalyzed by
chloramphenicol acetyltransferase; other modes of resistance are
also possible, however (Dever and Dermody 1991; Kucers and
Bennett 1987). Methylases, acetyltransferases, nucleotidyltrans-
ferases, and phosphotransferaces are used against aminoglyco-
sides (Davies 1994; Shaw and others 1993). Enzymic degradation
of food antimicrobial agents can be specialized or general, but
would be different from the enzymes that inactivate antibiotics.
For example, some bacteria metabolize citric acid, rendering it
ineffective against them. In contrast, many proteases inactivate
bacteriocins in a nonspecific fashion. A nisin dehydroreductase
conveys resistance by inactivating a nisin dehydro residue (Jarvis
and Farr 1971).

Alteration of receptors. Alteration of specific receptor sites pre-
vents proper target recognition. Resistance to nalidixic acid is
most often due to mutations in gyrA and gyrB, the genes encod-
ing the target proteins of the antibiotic. Resistance to ciprofloxacin
is also associated with mutations in gyrA and gyrB (Heddle and
Maxwell 2002; Hooper 1995; Tankovic and others 1996).

Membrane permeability change. The most common form of
intrinsic resistance to antibiotics is due to membrane structure
and composition, which can naturally act as a permeability bar-
rier or undergo change through acquired resistance mechanisms,
as in the case of Gram-negative bacteria. E. coli resistance to
β-lactam antibiotics, for example, occurs upon replacement of
the outer membrane OmpF porin by the narrower OmpC porin
(Nikaido and others 1983) and in Staphylococcus epidermidis
glycopeptide resistance may occur through over production of
glycopeptide binding sites within the cell wall peptidoglycan
(Sanyal and Greenwood 1993). Resistance to nisin can result
from spontaneous genetic mutation (designated Nism) involving
bacteriocin adsorption or membrane insertion, presumably caus-
ing loss of cell membrane fluidity and hindering nisin insertion
(Nism cell membranes are more solid than those of the wild-type
strain).

Membrane fluidity can play an important role in resistance of
L. monocytogenes to antimicrobials (Juneja and Davidson 1993).
L. monocytogenes cells grown in the presence of C14:0 or C18:0
fatty acids have higher phase transition (Tc) and increased re-

sistance to four common antimicrobials than cells grown in the
presence of C18:1, which have lower Tc and are more sensitive.
It is assumed that the higher phase transition temperature of the
membrane fatty acids prevents effective penetration of the pore-
forming bacteriocin. Nisin-resistant C. botulinum also have al-
tered membrane fatty acid composition that would increase their
membrane rigidity (Mazzotta and Montville 1999).

Stress-adaptation, co-selection, cross-resistance,
and cross-protection

Mechanisms exist whereby microorganisms that are resistant
to one antimicrobial may become resistant to others (Yousef and
Juneja 2003). Exposure to subinhibitory concentrations of an an-
timicrobial, for example, may activate intrinsic resistance mech-
anisms, thereby decreasing susceptibility of the microbe to the
inducing agent and in tandem decreasing susceptibility to other,
unrelated antimicrobials. In other instances, resistance to several
antimicrobials having unrelated targets or modes of action may
result from co-selection, which involves sequential linking of sep-
arate genes conferring resistance to different antibiotics, often on
plasmids or integrons,12 and transferred together. Cross-resistance
is the occurrence of resistance to antimicrobials because they
have the same molecular targets. Cross-protection occurs when
adaptation to one stress is associated with increased resistance to
another, unrelated stress. Correlations among these mechanisms
are seen in some cases, but the root causes of the dissemination
of the resistance remain unknown.

Strains of E. coli resistant to thymol and eugenol (essential oils
found in thyme and cloves, respectively) were found to be more
resistant to chloramphenicol (Walsh and others 2003). Because
stable resistance to the essential oil components was not readily
detected, the authors denoted the increased resistance as “toler-
ance” (Walsh and others 2003). In contrast, methicillin-resistant
Staphylococcus aureus, however, were found to be as sensitive to
oregano essential oil and its components, carvacrol and eugenol,
as methicillin-sensitive strains (Nostro and others 2004). Resis-
tance to carvacrol, however, which is associated with changes
in the cellular membrane, apparently does not confer resistance
to other membrane-active compounds. Bacillus cereus adapted
to carvacrol were demonstrated to be more sensitive to sub-
sequent nisin exposure than nonadapted cells (Pol and others
2001).

Bacteria are able to produce stress response proteins when sub-
jected to subinhibitory levels of stress (Yousef and Juneja 2003).
A variety of situations can induce transcription and translation
of stress response proteins, which convey increased resistance
to a multitude of stressors. For example, exposure of E. faecalis
to subinhibitory levels of sodium chloride, sodium dodecyl sul-
fate, and bile salts conferred a protective effect against heat com-
pared to nontreated cells (Flahaut and others 1997). Heat shock
proteins (HSP) comprise one of the most well-studied classes of
stress response proteins, although the HSP levels do not correlate
with the extent or persistence of protection (Jorgensen and others
1996; Mackey and Derrick 1990). HSP are typically regulated by
sigma factors such as RpoS or RpoH, which are subunits of RNA
polymerase.

Salmonella enterica serovar Enteritidis and L. monocytogenes
first exposed to alkali are more resistant to heat treatment than
those not pre-exposed (Humphrey and others 1991; Taormina

12 integrons: genetic elements that capture and link multiple drug resistance
genes together into a single locus
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and Beuchat 2001). Studies with Salmonella Enteritidis showed
that treatment with low levels of alkali (pH 10.0 sodium hydrox-
ide or trisodium phosphate) resulted in a decrease in protein
expression of 15% and 22%, respectively (Sampathkumar and
others 2004). Some outer membrane proteins, identified as pro-
tein chaperones and housekeeping proteins involved in biosyn-
thesis, were up-regulated. Similarly, when E. coli K-12 was shifted
from pH 7 to 8.8, known HSPs were induced (Taglicht and others
1987).

Hong and others (2002) found that Streptomyces coelicolor,
containing a plasmid encoding a signal transduction system in-
cluding the sigma factor E (�E), demonstrated lysozyme-induced
resistance to kanamycin (100g/mL). L. monocytogenes has been
shown to contain a similar signal transduction system (CesRK)
that is activated upon introduction of lysozyme to the cells and
results in antibiotic resistance.

An example of an intrinsic resistance system is the multiple
antimicrobial resistance (mar) operon, a global regulator that
controls intrinsic resistance to unrelated antibiotics and other
cytotoxic substances (Alekshun and Levy 1999). Golding and
Matthews (2004) demonstrated decreased susceptibility of E. coli
O157:H7 to multiple antimicrobials, putatively linked to a muta-
tion in the mar operon, following exposure to chloramphenicol.
Potenski and others (2003) found that upon treating Salmonella
Enteritidis cells with sublethal levels of chlorine, sodium nitrite,
sodium benzoate, or acetic acid, the cells exhibited resistance to
tetracycline, chloramphenicol, nalidixic acid, and ciprofloxacin,
thus determining that a mar operon was responsible for the
resistance responses.

Antimicrobial resistant phenotypes of E. coli O157:H7 may
also be related to acquisition of class 1 integrons (Zhao and others
2001a), which is significant because the integrons may contain
several antimicrobial gene cassettes and, therefore, co-select for
resistance to other antimicrobials.

Genes encoding for multidrug efflux systems in S. aureus have
been located on plasmids (generally 18 to 57 kb in size) also
containing genes for resistance against penicillin, gentamicin,
trimethoprim and kanamycin (Lyon and others 1984). The qacA
and qacB genes have been found on plasmids that also confer
resistance to various antibiotics, including penicillin (Lyon and
Skurray 1987). Twenty-four QAC-resistant Staphylococcus iso-
lates were analyzed for resistance to selected antibiotics and dyes
(Heir and others 1999). Five of the seven strains with the QAC re-
sistance genes qacA/qacB had high-level resistance to penicillin
G and ampicillin. One isolate containing the smr gene showed
resistance to ampicillin, penicillin G, tetracycline, erythromycin,
and trimethoprim, but not to chloramphenicol, gentamicin, nor-
floxacin, kanamycin, or vancomycin. It was suggested that the
antibiotic resistance in this strain was due to resistance markers
on the chromosome or other plasmids harbored by the strain.
All other sanitizer-resistant isolates were generally susceptible to
antibiotics.

Several studies have found a lack of cross-resistance between
agents, even when mechanisms appear similar. For example,
when acquired resistance mechanisms for biocides, which can
closely resemble those for antibiotics, were studied by Aase and
others (2000), no connection was found between QAC resistance
and antibiotic resistance in L. monocytogenes. They evaluated
200 L. monocytogenes isolates from various food, human, and
environmental sources from Norway and Europe and found that
10% were resistant to benzalkonium chloride (BC), while none of
the isolates was resistant to any of the 15 antibiotics. Both resis-
tant and sensitive strains responded approximately equally to BC
after adaptation, and remained stable during subculturing in the
absence of BC. They suggested that genes coding for the efflux

pumps providing resistance against QAC and ethidium bromide
are not located on the multiple drug resistance (MDR) plasmid.
When sublethal levels of a triclosan-containing domestic deter-
gent were applied to a biofilm, the composition of the biofilm
changed; however, the remaining organisms were generally as
susceptible to a host of antibiotics and other antimicrobials as
the initial population (McBain and others 2003).

There are many other instances where resistance to one antimi-
crobial does not confer resistance to another. This can often be
explained by a mechanistic understanding of the agent’s effect on
the cell. Enterococci are particularly resistant to heat and sodium
hypochlorite (Freeman and others 1994; Kearns and others 1995),
which may permit their survival of intervention techniques in both
food processing and clinical settings. In one study, vancomycin-
resistant enterococci did not have enhanced resistance to chem-
ical disinfectants or to heat (Bradley and Fraise 1996). This was
confirmed by Panagea and Chadwick (1996), who found no dif-
ferences in heat tolerance of vancomycin-resistant or sensitive
clinical isolates of E. faecium.

Bertolatti and others (2001) and Walsh and others (2001a)
reported that the potential for antibiotic-resistant organisms to
exhibit enhanced resistance to food preservation techniques
or food antimicrobial agents has been studied only to a
limited extent. Antibiotic-resistant Gram-positive cocci and
streptomycin-resistant L. monocytogenes responded similarly to
heat compared with the corresponding wild-type strains. Other
investigations have considered the decimal reduction times
(D-values) of antibiotic-resistant organisms with or without in-
duced acid tolerance to determine whether heat resistance is
altered in the strains. For example, Bacon and others (2003a)
examined thermal D-values of wild type and MDR-Salmonella
strains isolated from bovine sources and grown in various levels
of glucose to stimulate an acid tolerance response (ATR). At 59 oC,
acid-tolerant cultures had increased thermal resistance compared
with nonacid tolerant controls. The D61◦ C values of antimicro-
bial susceptible Salmonella strains increased as the glucose con-
centration (acid tolerance) in the culturing medium increased,
but D61

o C values of MDR-cultures were similar, irrespective of
ATR. When averaged across glucose levels and temperatures,
D-values of antimicrobial susceptible and resistant Salmonella
cultures were similar. The results suggest a cross-protective effect
of acid adaptation on thermal inactivation, but no association be-
tween antimicrobial susceptibility and heat resistance. When the
ATR was induced in either type of strain by growth in glucose,
some strain variations in acid resistance were observed, but no
association between susceptibility to antimicrobial agents and
potential to survive a low pH stress was made (Bacon and others
2003b). Lopes (1998) reported observing that antibiotic-resistant
strains of Salmonella Typhimurium and L. monocytogenes were
equally as susceptible to sanitizer treatments as antibiotic sensi-
tive strains. They found that Salmonella Typhimurium strains re-
sistant to nalidixic acid and L. monocytogenes strains carrying
plasmid pGK12 encoding resistance to chloramphenicol, ery-
thromycin, and rifampin did not exhibit resistance to organic
acid/anionic surfactant-based sanitizers. Others have concluded
that in Listeria spp., including the pathogenic L. monocyto-
genes, plasmid-mediated disinfectant resistance may not nec-
essarily be linked to antibiotic resistance (Lemaitre and others
1998).

Mazzotta and others (2000) found that nisin-resistant L. mono-
cytogenes and C. botulinum were not more sensitive to food
preservatives such as low pH, salt, sodium nitrite, and potassium
sorbate. Hossack and others (1983), however, reported that nisin
resistance in S. aureus was linked with antibiotic resistance, ob-
serving that antibiotic MICs increased as much as 30-fold among
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the nisin-resistant strains. Several studies suggest that nisin resis-
tance results in physiological changes that decrease resistance
to other agents. These data are not necessarily inconsistent, as
different antibiotics have different modes of action, which may
or may not be affected by the changes in membranes. Szybal-
ski (1953) reported that a penicillin-resistant S. aureus mutant
was 50 times more sensitive to nisin. Severina and others (1998),
however, found that several MDR-bacteria remained sensitive to
nisin treatment. Similarly, studies with nisin-resistant L. monocy-
togenes or cells pretreated with nisin showed no significant in-
crease in resistance to antibiotics (Crandall and Montville 1998).
McEntire (2003) observed that the nisin-resistant strain was highly
sensitive to second and third generation cephalosporins, at con-
centrations where the wild type was virtually unaffected. The
mutant also exhibited increased acid sensitivity due to increased
ATPase activity; while acid sensitivity may not be directly related
to nisin resistance, both phenotypes may be directly or indirectly
controlled by the same signal transduction system (Cotter and
others 2002; McEntire and others 2004).

“Collateral sensitivity” (a mutation or adaptation conferring re-
sistance to one or more agents which simultaneously increase
sensitivity to other agents) is not unique to nisin resistance. Bacil-
lus licheniformis, which is resistant to the bacitracin it produces,
is highly sensitive to detergents, likely due to a specific mem-
brane change (Podlesek and others 2000). After exposure to
alkali cleaning solutions, 4 of 5 strains of L. monocytogenes
were as sensitive or more sensitive to heat than unexposed
cells, and all were more sensitive to the sanitizer components
(free chlorine, benzalkonium chloride [BC], and cetylpyridinium
chloride) compared with the controls (Taormina and Beuchat
2002).

Development of resistance to acid and heat among pathogens
may influence their behavior when exposed to fermentation,
drying, cooking, or consumption in the human host. The in-
creased virulence may stem from the influence of acid re-
sistance on microbial behavior upon exposure to the final
barrier (gastric secretions, phagocytosomal vacuoles) in the hu-
man host. Thus, in addition to increased resistance against
food preservation treatments, stress-adaptation may lead to in-
creased virulence and lower infectious doses (Samelis and Sofos
2003a).

Stopforth and others (2004a), however, indicated that similarly
acid-adapted (glucose) E. coli O157: H7 inocula were not differ-
ent than controls in survival when inoculated in wounds of ap-
ples and exposed to water or sanitizing solutions of acetic acid,
hydrogen peroxide, and sodium hypochlorite. Ikeda and others
(2003) found no differences in survival or growth of acid-adapted
(glucose) L. monocytogenes inocula on fresh beef decontami-
nated with hot water and organic acid solutions. Calicioglu and
others (2002a, 2002b, 2003a, 2003b, 2003c, 2003d) reported
that inactivation of acid-adapted (glucose) inocula during drying
and storage of beef jerky was more efficient than that of normal
cultures (grown in broth without glucose), potentially indicating
that exhaustion or stressing of the cells during acid adaptation
caused the cultures to be more sensitive to the subsequent stresses
of acid, heat, and dehydration, and confirming the importance of
the hurdle concept in food preservation.

As is the case for other pathogens, L. monocytogenes, which
can grow at a pH as low as 4.39 (George and others 1988), can
exhibit the ATR with increased survival of prestressed cells at nor-
mally lethal acid levels (Bonnet and Montville 2005; Gahan and
others 1996; Samelis and others 2003). This adaptive mechanism,
which may occur in different pH ranges for different microor-
ganisms (Koutsoumanis and Sofos 2004b), does not enhance the
ability of the organism to grow, but has several implications for

food safety due to the increased pathogen survival rates. For ex-
ample, Bonnet and Montville (2005) showed that ATR-induced
L. monocytogenes coinoculated in broth with a nisin-producing
Lactococcus lactis persisted in the majority of samples for at least
30 days. L. monocytogenes that were not induced to ATR, how-
ever, could not be detected. Cross-protection of acid tolerance in
L. monocytogenes with thermal tolerance, crystal violet, ethanol,
and osmotic stress has also been demonstrated (O’Driscoll and
others 1996).

Since L. monocytogenes must be able to bypass the acidity
of the stomach in order to be infective, the impact of ATR in-
duction on microbial survival with preexposure to acids or other
stressing antimicrobial hurdles in simulated gastric fluid has been
of interest. Results indicate that simulated gastric fluid acid toler-
ance may depend on type and composition of product, microbial
cell concentration, cell age, and product storage time (Stopforth
and others 2005). The authors noted observing, for example,
higher gastric fluid ATR with increased product fat content. How-
ever, spontaneous mutants of L. monocytogenes with constitutive
acid tolerance showed increased virulence in mice when admin-
istered intraperitoneally, suggesting that a mechanism in addi-
tion to gastric acid resistance is involved (O’Driscoll and others
1996).

Dissemination of resistance determinants between
microorganisms

Two main factors contribute to the persistence of antimicro-
bial resistant microorganisms in the environment: survival of
the microorganism and maintenance of the resistant genotype.
Dissemination of resistance determinants can occur at three
levels—bacterial (clonal spread), replicon (plasmid epidemics),
or gene (transposons), all three of which coexist in nature and are
not only infectious but exponential as well, since all are associ-
ated with DNA duplication (Courvalin 2005).

The extent to which dissemination and transfer of antimicrobial
resistance determinants occur in nature is not well understood,
but many suggest that antimicrobial resistance genes are widely
disseminated in nature (Riesenfeld and others 2004; Sundin 2002)
and present in a diversity of microorganisms and niches (Chee-
Sanford and others 2001; Nield and others 2001; Riesenfeld and
others 2004). Further, the same genes are present in a diversity
of bacteria, including evolutionary disparate microorganisms (for
example, Gram-negative in contrast to Gram-positive bacteria
[LeBlanc and others 1988; Werner and others 2001]) and bacteria
from different environments (Bolton and others 1999; Sanchez
and others 2002).

The “mobility” of these antibiotic resistance genes is at-
tributed to their residence on mobile genetic elements—plasmids
(Navarro and others 2001; Smalla and others 2000), transposons
(Sundin 2002), and integrons (Nandi and others 2004), described
in detail in Appendix 2. Gene transfer between pathogens is not a
new concern and has been reported in pathogens of both humans
and animals. Although the existence of mobile genetic elements
predates the widespread use of antibiotics (Hughes and Datta
1983), current problems have arisen because more and more re-
sistance genes have become linked in multiple, tandem repeats
in these mobile DNA elements.

Starliper and others (1998) examined strains of E. ictaluri re-
sistant to sulfadimethoxine/ormetoprim and found that resistance
to sulfadimethoxine/ormetoprim and tetracycline was carried on
a 55 kb R-plasmid. The R-plasmid allowed very fast and effi-
cient transfer of resistance between E. ictaluri and E. coli and
vice versa. Although the origin of the plasmid was unknown,
it was found to be essentially identical to a plasmid found in
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Tribrissen�-resistant E. coli strain 1898 originating from a case
of equine cystitis (Cooper and others 1993). The implication was
that antibiotic resistance found in the fish pathogen could possibly
have originated with bacteria colonizing warm-blooded animals.

Chee-Sanford and others (2001), possibly the first group to use
DNA technology to study the genes for a major class of antibi-
otic resistance in groundwater potentially impacted by animal
agriculture, used PCR typing methods to assess the presence
of tetracycline resistance determinants in waste lagoons and
groundwater underlying two swine farms impacted by waste
seepage. All eight classes of genes (tet(O), tet(Q), tet(W), tet(M),
tetß(P), tet(S), tet(T), and otr(A) encoding this mechanism of re-
sistance were found in total DNA extracted from water from both
lagoons. The authors noted that the maximal relative frequency
and diversity of tetracycline resistance genes occurred at waste
lagoons and gradually declined in the direction of groundwater
flow; however, one of the genes was still detectable 250 meters
downstream.

Agerso and others (2004) studied the presence of the tet(M)
gene in farmland soil by direct detection of the gene. They re-
ported that the gene was most prevalent in farmland soil imme-
diately after spread of pig manure slurry, but could be detected
on farmland soil 2 y after the field had been treated. On soil
not treated with animal manure, tet(M) could only be detected
after selective enrichment with tetracycline present in the me-
dia under anaerobic and aerobic conditions. The results indicate
that the tet(M) gene is spread with bacteria in the manure, but
that it is also present in the indigenous soil microflora, possi-
bly occurring specifically in the facultative anaerobic bacteria.
Sengelov and others (2003) investigated the level of tetracycline,
erythromycin, and streptomycin resistance among bacteria before
and after spread of pig manure slurry on fields. They found that
the ratio of colony forming units (CFU) of tetracycline-resistant
bacteria to all bacteria was significantly higher immediately after
spread of pig manure slurry. The ratio decreased rapidly 1 y af-
ter the spread, showing no accumulation of tetracycline-resistant
bacteria. No effect on erythromycin- and streptomycin-resistant
bacteria in farmland soil was observed in the study.

Another means of environmental transfer of antibiotic resis-
tance genes from the antibiotic-producing strain might be through
direct ingestion of medicated feeds by food animals. It has been
shown that a DNA-encoding homolog of the van resistance gene
cluster was a contaminant of feed-grade avoparcin. Thus, it was
proposed that the ingested glycopeptide resistance gene complex
was present, conferred resistance to this antibiotic, and in the
presence of the selective pressure of the glycopeptide avoparcin
in the food animal, selected for increased numbers of resistant
strains (Lu and others 2004; Marshall and others 1998). How-
ever, another study based on amino acid sequence homology
showed that horizontal transfer to human or animal bacteria of
antibiotic resistance genes from bacteria that are used for antibi-
otic production was unlikely (Lau and others 2004).

Transfer to humans from various sources
Data on the transfer of resistant organisms from animal or en-

vironmental microbial isolates to humans, ability to cause ill-
ness, and resultant treatment failure are valuable for assessing
the overall impact of antimicrobial resistance on human health.
The transfer of antimicrobial-resistant bacteria from food animals
to humans is well documented (Sanchez and others 2002; Swartz
2002). Evidence includes transfer of Salmonella from cattle,
chickens, pigs, and turkeys (Angulo and others 2000; Mead and
others 1999; Meng and others 1998) and Campylobacter species
from chickens and turkeys in a commercial operation (Altekruse

and others 2002). Farmers may be at a greater occupational risk of
acquiring antimicrobial resistant bacteria from the environment.
A range of microorganisms including S. aureus, nongroupable
Streptococci, Enterobacter, Enterococci, and E. coli isolated from
farm workers was significantly more resistant to most antimi-
crobials than isolates from nonfarm workers (Aubry-Damon and
others 2004).

Most ceftriaxone-resistant Salmonella infections are acquired
outside the United States. A domestically acquired ceftriaxone-
resistant Salmonella infection, however, was reported in a 12-
year-old child (Fey and others 2000; Herikstad and others 1997).
The ceftriaxone-resistant Salmonella enterica isolate that infected
the child was indistinguishable from one of the ceftriaxone-
resistant isolates present in a herd of cattle during an outbreak
on the family ranch. Although use of ceftriaxone or other antimi-
crobials in the herd could not be established, it was suggested
that use in the herd of ceftiofur, a broad-spectrum cephalosporin
approved for use in cattle, most likely led to the emergence
of resistance in the S. enterica in these cattle, transmission
of the resistant strain from the cattle to the child, and illness
in the child (Fey and others 2000). The means of transmission of
the ceftriaxone-resistant Salmonella from the cattle to the child
was not known; however, Fey and others (2000) thought it un-
likely that the child’s infection was actually foodborne. They
concluded that the inoculum of Salmonella necessary to cause
illness in the child might have been lowered by the prior treat-
ment of the child with amoxicillin-clavulanate and ampicillin-
sulbactam.

Resistant bacteria on food crops destined for consumption by
humans may provide a route of delivery of resistance genes to
the human intestinal flora. Enterobacteriaceae are not only found
in abundance in the environment, but as pathogens as well as
commensals in the human gastrointestinal tract. For example,
the same serotypes of E. coli and Klebsiella were found in food
served in a hospital setting and isolates of consuming patients
(Cooke and others 1970; Cooke and others 1980). A Finnish
study investigated the potential for raw vegetables to serve as
a source of resistant strains of Enterobacteriaceae (Osterblad and
others 1999); researchers concluded that bacteria from vegeta-
bles were not responsible for the high prevalence of resistant
Enterobacteriaceae in fecal flora. More research is warranted to
determine the impact of antimicrobial resistant environmental
commensal bacteria as an important source of resistance in fecal
flora.

Cross-species infections between plants and humans are in-
creasingly recognized (Tan 2002; Vidaver 2005). Pseudomonas
aeruginosa, Burkholderia (Pseudomonas) cepacia, and Serratia
marcescens, which can be plant pathogens, are potential seri-
ous human pathogens. The plant pathogens are intrinsically an-
tibiotic resistant (Vidaver 2005). However, as yet, there are no
data that indicate transfer of antibiotic resistance determinants
from the plant pathogens to bacteria causing human disease,
or vice versa, under natural conditions (McManus and others
2002).

Three hundred species of fungi have been reported as caus-
ing cutaneous and invasive human infections (Taylor and others
2001). The level of invasive infections is attributed in part to in-
creased organ transplants and attendant immunosuppression, as
well as complications arising from AIDS, although fungal diseases
are reported in “normal individuals” as well (Ponton and others
2000). The human health concern is that some of the bacteria
and many of the fungal taxa long known as plant pathogens are
being isolated from human infections (Vidaver 2005).

The significance of antibiotic use in domestic aquaculture
to food safety and human health is unknown. Ultimately, data
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relating to the persistence of antibiotic residues and bioactivity
in the fish farm environment and the ability of fish pathogens to
transmit antibiotic resistance determinants to human pathogens
will be required. Most fish pathogens do not infect humans be-
cause they are incapable of growing at human body temperatures;
thus, the risk of transmission of pathogens from fish to humans is
very small. So far, the potential seems more likely for human or
animal pathogens to transmit resistance to fish pathogens. Cur-
rently, antibiotic usage in aquaculture is at its lowest point since
the early 1980s, and until new drugs are approved, the situation
seems unlikely to change.

Detection of Resistance
Resistance among microorganisms can generally be detected

either phenotypically or genotypically. For clinically important
bacteria, diagnostic laboratories perform phenotypic-based anal-
yses using standardized susceptibility testing methods, usually
in accordance with those published by the Clinical and Lab-
oratory Standards Institute (CLSI, www.clsi.org, Wayne, Penn.,
U.S.A.). Determination of resistance via phenotype uses growth
inhibition assays performed in broth or by agar disc diffusion. In
a dilution-based growth inhibition assay, the minimal inhibitory
concentration (MIC) can be calculated for each bacterial isolate
and antimicrobial drug, and then interpreted as either suscep-
tible, intermediate, or resistant. This type of assay enables the
practitioner to more readily choose the antibiotic that is most
appropriate for clinical use because a susceptible interpretation
conveys likely favorable clinical outcome, whereas resistant con-
veys likely treatment failure.

These MIC category “breakpoints” are based on an evaluation
of the clinical efficacy of the drug, its pharmacokinetics and phar-
macodynamics, and a comparison of MICs of microorganisms
from a variety of sources. Although a “high” MIC might indicate
that a given pathogen has a genetically based resistance mecha-
nism, this is not necessarily the case, since the breakpoint is set, in
part, on the basis of achievable drug concentrations at the site of
the infection. If the MIC is greater than the needed concentration,
or does not meet certain other pharmacokinetic parameters, then
the pathogen can be considered resistant, regardless of resistance
mechanism. CLSI has established antimicrobial susceptibility test-
ing methods for animal and human pathogens, and breakpoints
for many microbes and drugs. Currently, no standard methods are
routinely used in clinical laboratories for determining genotypic
resistance and predicting clinical outcomes.

Identifying resistance versus susceptibility to food antimicro-
bial agents and/or sanitizers may be problematic because there
are no standardized testing methods or accepted breakpoint val-
ues for these substances (Chapman 1998; Parish and Davidson
1993). An important caveat to most studies of biocide resistance,
however, is that resistance is based on comparison of MICs among
bacterial strains, wherein strains are generally characterized as re-
sistant if MICs are 4- to 10-fold higher than for sensitive strains.
Of note, the effective use concentrations of QACs and other san-
itizers are much higher than MIC values denoting resistance. For
example, if the MIC of an agent is 4 units/mL, and a strain survives
20 units/mL, it may be termed resistant. However, the standard
concentration of the QAC or sanitizer used may be 1000 units/mL,
making the observed “resistance” irrelevant.

The phenotypic approach, involving cultivation (culturing) of
bacteria and testing them against antibiotics, is the traditional
method of detecting resistance among bacteria from water or soil,
but is problematic for this application for a number of reasons.
Bacterial isolation techniques are often highly selective and may
miss the majority of bacteria in a sample that are not the study

target and the less predominant strains. These techniques will
also miss the bacteria that cannot grow in the laboratory. The
vast majority of intestinal bacteria that contaminate the environ-
ment live as commensals and typically do not grow in laboratory
conditions. A culture-independent approach, however, which an-
alyzes the total DNA extracted from a sample for presence of resis-
tance genes, is a suitably sensitive approach. Molecular detection
techniques, such as polymerase chain reaction or DNA–DNA hy-
bridization, are standard techniques used to determine the pres-
ence of specific resistance genes. Microarrays13 have been used
to test for the presence of a number of genes from a given bacterial
isolate (Call and others 2003; Yu and others 2004).

Monitoring of Resistance

Monitoring systems
Several countries and communities have surveillance programs

in place that measure resistance trends over time. Interpretation
and comparisons between country systems and surveys are of-
ten hampered by lack of standardized methods, differences in
methodology, and lack of validated interpretive criteria. Also,
review of the literature is hampered by lack of continuity be-
tween studies. Many studies have reported susceptibility data de-
termined from the disk diffusion method, but differences among
specific techniques in the disk diffusion method do not allow valid
comparisons among studies. Other studies reported susceptibility
data obtained from serial broth dilution or MIC testing. Harmo-
nization of methods between these programs must occur before
international comparisons can be made and international resis-
tance trends elucidated.

Resistance to antimicrobials includes fungi. Because resistance
to fungicidal agents is relatively common in agriculture, a global
monitoring system—the Fungicide Resistance Action Committee
(www.frac.info)—has been established. There is no fungicide re-
sistance monitoring system counterpart for human health yet, al-
though the incidence of invasive fungal infections in humans is a
growing concern.

United States
The principal domestic system for monitoring antibiotic re-

sistance of food-related bacteria is the National Antimicrobial
Resistance Monitoring System for Enteric Bacteria (NARMS), es-
tablished in 1996 as a collaborative effort among the Centers for
Disease Control (CDC), FDA, and USDA. The surveillance system
was initiated to monitor changes in susceptibilities of zoonotic
pathogens in animals, animal products, and humans.

Bacterial isolates are collected from human and animal clinical
specimens, healthy farm animals, and raw foods of animal ori-
gin. The isolates are tested to determine MICs for selected impor-
tant antimicrobial classes used in animal and human medicine,
which change over time. Collection of data for retail meat iso-
lates was added in 2002. Annual reports of the NARMS surveil-
lance are accessible at the web sites of the CDC, FDA, and USDA
(HHS/FDA/CVM 2003, 2004; NARMS 2003a, b, 2004). Data are
available from CDC for antimicrobial susceptibility or resistance
among zoonotic bacteria associated with human clinical cases
(see Table 6a), from FDA for susceptibility among bacteria from
retail meats (see Table 6b), and from USDA for susceptibility

13 microarrays: a medium comprising an automated process for simultaneously
matching, on the basis of base pairing rules, thousands of unknown and known
DNA samples of < 200 μ diameter
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Table 6a --- Percent resistance among zoonotic bacteria isolated from human clinical cases --- United States (Source:
NARMS 2003b)

Yeara

Microorganism Resistance 1996 1997 1998 1999 2000 2001 2002 2003

Salmonella, None of 14 agents 66 79 78
all non-Typhi serotypes 2 or more agents 28 16 18

5 or more agents 12 14 12 9 11
Ciprofloxacinb 0 0 0.1 0.1 0.4 0.2 0.05 0.2
Nalidixic acid 0.4 3 2 2
Ceftriaxone 0 0.4 0.2 0.4
Ceftiofur 4 3 1 2 3 4 4 4
Ampicillin 21 13 14
Tetracycline 24 15 16
Trimethoprim-sulfamethoxazole 4 1 2

Salmonella Typhimurium None of 14agents 36 60 55
2 or more agents 58 36 41
5 or more agents 41 47 27 30
Salmonella Typhimurium R-type

ACSSuT
8 9 8 4 6

(% of non-Typhi Salmonella
isolates)

Salmonella Typhimurium R-type
ACSSuT

34 35 21 26

(% of Salmonella Typhimurium
isolates)

Ciprofloxacinb 0 0.3 0 0
Nalidixic acid 0.3 0 1 1 1 1
Ceftriaxone 0 0.3 0.2
Ceftiofur 4 5 2 2 4 3 4 5
Ampicillin 50 51 34 36
Tetracycline 49 53 32 38
Trimethoprim-sulfamethoxazole 4 4 4 2 2 4

Salmonella Newport None of 14 agents 82 88 95 65 73 74
2 or more agents 8 6 3 31 25 25
5 or more agents 6 4 3 23 27 23 22
MDR-AmpC resistance pattern 0 0 3 2
(% of non-Typhi Salmonella

isolates)
MDR-AmpC resistance pattern 0 0 22 25 22 21
(% of Salmonella Newport

isolates)
Ciprofloxacinb 0 0 0
Nalidixic acid 0 0 0 1 1 0 1 0.5
Ceftriaxone 0 0 0 0 0 0 1 2
Ceftiofur 4 4 1 22 27 22 22
Ampicillin 6 6 3 23 29 24 22
Tetracycline 8 4 3 30 25 24
Trimethoprim-sulfamethoxazole 4 4 1 2 4 2 4 1

Campylobacter None of 6 agents 44 52 51
2 or more agents 18 18 20 16 21 21 18
Tetracycline 47 38 38
Nalidixic acid 20 18 21 16 21 21 19
Ciprofloxacin 13 13 18 20 20 18
Erythromycin 3 3 1

Escherichia coli O157 none of 14 85 93 90 91 93 90
2 or more agents 5 6 5 4 7 5 4 5
Tetracycline 5 3 3 7 5 3 6
Ampicillin 1 0 1 3 1 3
Nalidixic acid 0 0 0 1 1 1 1 1
Trimethoprim-sulfamethoxazole 0 0 1 1 1 1 1 1

aInformation is shown for those intermediate years with data points that are outside the range (above or below) of the first and last years.
bThe breakpoint used by NARMS to classify resistance against ciprofloxacin is MIC ≥ 4.0 μg/ml. Decreased susceptibility of Salmonella were those with an MIC ≥ 0.25 μg/ml.
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Table 6b --- Percent resistance among bacteria isolated from retail meats --- United States (Source: HHS/FDA/CVM 2002;
HHS/FDA/CVM 2003)

Yeara

Microorganism Resistance 2002 2003

Salmonella, all non-Typhi serotypes None of 16 agents 44 40
(n = 153 isolates in 2002, 212 in 2003) 2 or more agents 42 51

5 or more agents 20 26
8 or more agents 8 6
Ciprofloxacinb 0 0
Ciprofloxacin decreased susceptibility 3 3
Nalidixic acid 4 3
Ceftriaxone 0 0
Ceftiofur 10 14
Ampicillin 18 32
Tetracycline 46 36
Trimethoprim-sulfamethoxazole 2 0

Salmonella Typhimurium Ciprofloxacinb 0 0
(n = 15 isolates in 2002, 26 in 2003) Ciprofloxacin decreased susceptibility 0 0

Nalidixic acid 0 0
Ceftriaxone 0 62
Ceftiofur 20 73
Ampicillin 27 35
Tetracycline 40 0
Trimethoprim-sulfamethoxazole 0

Salmonella Newport Ciprofloxacinb 0 0
(n = 8 isolate in 2002, 4 in 2003) Nalidixic acid 0 0

Ceftriaxone 0 0
Ceftiofur 62 50
Ampicillin 62 50
Tetracycline 62 50
Trimethoprim-sulfamethoxazole 0 0

Campylobacter None of 5 agents 60 60
(n = 288 isolates in 2002, 479 in 2003) 2 or more agents 7 6

Doxycycline 28 30
Ciprofloxacin 14 14
Erythromycin 6 3

Escherichia coli None of 16 36 36
(n = 1065 in 2002, 1258 in 2003) 2 or more agents 46 48

Tetracycline 52 48
Ampicillin 19 21
Nalidixic acid 2 5
Trimethoprim-sulfamethoxazole 2 5

among zoonotic bacteria from animals and animal products (see
Table 6c). Animal and human isolates currently monitored in-
clude nontyphoid Salmonella, Campylobacter, E. coli, and Ente-
rococcus. The CDC also monitors Salmonella Typhi and Shigella
human isolates.

Prevalence of antimicrobial resistance observed in U.S. moni-
toring systems. Comparison of human clinical isolates from the
early surveillance years with those for 2003 shows a decreas-
ing trend in resistance in many cases but an increasing trend in
others (Table 6a). For example, in 2003, 78% of the Salmonella
isolates (all non-Typhi serotypes) were pansusceptible (suscepti-
ble to all 14 antimicrobial agents tested in both 1996 and 2003)
compared with 66% in 1996. The percentage of the non-Typhi
Salmonella isolates that were resistant to two or more antimi-
crobials decreased from 28% in 1996 to 18% in 2003, and
the percentage of non-Typhi Salmonella isolates resistant to five

or more antimicrobials decreased from 12% to 11%. The most
common Salmonella serotype tested by NARMS is Salmonella
Typhimurium. Consequently, the resistance prevalence changes
in Salmonella Typhimurium greatly influenced and mirrored the
prevalences of all Salmonella combined. Pansusceptibility of
Salmonella Typhimurium changed from 38% in 1996 to 55% in
2003. Resistance to two or more antimicrobials decreased from
57% in 1996 to 41% in 2003 and resistance to five or more antimi-
crobials decreased from 41% to 30%. The second most common
Salmonella serotype is Salmonella Enteritidis. Resistance preva-
lence is comparatively low for Salmonella Enteritidis; 91% of
the isolates in 2003 were pansusceptible compared to 74% in
1996. However, in the third most common Salmonella serotype,
Salmonella Newport, the prevalence of resistance increased. In
1996, 86% of the Salmonella Newport isolates were pansuscep-
tible; this decreased to 74% in 2003. Resistance to five or more
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Table 6c --- Percent resistance in zoonotic bacteria isolated from animals and animal products --- United States
(Source: USDA/ARS 2006)

Yeara

Microorganism Resistance 1997 1998 1999 2000 2001 2002 2003

Salmonella, all non-Typhi serotypes from
all animal sources (diagnostic,
slaughter, healthy)

None of 14 agents
2 or more agents
5 or more agents
8 or more agents

66 48 49
25 44 43
11 25

2 14
Ciprofloxacinb 0 0 0 0 0 0 0
Nalidixic acid 1 1 1 2 2 1 1
Ceftriaxone 0 1 0 0 0 0 0
Ceftiofur 1 19
Ampicillin 12 30
Tetracycline 27 44 42
Trimethoprim-sulfamethoxazole 2 3 6 5

Salmonella, all non-Typhi serotypes Ciprofloxacinb 0 0 0 0 0 0 0
from cattle slaughter isolates Nalidixic acid 0 0 0 0 0 0 0

Ceftriaxone 0 1 0 0 0 0 0
Ceftiofur 0 21
Ampicillin 19 9 12 19 18 28
Tetracycline 31 24 21 26 26 36
Trimethoprim-sulfamethoxazole 4 2 2 2 3 2 3

Salmonella, all non-Typhi serotypes Ciprofloxacinb 0 0 0 0 0 0 0
from chicken slaughter isolates Nalidixic acid 0 0 0 0 0 1 0

Ceftriaxone 0 0 0 0 0 0 0
Ceftiofur 0 10 10
Ampicillin 12 12 9 14 14
Tetracycline 21 20 27
Trimethoprim-sulfamethoxazole 0 1 1 0 0 1 0

Salmonella, all non-Typhi serotypes Ciprofloxacinb 0 0 0 0 0 0 0
from swine slaughter isolates Nalidixic acid 0 0 0 0 0 0 0

Ceftriaxone 0 0 0 0 0 0 0
Ceftiofur 1 0 1 4
Ampicillin 17 13 11 19 12 13
Tetracycline 51 54 53 58 43
Trimethoprim-sulfamethoxazole 2 0 1 1 0 2 2

Salmonella, all non-Typhi serotypes Ciprofloxacinb 0 0 0 0 0 0 0
from turkey slaughter isolates Nalidixic acid 5 2 5 5 5 5 4

Ceftriaxone 2 0 0 0 0 0
Ceftiofur 6 0 2
Ampicillin 13 10 20 19
Tetracycline 55 46 53 55 54 59
Trimethoprim-sulfamethoxazole 4 2 4 2 2 2 2

Salmonella Typhimurium Salmonella Typhimurium R-type ACSSuT 6 6 4 4
from all animal sources (% of non-Typhi Salmonella isolates)
(diagnostic, slaughter, healthy) Salmonella Typhimurium R-type ACSSuT 35 25

(% of Salmonella Typhimurium isolates)
Ciprofloxacinb 0 0 0 0 0 0
Nalidixic acid 2 2 1 5 4 3
Ceftriaxone 1 1 0 1 0 0
Ceftiofur 2 27
Ampicillin 61 63 69 62 56
Tetracycline 64 64 68 46
Trimethoprim-sulfamethoxazole 4 9 13 6 6 5

Salmonella Newport Ciprofloxacinb 0 0 0 0
from all animal sources Nalidixic acid 0 1 1 0
(diagnostic, slaughter, healthy) Ceftriaxone 1 0 1 1

Ceftiofur 75 69 78 74
Ampicillin 76 72 80 74
Tetracycline 78 75 83 77
Trimethoprim-sulfamethoxazole 19 2

(Continued on next page)
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Table 6c --- Continued

Yeara

Microorganism Resistance 1997 1998 1999 2000 2001 2002 2003

Campylobacter Tetracycline 60 45 46 49
(slaughter isolates) Nalidixic acid 20 13 13 21c 21 18

Ciprofloxacin 13 11 11 20c 18 17
Erythromycin 10 4 9 2 7 9

Escherichia coli Tetracycline 80 36 40
(all sources) Ampicillin 21 14 17

Nalidixic acid 1 8 6
Trimethoprim-sulfamethoxazole 5 12 10

aInformation is shown for those intermediate years with data points that are outside the range (above or below) of the first and last years.
bThe breakpoint used by NARMS to classify resistance against ciprofloxacin is MIC = 4.0 μg/ml. Decreased susceptibility of Salmonella were those with an MIC = 0.25μg/ml.
cMethods of testing changed in 2001. See NARMS report for more details.

antimicrobials increased from 6% in 1996 to 22% in 2003. In
2003, 21% of the Salmonella Newport isolates exhibited at least
MDR-AmpC resistance compared with none in 1996. Among E.
coli O157 human isolates, 89% were pansusceptible in 2003
compared with 85% in 1996, and the percentage of E. coli O157
isolates resistant to two or more antimicrobials remained at 5%
during this time period. Among Campylobacter isolates, 51%
were pansusceptible in 2003 compared with 44% in 1997, and
22% were resistant to two or more antimicrobials in 1997 com-
pared with 18% of isolates in 2003.

CDC’s annual report for 2003 (NARMS 2003a) provides
trends in resistance to clinically important antimicrobials (fluo-
roquinolones and third generation cephalosporins, for example).
The key findings reported are: (1) 18% of Campylobacter isolates
in 2003 were resistant to ciprofloxacin, compared with 13% in
1997; (2) 2% of non-Typhi Salmonella isolates in 2003 were resis-
tant to the quinolone nalidixic acid, compared with 0.4% in 1996;
(3) 4% of non-Typhi Salmonella isolates in 2003 were resistant
to the third generation cephalosporin ceftiofur (an animal drug),
compared with 0.2% in 1996. Resistance to the human third gen-
eration cephalosporin, ceftriaxone, increased from none in 1996
to 0.4% in 2003.

NARMS data from animal isolates are more complicated to in-
terpret because of the large variety of animal species and sources
from which isolates are obtained. Animal isolates originate from
federally inspected slaughter and processing facilities, animal
health monitoring studies on farms, and veterinary diagnostic lab-
oratories, and are tested for antimicrobial drug susceptibility at
the USDA Agricultural Research Service Antimicrobial Resistance
Research Unit.

Accurate comparison of trends in resistance among animal iso-
lates requires comparisons within animal species and within the
same isolate source (for example, meat, healthy animals, or di-
agnostic specimens). Further, some comparisons are affected by
methodological changes, such as the change in 2001 in method-
ology for Campylobacter that caused an apparent increase in
resistance to ciprofloxacin. Unfortunately, the reports do not pro-
vide summary information, such as the prevalence of isolates from
cattle, swine, or poultry slaughter and processing specimens that
are resistant to two or more antimicrobials. Available summary
information combines all species of animals, all sources, and all
species of Salmonella. The summary information for these ani-
mal isolates shows increases in resistance to two or more, five or
more, and eight or more antimicrobials. These results differ from
those of the human Salmonella isolates. Resistance to clinically
important antimicrobials among animal isolates was unchanged
for ciprofloxacin and ceftriaxone (0% each), a third generation

cephalosporin used in humans and particularly in children as an
alternative to fluoroquinolones (NARMS 2003b). Paradoxically,
resistance to ceftiofur (a third generation cephalosporin used in
animals) increased from 1% in 1997 to 19% in 2003. At least
in this situation, development of resistance to one member of a
class of antibiotics does not confer resistance to other members
of that class.

In the animal arm of NARMS, the primary or exclusive source
of Campylobacter isolates is chicken specimens collected at
slaughter, in which resistance to tetracycline, erythromycin, and
nalidixic acid decreased between 1998 and 2002 (60% to 49%,
10% to 9%, and 20% to 18%, respectively) but increased for
ciprofloxacin (13% to 17%). In the retail arm, in 2002 and
2003, 14% of the Campylobacter isolates were resistant to
ciprofloxacin. In 2002, 6% were resistant to erythromycin and
in 2003, 3% were resistant to the antibiotic. Instead of testing
for resistance to tetracycline, the retail arm tested for resistance
to doxycycline, which was 28% in 2002 and 30% in 2003. The
resistance trends between 1997 and 2002 for Campylobacter iso-
lates from humans were the same as for isolates from animals be-
tween 1998 and 2002 for tetracycline (decrease), nalidixic acid
(increase), and ciprofloxacin (increase), but were opposite the
trends for erythromycin (increase in humans; decrease in animals
and retail meats).

Except for Salmonella, there is a paucity of data on preva-
lence of antimicrobial susceptibility phenotypes among food-
borne pathogens associated with foods imported into the United
States. Zhao and others (2003a) evaluated the susceptibility to
17 antimicrobials of 187 Salmonella isolates representing 82
serotypes recovered by FDA field laboratories from 4072 foods
imported into the United States in the year 2000. They found that
8% of the isolates were resistant to at least one antimicrobial and
2.7% were resistant to three or more. Of the isolates that were re-
sistant to at least one antibiotic, 12 isolates were recovered from
seafood and the remaining three were recovered from fresh pro-
duce or cheese; 10 of them were isolated from food imported
from Asia and the other five were recovered in foods from Mex-
ico, Ecuador, Canada, or Denmark. One Salmonella Derby isolate
from frozen anchovies imported from Cambodia was resistant to
six antimicrobials, including ampicillin, amoxicillin/clavulanic
acid, and chloramphenicol. Nine isolates exhibited resistance to
tetracycline, seven to sulfonamides, five to streptomycin, and four
(from catfish or tilapia from Taiwan or Thailand) demonstrated re-
sistance to nalidixic acid.

Kiessling and others (2002) tested susceptibility to 11 antimi-
crobial agents of 502 isolates recovered from domestic and im-
ported food and related products by FDA between Oct. 1, 1999
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and Sept. 30, 2000; 92 of the cultures were isolated from do-
mestic samples and the remainder were isolated from imported
products. Of the 247 isolates showing resistance or intermediate
resistance, 23% were from U.S. products and 74% were from
imported items. Marked differences were observed in the pro-
portions of resistant isolates from different product types. Many
of the resistant isolates originated from domestic and imported
pig ear dog treats; those from human food sources originated
from seafood, and, to some extent, vegetables. Resistance to
seven antimicrobials was observed in isolates from frozen eel
imported from Vietnam and frozen anchovies from Cambodia;
resistance to six antimicrobials was seen in isolates from pig
ears from Canada and frozen tilapia from Taiwan; resistance
to five antimicrobials was seen in basil isolates from Egypt, ro-
maine lettuce from Illinois, poultry meal from Tennessee, three
pig ear samples from Canada, and two pig ear samples from
California; resistance to four antimicrobials was observed in iso-
lates from frozen catfish from Thailand, herbs from France, and
pig ears from Venezuela, North Carolina, Spain, and California.
Remarking on the distribution of MDR-phenotypes among dif-
ferent Salmonella serotypes, the authors noted that Salmonella
Derby showed the highest frequency (70%) of multi-resistance,
followed by Salmonella Typhimurium (>50%), whereas none of
the Salmonella Newport, Salmonella Muenchen, or Salmonella
Thompson isolates was resistant to two or more antimi-
crobials, and only one Salmonella Enteritidis isolate was
multiresistant.

Analyzing isolates collected from seafood products between
1999 and 2003, Kiessling and others (2004) found that 25% of
Salmonella isolates from Thailand were resistant to two or more
antibiotics, as were 23% of Salmonella isolates from Bangladesh,
and 21% of those from the Honduras.

Canada
The Canadian Integrated Program for Antimicrobial Resistance

Surveillance (CIPARS) is a recently developed surveillance system
that is similar to the U.S. NARMS. Unlike the U.S. NARMS, how-
ever, CIPARS provides a consolidated report of passive surveil-
lance data on Salmonella from human clinical cases, active
surveillance data collected from slaughterhouses, and passive
surveillance data on Salmonella from animal clinical specimens
(Health Canada 2004).

Europe
The European Antimicrobial Resistance Surveillance System

(EARSS) is an international network of national surveillance sys-
tems. EARSS performs on-going surveillance of antimicrobial sus-
ceptibility in Streptococcus pneumoniae, S. aureus, E. coli, and
E. faecalis/faecium causing invasive infections in humans, and
monitors variations of antimicrobial resistance over time and from
place to place. By the first quarter of 2003, about 700 microbi-
ological laboratories serving some 1100 hospitals from 28 coun-
tries had provided susceptibility data on about 175000 invasive
isolates (EARSS 2004). Another Europe-based surveillance net-
work of interest is Enter-Net (2003), an international surveillance
network for human gastrointestinal infections of Salmonella and
verocytotoxin-producing E. coli and antimicrobial resistance. In
addition, Denmark and Norway have independent surveillance
systems.

Denmark
Another long-standing surveillance system is the Danish In-

tegrated Antimicrobial Resistance Monitoring and Research
Program (DANMAP 2004), which was established in 1995 as
a coordinated national surveillance and research program for an-

timicrobial consumption and resistance in bacteria from animals,
food, and humans. DANMAP is unique in that it provides tem-
poral relationships between antimicrobial usage and resistance,
although CIPARS is beginning to collect on-farm usage data.

Norway
Reports similar to DANMAP are available from Norway

(NORM/NORM-VET 2002) and Sweden (SVARM 2002). The
Norwegian surveillance program for antimicrobial resistance in
human pathogens was established in 1999. The NORM-VET
monitoring program for antimicrobial resistance in the veterinary
and food production sectors was established in 2000.

Investigations of Resistance among Specific Genera

Salmonella
Lee and others (1994) compared the proportion of resistant

Salmonella isolates from human patients in selected U.S. counties
during 1979 to 1980 and 1989 to 1990. The percentage of isolates
that were resistant to ≥1 of 12 antimicrobial agents was 17% in
1979 to 1980, 26% in 1984 to 1985, and 31% in 1989 to 1990;
the percentage of infections by MDR-strains was 12% in 1979 to
1980, 17% in 1984 to 1985, and 25% in 1989 to 1990. Of the hu-
man isolates addressed in NARMS, resistance to ≥1 of 14 antimi-
crobials was 34% in 1996 and 22% in 2003; resistance to ≥2 of 14
antimicrobial agents was 28% in 1996 and 18% in 2003. These
comparisons indicate a peak in 1996 and a subsequent decline
back to 1983 to 1985 levels. Similarly, Threlfall and others (2004)
reported that the peak year for MDR-Salmonella Typhimurium
DT104 human infections in England and Wales was also
1996.

One of the most recognized Salmonella serotypes in both ani-
mal and human illnesses is Salmonella Typhimurium. Of particu-
lar concern is the increasing number of MDR-resistant Salmonella
Typhimurium isolates, including definitive phage (virus specific
to a bacterium) type 104 (DT104). This Salmonella strain is usu-
ally resistant to at least five antimicrobial agents—ampicillin,
chloramphenicol, streptomycin, sulfonamides, and tetracycline
(R-type ACSSuT). Antimicrobial resistance among Salmonella iso-
lates appears to be increasing on a global scale, although a
large part of this rise may be attributed to the clonal spread
of MDR-varieties, including Salmonella enterica Typhimurium
DT104 (Besser and others 2000; Glynn and others 1998; Ribot
and others 2002).

Salmonella Typhimurium DT104 was first associated with
seagulls, and then cattle and humans in England, although it most
likely did not originate there. Salmonella Typhimurium DT104
has caused serious illnesses in many animal species including
food animals (Davis and others 1999; Evans and Davies 1996),
companion animals (CDC 2001a; Hudson 2000; Wall and others
1996), and wildlife (Foreyt and others 2001; Helm 1999). Many
food animal species, although asymptomatic, can serve as reser-
voirs or carriers for Salmonella Typhimurium DT104 (Abouzeed
and others 2000; Baggesen and Aarestrup 1998; Benson and
others 1997; Imberechts and others 1998; Rajashekara and oth-
ers 2000). Several instances of transmission of Salmonella Ty-
phimurium DT104 from infected animals to humans have been
reported (CDC 2001b; Spake 1997). In addition, several human
outbreaks associated with DT104 have been linked to consump-
tion of dairy products (Cody 1999; Villar and others 1999) and
beef (Evans and Davies 1996).

The prevalence in the United States of ACSSuT-resistant
Salmonella Typhimurium increased from 0.6% during 1979 to
1980 to 34% in 1996 (Glynn and others 1998). Among the
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Salmonella Typhimurium isolates from humans submitted to
NARMS, the prevalence of isolates at least ACSSuT-resistant in
2003 was 26% compared with 34% in 1996 (NARMS 2003b).
This penta-resistance pattern in Salmonella Typhimurium is often
indicative of phage type DT104, but on rare occasions other an-
tibiotic resistance patterns have been identified in DT104 as well
(Abouzeed and others 2000; Imberechts and others 1998; Low
and others 1997; Rajashekara and others 2000). Some DT104
isolates have acquired resistance to trimethoprim and aminogly-
cosides as well as to quinolones (Low and others 1997; Molbak
and others 1999; Threlfall and others 1996).

Most resistant DT104 isolates have a unique MDR-
chromosomal gene cluster encoding the complete spectrum of
the ACSSuT phenotype (Arcangioli and others 1999; Briggs and
Fratamico 1999; Ridley and Threlfall 1998; Threlfall and others
1996). This gene cluster typically consists of a 12.5 kb chromo-
somal locus with flanking integrons (Arcangioli and others 1999;
Briggs and Fratamico 1999). Salmonella Typhimurium DT104 is
also resistant to chloramphenicol and the veterinary analog flor-
fenicol (Bolton and others 1999).

Chloramphenicol/florfenicol resistance is due to flo, a puta-
tive drug efflux pump first described in the fish pathogen P.
dansalae (Kim and Aoki 1996). This phenicol resistance gene
has been found in other Salmonella, E. coli, and Klebsiella pneu-
moniae (Cloeckaert and others 2000a, 2000b 2001; Keyes and
others 2000; Sanchez and others 2002). Unlike DT104, flo re-
sides on plasmids in most E. coli isolates (Cloeckaert 2000a;
Keyes and others 2000; Sanchez 2002), and AmpC plasmids of
Salmonella Typhimurium and Salmonella Newport (Doublet and
others 2004). In Salmonella Typhimurium DT104, the flo resis-
tance gene occurs next to that for tetracycline resistance (efflux
pump tetG). Both genes are further flanked in the chromosome
by class 1 integrons (Boyd and others 2001; Briggs and Fratam-
ico 1999). These integrons in DT104 encode for resistance to
streptomycin, sulfonamides, and ampicillin (Briggs and Fratam-
ico 1999).

Arrangement of these drug resistance genes within the bac-
terial chromosome was once considered unique to DT104, but
an MDR-locus has been identified in Salmonella enterica Ag-
ona (Boyd and others 2001; Cloeckaert and others 2000b),
Salmonella Paratyphi B, and Salmonella Albany (Doublet and
others 2003; Meunier and others 2002), suggesting that the MDR-
gene locus is transferable between serotypes. It has been shown
experimentally that the DT104 MDR-cluster can be efficiently
transduced14 by P22-like phages (Schmieger and Schicklmaier
1999). In addition, the occurrence of a gene encoding a putative
resolvase enzyme that demonstrates greater than 50% identity
with the Tn3 resolvase family (Arcangioli and others 1999) up-
stream of the first class 1 integron in the MDR-locus suggests that
the MDR-gene cluster could be part of a much larger transposon
or pathogenicity island.

More recently, another MDR-Salmonella, Newport-MDR-
AmpC, has been undergoing epidemic spread throughout the
United States in both animals and humans (CDC 2003; Dunne
and others 2000). In addition to the penta-resistance phenotype
usually observed in Salmonella Typhimurium DT104, Newport-
MDR-AmpC exhibits resistance to amoxicillin/clavulanic acid,
cephalothin, cefoxitin, and ceftiofur, and decreased susceptibil-
ity to ceftriaxone (MIC > 16 μg/mL). Some Salmonella New-
port MDR-AmpC strains also show resistance to gentamicin,
kanamycin, and trimethoprim/sulfamethoxazole. The prevalence

14 transduced: having its genetic constitution changed via genetic recombination
through the transfer of DNA from a lysed bacterium via bacteriophage

of Newport-MDR-AmpC among Salmonella Newport isolates
from humans in the United States increased from 0% during 1996
to 1997 to 21% in 2003 (NARMS 2003b). In 2003, 2% of the
non-Typhi Salmonella isolates were Salmonella Newport MDR-
AmpC, compared with none in 1996. At least 26 states have
isolated MDR-Salmonella from humans, cattle, or ground beef.
Raw or undercooked ground beef was implicated as the vehi-
cle of a multistate outbreak of Salmonella Newport MDR-AmpC
(Anonymous 2002). A retrospective case-control study showed
that infection with MDR-Salmonella Newport (MDR-AmpC) was
domestically acquired and associated with dairy farm exposure.
Furthermore, Salmonella Newport isolates recovered from both
humans and cattle had either indistinguishable or closely related
antimicrobial susceptibility profiles and DNA fingerprints (Gupta
and others 2003). A recent study by Berge and others (2004) that
analyzed human, animal, and environmental MDR-Salmonella
Newport isolates recovered during 1988 to 2001 indicated that
several of the isolates collected since 1998 appeared to be from
a clonal population that included human, environmental, and
bovine sources in a wide geographic region. An epidemiologic
investigation in Canada in 2002 determined human infections
with Salmonella Newport phage type 14 strains resistant to cef-
tazidime and cefoxitin were associated with handling pet treats
containing dried beef (Pitout and others 2003).

Zhao and others (2003b) showed that among 87 human and
food animal Salmonella Newport isolates, 60% were identified
as Newport MDR-AmpC, of which 53% were from humans,
93% from cattle, 70% from swine, and 30% from chickens.
All 53 Salmonella Newport MDR-AmpC isolates possessed a
cephalomycinase, encoded by the blaCMY gene. This extended-
spectrum β-lactamase has been associated with resistance to
narrow-, expanded-, and broad-spectrum cephalosporins, and is
widespread in many other Gram-negative enteric pathogens as
well.

Isolates from culture collections and directly associated
with outbreaks were evaluated retrospectively for antimi-
crobial resistance. β-lactam and cephalosporin resistance in
Salmonella has been attributed to several distinct classes of
β-lactamase/cephalosporinases (Bauernfeind and others 1996;
Hanson and others 2002; Makanera and others 2003); the recent
ceftriaxone-resistant, clavulonic acid resistant phenotype identi-
fied in Salmonella, however, is associated with plasmid-borne
AmpC CMY-2 (Chen and others 2004; Koeck and others 1997;
Navarro and others 2001; Zhao and others 2001b). The AmpC
CMY-2 gene appears to have originated in Citrobacter freundii
(Dunne and others 2000) and it has since been disseminated
worldwide to Salmonella and other Enterobacteriaceae (Navarro
and others 2001; Odeh and others 2002), including those from
animal sources (Sanchez and others 2002; Yan and others 2004a;
Zhao and others 2001b). Spread of ampC CMY-2 and the associ-
ated, extended-spectrum, cephalosporin resistance (Winokur and
others 2001; Yan and others 2004a) as well as resistance to other
drugs (Doublet and others 2004) appears to be attributed to a
common plasmid and in part to a class 1 integron and its associ-
ated resistance genes residing on the plasmid (Rankin and others
2002; Zhao and others 2003b).

Fluoroquinolone and ceftriaxone-resistant Salmonella are of
particular concern to public health because fluoroquinolone,
ciprofloxacin, and third generation cephalosporins such as cef-
triaxone are agents most commonly used for treating invasive
Salmonella infections in adults and children, respectively (Angulo
and others 2000; Fey and others 2000). Thus, the need continues
for increased surveillance on a global basis of antimicrobial re-
sistant phenotypes among Salmonella spp. of animal and human
origin, with specific emphasis on susceptibility to drugs used to
treat infection.
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Campylobacter
Campylobacter is a naturally transformable microorganism

(Wang and Taylor 1990) that is capable of acquiring a diverse
array of Gram-positive (Werner and others 2001) and Gram-
negative (Pinto-Alphandary and others 1990) resistance genes.
Since the late 1980s, resistance to fluoroquinolones has been
increasing among Campylobacter isolates, especially in Europe,
while the level of erythromycin resistance has not changed (Pid-
dock 1995). Gaudreau and Gilbert (1998) compared resistance
levels over time among C. jejuni human isolates, and found that
none of the strains from any of the three time periods (1985 to
1986, 1992 to 1993, and 1995 to 1997) was resistant to ery-
thromycin; and, although there was no significant increase in
resistance to nalidixic acid or ciprofloxacin from 1985 to 1986
and 1992 to 1993, there was a significant increase between 1992
to 1993 and 1995 to 1997. Lucey and others (2002) compared re-
sistance of C. jejuni/coli in Ireland. Between the periods of 1996
to 1998 and 2000, the erythromycin resistance levels remained
low (2%) among human isolates, but ciprofloxacin resistance in-
creased from 0% to 30%. Nachamkin and others (2002) reported
an increase of fluoroquinolone resistance (from 21% in 1995 to
40% in 2001) among human C. jejuni isolates in Pennsylvania,
and level erythromycin resistance (remaining less than 5%). Smith
and others (1999) reported that the proportion of nalidixic acid
resistance among human C. jejuni isolates from Minnesota in-
creased from 1% in 1992 to 10% in 1998. The authors noted
that infection was associated primarily with foreign travel and
fluoroquinolone use, although the number of quinolone-resistant
infections acquired domestically also increased between 1996
and 1998. Summarizing the antimicrobial resistance surveillance
data for human isolates from a sentinel county health study during
1989 to 1990 and NARMS during 1997 to 2001, Gupta and oth-
ers (2004) reported that during 1989 to 1990 none of the isolates
was ciprofloxacin-resistant and 1% was resistant to nalidixic acid,
but later ciprofloxacin resistance prevalence was 12% in 1997,
14% in 1998, 18% in 1999, 14% in 2000, and 18% in 2001, and
erythromycin resistance prevalence was 1% in 1997 and 2% in
2001.

Antibiotic resistance in Campylobacter develops at the genetic
level, through the acquisition of point mutations in genes encod-
ing DNA gyrase (gyrA [Ge and others 2003; Wang and others
1993]), 23S rRNA (Ge and others 2003; Niwa and others 2001),
activation of resident MDR-efflux pumps (Lin and others 2002),
or acquisition of foreign genes that either alter the antibiotic
(Pinto-Alphandary and others 1990; Werner and others 2001) or
its target (LeBlanc and others 1988). Resistance to erythromycin
is attributed to reduced binding to the ribosome (Yan and Tay-
lor 1991). Although an MDR-efflux pump has been identified
in Campylobacter, it does not appear to be responsible for the
high MIC levels associated with erythromycin (Chatzipanagiotou
and others 2002). Unlike Salmonella, other Enterobacteriaceae
and pseudomonads, Campylobacter is naturally susceptible to
macrolide antibiotics.

E. coli
The E. coli O157:H7 strains initially associated with human

illness were susceptible to most antimicrobials used against
Gram-negative pathogens, but during the past two decades the
antimicrobial resistance profile of E. coli O157:H7 has increased.
Early studies showed that approximately 3% (5 of 174) of E. coli
O157:H7 strains were resistant to antibiotics (Ratnam and others
1988). Similarly, only 2 of 200 E. coli O157:H7 strains collected
by CDC between 1983 and 1985 were resistant to antibiotics
(Bopp and others 1987). Screening of 125 E. coli O157: H7 (n =
118) and E. coli O157: NM (n = 7) isolates, the majority of which

were collected during the early 1990s, revealed that 24% were
resistant to at least 1 antimicrobial and 19% were resistant to 3 or
more. The significance of the resistance is debatable, however,
because antibiotic treatment of illness caused by E. coli O157:H7
is generally contraindicated.

The antimicrobial resistant profiles reported for E. coli
O157:H7 appear fairly consistent between studies. Among E. coli
O157:H7 isolates of bovine and human origin (n = 663 and
n = 238, respectively) collected between 1997 and 2000, 7%
of bovine and 12% of human isolates were resistant to one or
more antimicrobials (Wilkerson and others 2004). As in previous
studies, tetracycline resistance was the most common, followed
by streptomycin resistance. Resistance profiles of enterohemor-
rhagic E. coli (EHEC) in the United States are similar to those
reported in other countries. A recent report indicated that EHEC
were susceptible to quinolones and gentamicin, but some iso-
lates were resistant to tetracycline and cephalothin (Klein and
Bulte 2003). Compared with other foodborne pathogens or other
E. coli isolates, the level of antimicrobial resistance of E. coli
O157:H7 is generally low and limited to tetracycline, strepto-
mycin, and sulfamethoxazole.

Shigella
Shigella accounts for only a small fraction of the total cases

of foodborne illnesses occurring in the United States (Mead and
others 1999; Shiferaw and others 2004). The pathogen is gener-
ally transmitted person-to-person by the fecal-oral route, but can
also be spread indirectly by fecal contamination of food or water.
Many reported outbreaks of shigellosis are linked to contamina-
tion of product by food handlers and are often attributed to poor
food handler hygiene (Lew and others 1991; Rooney and others
2004). Contamination of crops with Shigella may occur through
application of contaminated human waste to fields or contami-
nated irrigation water. Equally probable, crops could be contam-
inated during harvest by farm workers shedding the pathogen.
Isolates are often resistant to multiple antimicrobials. Because
Shigella requires a human host; resistance in the microorganism
is due to human rather than agricultural antibiotic use. Shigel-
losis is more common in developing countries, and, therefore of
greater concern than in developed countries. With a global mar-
ketplace, however, food production and handling practices in
one country can precipitate foodborne illness in other countries.

The outbreak strain of a large shigellosis outbreak in 1987,
likely resulting from transmission via food and water and person-
to-person spread, was resistant to ampicillin, tetracycline, and
trimethoprim-sulfamethoxazole (TMP-SMZ [Wharton and others
1990]). Epidemiologic evidence suggests that an outbreak that
occurred in Norway in 1994 was associated with contaminated
iceberg lettuce imported from Spain (Kapperud and others 1995),
although presence of Shigella in the food was not documented
retrospectively. Of 11 isolates of S. sonnei from patient stool sam-
ples, 10 were susceptible to the 13 antimicrobials tested and 1
was resistant to ampicillin.

S. sonnei isolates from a nationwide outbreak in 2000 involving
406 people and traced to commercially prepared 5-layer dip con-
sisting of beans, salsa, guacamole, nacho cheese, and sour cream
were resistant to ampicillin and TMP-SMZ. In the United States,
TMP-SMZ resistance is worrisome because this is the treatment
combination of choice for shigellosis. Fortunately, the isolate was
susceptible to fluoroquinolones.

The potential for the spread of antimicrobial resistant Shigella
from other countries to the United States should not be ignored.
Tauxe and others (1990) evaluated Shigella isolates for resistance
to 12 antimicrobial agents, and reported that 32% of isolates were
resistant to ampicillin and 7% were resistant to TMP-SMZ. Among
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isolates associated with foreign travelers, 20% were TMP-SMZ-
resistant while only 4% of isolates from those without foreign
travel history were TMP-SMZ-resistant. The percentage of Shigella
resistant to ampicillin and TMP-SMZ is increasing in the United
States and is now approaching that seen in developing countries
where antimicrobial usage is often unrestricted (Bhattacharya and
others 2003). A recent study from south Asia indicates that all
Shigella isolates evaluated were resistant to ampicillin, tetracy-
cline, nalidixic acid, and ciprofloxacin (Bhattacharya and others
2003). Perhaps most alarming is that small outbreaks of shigel-
losis due to ciprofloxacin-resistant strains have been reported,
underscoring the potential role that food handlers and agricul-
tural workers in foreign countries may have on occurrence of
MDR-Shigella in the United States. Of note, however, changes
in agricultural antibiotic use will have no effect on resistance in
Shigella.

L. monocytogenes
Few studies have examined the prevalence of antibiotic re-

sistance in L. monocytogenes, a microorganism generally associ-
ated with RTE meats, smoked seafood, and dairy products derived
from raw milk. Because L. monocytogenes is widespread in the
environment, most cases of food contamination result from post-
processing contamination. In a survey of 84 clinical isolates of L.
monocytogenes collected in 3 time periods between 1955 and
1997, rates of resistance to penicillin, ampicillin, erythromycin,
tetracycline, and chloramphenicol did not increase (Safdar and
Armstrong 2003). Resistance to ampicillin and gentamicin, used
in the treatment of listeriosis, was observed in 9.2% and 2% of
isolates, respectively. Walsh and others (2001b) examined Listeria
spp. isolates from Irish retail food and found resistance to tetracy-
cline the most frequent (6.7%); among L. monocytogenes, preva-
lence of resistance to one or more antibiotics was 0.6%, whereas
19.5% of L. innocua isolates exhibited some form of resistance.
These results suggest that the ability to acquire or develop re-
sistance is species specific. There are a few reports of studies
that examined the antimicrobial resistance of bacteria isolated
from produce. Prazak and others (2002) examined L. monocyto-
genes isolates from cabbage, environmental, and water sources
at various cabbage farms and packing sheds in Texas, and found
that 95% (20 of 21) were resistant to two or more antimicrobial
agents and 85% (17 of 20) were resistant to penicillin. Because
penicillin-resistant L. monocytogenes have not previously been
reported for human, food, or environmental samples, this study
points to an increase in the potential threat that this pathogen
poses to human health.

Commensals
Antibiotic resistance has been observed in the natural flora of a

number of food animal isolates and retail foods. Schlegelova and
others (2002) found that 36 of 49 nonpathogenic E. coli isolates
from 111 bulk milk samples were resistant to one or more antimi-
crobials. More than half of E. faecium isolates from 82 poultry
farms were resistant to ciprofloxacin (Hayes and others 2004);
69% of E. faecalis isolates were resistant to erythromycin and
71% of were resistant to penicillin. Pseudomonas fluorescens re-
sistant to as many as 6 antibiotics were isolated from raw carrots
(Hamilton-Miller and Shah 2001) and generic E. coli resistant to
at least 1 (19%) or 2 (12%) antimicrobial agents were isolated
from apple cider (Senkel and others 2003).

Data suggest that new antimicrobial-resistant phenotypes
have emerged among foodborne E. coli, with resistance to
frontline antimicrobials (including TMP-SMZ, third generation
cephalosporins, and fluoroquinolones) occurring among E. coli
isolates recovered from retail meats (Schroeder and others 2002,
2003). Wang and others (2005) detected antibiotic-resistant mi-

croorganisms, at levels ranging from 102 to 107 CFU, in the major-
ity of retail foods examined, including raw foods, such as meat
and shrimp, and RTE items, such as cheeses and salads. Wang
and others (2005) detected antibiotic resistance-encoding genes
in resistant isolates; Streptococcus thermophilus, an industrially
important LAB, was found to be a major host for Tet and Em
resistance genes in cheese microbiota. The authors found an in-
dustrially important LAB, S. thermophilus, to be a dominant host
for both tetracycline and erythromycin resistance genes among
cheese microbiota; L. lactis and Leuconostoc spp. isolates were
also found to carry antibiotic resistance genes.

Although the phenotypic expression of resistance, as indicated
via MIC values, among commensals has little meaning because
the microbes are not clinically relevant, the resistance genotype is
important because it enables these microbes to serve as reservoirs
of resistance determinants that may be transferred to pathogenic
bacteria. It is speculated that horizontal acquisition is responsible
for the occurrence in L. monocytogenes of a plasmid containing
multiple antibiotic resistance genes with high homology to one
that is common in enterococci–streptococci (Poyart-Salmeron
and others 1990).

Although limited information exists about the transfer of re-
sistant bacteria and genes between companion animals and hu-
mans, less is known about the potential for exchange with or
among commensal bacteria.

Genotype measurement has the advantage that it is not depen-
dent on the expression of the resistance genes for detection. But
currently there are no established standards for measuring resis-
tance on the basis of genotype. There are few data regarding the
expression of resistance genes in commensal bacteria and ability
to acquire resistance genes but not express them. Such “nonex-
pressing” bacteria would remain sensitive to the antibiotic while
carrying a potentially transmissible resistance gene.

Enterococci and Staphylococci
Much attention is given in the clinical profession to van-

comycin resistance in enterococci and methicillin resistance in
staphylococci. Since foods could potentially be a source of ente-
rococci (Franz and others 1999) and staphylococci, it is important
that these genera be considered in food safety discussions. The
food safety concern associated with S. aureus, however, is with
the microbe’s enterotoxin, not the microorganism itself. Thus, al-
though MRSA is a major concern for nosocomial infections, and
was implicated in an outbreak in coleslaw, the resistance pro-
file is not of particular concern with respect to food safety (Jones
and others 2002). Although it has been suggested that food an-
imals can contribute to transfer of vancomycin-resistant entero-
cocci (VRE) to humans (Bates and others 1994), a large survey
of U.S. meat-processing facilities revealed a demonstrated lack
of high level vancomycin resistance among enterococcal isolates
(Bodnaruk and others 2001). VRE in the United States is asso-
ciated with hospital-acquired rather than community-acquired
infections, as has been suggested to occur in Europe. This dif-
ference is attributed primarily to the use of avoparcin in animal
agriculture in Europe between 1975 and 1997; the antimicrobial
has never been approved for use in the United States.

Resistance in Other Areas of Investigation

Dairy cattle
The impact of antimicrobial use on resistance has been exam-

ined for specific types of animals and situations, such as use of
antibiotics on dairy farms to prevent and treat mastitis. Makovec
and Ruegg (2003), for example, investigated resistance patterns
of major mastitis-causing pathogens isolated from dairy cow milk
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samples between Jan 1994 and Jun 2001. They found that per-
centages of resistance among some pathogens increased while
percentages of resistance among others decreased during the
course of the study. More specifically, the percentages of Gram-
positive pathogens resistant to various β-lactam antimicrobials
did not increase and some decreased. The percentage of S. au-
reus isolates resistant to penicillin decreased from 49% to 30%,
and the percentage of Streptococcus isolates resistant to penicillin
decreased from 6% to 1%. And, for several pathogens, percent-
ages of isolates resistant to sulfisoxazole and to trimethoprim-
sulfamethoxazole decreased. None of the pathogens exhibited
a significant increase in the percentage of isolates resistant to
novobiocin–penicillin. On the other hand, percentages of S. au-
reus, E. coli, Enterobacter, Enterococcus, and Pasteurella isolates
resistant to erythromycin increased, percentages of Staphylococ-
cus and S. aureus isolates resistant to lincomycin increased, and
percentages of coagulase-negative Staphylococcus isolates resis-
tant to pirlimycin increased. Similar studies conducted between
1994 and 2000 found no indication overall among mastitis iso-
lates of increased resistance to antibiotics commonly used in dairy
cattle (Erskine and others 2002). Moreover, a subcommittee of
the National Mastitis Council Research Committee, which exam-
ined trends in resistance to drugs used to treat bovine mastitis,
concluded that scientific evidence does not indicate widespread
emergence of resistance among mastitis pathogens (Erskine and
others 2004). Although resistance to antibiotic drugs among mas-
titis pathogens has been well documented for nearly four decades,
there is no evidence to suggest that this is either an emerging or
progressing phenomenon.

Aquaculture
Antibiotic resistance in bacteria from Mississippi catfish was

first reported by Johnson (1991). Upon evaluating E. ictaluri
isolates from diseased fish, he determined that 1.1% of iso-
lates were resistant to oxytetracycline, 4.2% to sulfadimethox-
ine/ormetoprim 5:1, and 5.8% to both antibiotics. In addition,
36% of Aeromonas spp. isolates were resistant to oxytetracycline
and 7.7% were resistant to sulfadimethoxine/ormetoprim 5:1. In
a subsequent study by Hawke and Thune (1992), none of 86
strains of Flavobacterium columnare was resistant to oxytetra-
cycline, but 3.5% was resistant to sulfadimethoxine/ormetoprim
5:1.

Drug resistance in strains of E. ictaluri in catfish in the 1980s
and early 1990s resulted from the acquisition of an R-plasmid
(Cooper and others 1993). The R-plasmid possessed a high degree
of homology to an R-plasmid from a tribrissen-resistant strain of
E. coli (strain 1898). This E. coli carried genes for resistance to
tetracycline, streptomycin, trimethoprim, and sulfamethoxazole,
and was isolated from a case of equine cystitis. The mechanism
of drug resistance in strains of Aeromonas and Flavobacterium
has not yet been determined.

A steady downward trend in antibiotic resistance prevalence
has been seen among E. ictaluri isolated from Mississippi catfish
farms between 1997 and 2003 (NWAC 2004). Resistance to both
sulfadimethoxine/ormetoprim 5:1 and oxytetracycline declined
from the relatively high level of 5.8% reported by Johnson (1991)
to 1.1% by 1999 and 0% by 2002. This decline is believed to
be a direct result of changes in farm management strategies and
decreased antibiotic use.

Camus (2001) reviewed the literature on antibiotic suscep-
tibility of Streptococcus iniae strains isolated from tilapia for
which no antimicrobials are approved, and concluded that most
isolates from the United States were uniformly susceptible to
florfenicol, gentamicin, kanamycin, furazolidone/nitrofurantoin,
oxytetracycline, and sarafloxacin, and had intermediate suscepti-
bility to amoxicillin, ampicillin, enrofloxacin, and erythromycin.

The isolates were considered innately resistant, however, to sul-
fadimethoxine/ometoprim 5:1. The rapid acquisition of drug
resistance among strains of Photobacterium damselae subsp.
piscicida was shown to be mediated by an R-plasmid (Hawke
and others 2003), which confers resistance to both Romet and
Terramycin.

In Japan, a variety of antibiotics has been used during the past
20 years to treat bacterial disease in mariculture. This has led
to antibiotic resistance, attributed to R-plasmids, in P. damse-
lae susp. piscicida (Aoki and Kitao 1985). Takashima and others
(1985) reported R-plasmid-mediated resistance to chlorampheni-
col, tetracycline, ampicillin, kanamycin, and sulfamonomethox-
ine in Japanese aquaculture in the early 1980s. More prudent use
of antibiotics has reduced this trend in recent years (Aoki 2005).

Plants and produce
Streptomycin resistance is very common among bacteria in or-

chards sprayed with this antibiotic (McManus and others 2002).
Oxytetracycline resistance among target pathogens has not been
detected. A study of leaves and blossoms from two apple orchards
showed that 0% and 47% of bacteria (mostly Gram-negative)
were resistant to tetracycline (Schnabel and Jones 1999). Of note,
oxytetracycline had been used in only one orchard, and higher
rates of resistance were seen from those isolates. Streptomycin
resistance was seen in 26% of bacteria isolated from blossoms
and 84% of bacteria isolated from leaves (Schnabel and Jones
1999). Most bacteria resistant to tetracycline were also resistant
to streptomycin. There are no studies determining whether hu-
man and animal health in these areas is compromised as a result
of such use. The limited applications (averaging two to four times
a season) and exposure, and required precautions for applica-
tion as well as re-entering sprayed areas may have contributed to
lack of resistance or its recognition in humans. In addition, ge-
netic mechanisms of streptomycin resistance in plants currently
appear to be distinct from those reported in pathogens isolated
from humans (McManus and others 2002).

Currently, very little data exist to indicate the prevalence of an-
tibiotic or antimycotic-resistant bacteria or fungi associated with
raw fruits and vegetables, and available data are not consistent.
In reports of fruit and vegetable contamination throughout the
various stages of the food system, antimicrobial-resistant bac-
teria or fungi are not often addressed (Buck and others 2003;
FDA 1998). Johnston and Jaykus (2004) reported finding that
fresh produce harbors strains of enterococci that are resistant to
many commonly used antibiotics, and that prevalence (or de-
gree) of antibiotic resistance was lower than that found in retail
meats.

Because the monitoring and surveillance of foodborne human
pathogens generally neglect the cross-over pathogens that can
cause disease in plants and humans (Tan 2002; Taylor and oth-
ers 2001), prevalence of the cross-over microbes is not known.
Thus, without such data, appropriate dietary recommendations
for people, particularly subpopulations at greater risk of micro-
bial infection than the general population, cannot be made.

The most common fungal pathogens associated with plants
that are capable of infecting humans are Aspergillus fumigatus
and Fusarium spp. These pathogens are intrinsically resistant to
azoles, which are among the ten antimycotic drugs currently ap-
proved by the FDA for treating systemic human fungal infections
(Hof 2001). Nevertheless, there are conflicting views about the
severity and significance of fungal resistance to these agents (EC
2002). Although there are no common antimycotics used in agri-
culture and human medicine, the prevalence of azole fungicide
use is worrisome for the potential for negative impacts on human
health.
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Case Study: Organic Foods

Organic farming is one of the fastest growing segments of U.S. agriculture; during the past decade, the market for organic food
has increased 20 to 25% each year, five times faster than general food sales (Greene 2001). The key principles and practices of
organic food production aim to encourage and enhance biological cycles within the farming system to maintain and increase
long-term soil fertility, minimize all forms of pollution, avoid the use of synthetic fertilizers and pesticides, maintain genetic
diversity of the production system, consider the wider social and ecological impact of food production and processing, and
produce food of high quality in sufficient quantity. Additionally, organic livestock production has the goal of sustaining animals
in good health and realizing high animal welfare standards (Sundrum 2001).

The question of whether organically produced food poses any greater microbiological risk to consumers than conventionally
grown food has not yet been sufficiently addressed (Bourn and Prescott 2002). Organic production practices, such as the use of
animal manures and prohibition of some food additives and food processing techniques, may increase the risk of microbiological
contamination and foodborne illness. A limited number of studies of organic fresh vegetables indicated no significant difference
in the microbiological safety of organic and conventional vegetables (Johannessen and others 2004; Mukherjee and others 2004),
and that the use of manure did not affect the bacteriological quality of these products (Johannessen and others 2004). A study
in Minnesota, however, found that organic lettuce had greater prevalence (22%) of E. coli than conventional lettuce (Mukherjee
and others 2004), and 1 in Denmark found that Campylobacter contaminated all 22 organic broiler flocks but only a third of 79
conventional flocks (Heuer and others 2001). Mukherjee and others also reported that organic samples from farms using manure
or compost aged less than 12 months had a prevalence of E. coli 19 times greater than that of farms using older materials.

Organic meat production may involve potentially higher microbiological safety risks simply due to raising of animals in an
outdoor environment, use of slow-growing breeds (longer grow-out period), prohibition of antimicrobial use, and use of very
small slaughtering facilities (Engvall 2001; Thamsborg 2001).

Because antimicrobials are prohibited in organic livestock production, however, bacteria in organic meat and poultry products
are likely more susceptible to antimicrobials. Thus, dissemination of antimicrobial resistant bacteria may be curtailed, potentially
contributing to maintaining the effectiveness of antimicrobials used in human and veterinary medicine. There is a paucity of data
on antimicrobial resistant bacteria associated with organic food. The Denmark study reported by Heuer and others (2001) found
that most Campylobacter isolates (>90%) from the organic and conventional flocks, neither of which used antibiotics for growth
promotion, were susceptible to antimicrobials. Sato and others (2004a) compared the prevalence and antimicrobial susceptibility
of Campylobacter isolated from organic and conventional dairy herds in Wisconsin and reported no significant difference
between the production methods. Studies on Salmonella and Campylobacter in retail chicken carcasses obtained in the greater
Washington, D.C. area indicated that more carcasses of organically produced chickens were contaminated with Salmonella than
carcasses of conventionally produced chickens (61% compared with 44%, respectively), while Campylobacter contaminated
76% of the carcasses of organically produced chickens and 74% of the carcasses of conventionally produced chickens. The
majority (80%) of Salmonella Typhimurium isolated from 19 carcasses of organically produced chickens were susceptible to 17
antimicrobials tested, whereas all Salmonella Typhimurium isolates from carcasses of 12 conventional chickens were resistant
to at least five antimicrobials. A significant difference in ciprofloxacin resistance was also observed in Campylobacter recovered
from organic and conventional chickens. Less than 5% of Campylobacter isolates from organic chickens were resistant to
ciprofloxacin, whereas 20% of the conventional chicken counterparts were resistant to the drug. Staphylococcus isolated from
organic dairy herds (Tikofsky and others 2003) and bulk tank milk (Sato and others 2004b) was also shown to be more susceptible
to antimicrobials than their counterparts from conventional dairy herds. However, clear differences in multiple drug resistance
in poultry have been reported (Luangtongkum and others 2006). Of 694 isolates of Campylobacter from organic broilers and
turkeys, less than 2% had resistance to fluoroquinolones compared with 46 to 67% of conventionally raised broilers and turkeys.

These studies indicate that the prevalence and antimicrobial susceptibility of foodborne pathogens varies among different
animals and production systems. Bacteria from organic animal production are generally more susceptible to certain antibiotics;
however, the data from such a limited number of studies are inconclusive. Baseline data on the microbiological safety of organic
foods are needed, as sales of organic foods are expected to increase (Sloan 2002).

Food manufacturing environments
Food antimicrobial agents and sanitizer. In contrast to genet-

ically based resistance, bacterial adaptation to food sanitizers
and preservatives is a transient state, and is thus very difficult
to measure in vivo or in nonlaboratory settings. Among the
few studies examining these substances, acquired resistance has
been reported for benzoic acid or benzoates, sorbic acid or sor-
bates, and parabens. The studies examining potential acquired
resistance to traditional regulatory-approved food antimicrobial
agents are limited. Recent studies have examined potential re-
sistance or adaptation in laboratory-type, food-like environ-
ments as well as cross-protection of resistant survivors to other
stresses.

Sorbate and benzoate resistance. The primary application of
benzoic acid and benzoates is to inhibit growth of yeasts and
molds in acidic foods. Innate resistance of certain yeasts and

molds to benzoates is a major cause of spoilage. Warth (1985)
reported that a number of yeasts are capable of growing in
the presence of approximately 500g/mL benzoic acid, includ-
ing Schizosaccharomyces pombe and Zygosaccharomyces bailii.
Others, including Pichia membranefaciens and Byssochlamys
nivea, are also naturally resistant to benzoates (Chipley 1993).

Warth (1988) reported that when Candida krusei, Hansenula
anomala, Kluyveromyces fragilis, Kloeckera apiculata, Saccha-
romyces cerevisiae, Saccharomycodes ludwigii, S. pombe, and
Z. bailii were incubated with subinhibitory concentrations of ben-
zoic acid, they had MICs to benzoic acid 1.4- to 2.2-fold higher
than unexposed cells. Warth (1988) suggested that the resistance
mechanism of yeasts pre-exposed to weak-acid preservatives, in-
cluding benzoic and propionic acids, is related to membrane
permeability and the ability of the cells to continuously pump
preservatives out of the cell.
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Studies to determine the effect of pre-exposure to sorbic acid
on subsequent resistance have shown species-specific results.
Warth (1977) observed that Z. bailii grown in the presence of
sorbic acid displayed increased resistance upon subsequent ex-
posure to the compound, compared to unexposed cells. Bills and
others (1982) found that pre-exposure of Saccharomyces rouxii
to sorbic acid significantly increased resistance to the agent, as
seen in shorter lag times and/or shorter time to stationary phase,
compared with previously unexposed cells. One mechanism for
the resistance acquired by the yeasts is induction of an inducible,
energy-requiring system that increases sorbic acid efflux (Bills and
others 1982; Warth 1977). However, resistance of yeasts to sor-
bic acid and other weak acids probably involves more than one
system (Brul and Coote 1999). Schroeder and Bullerman (1985),
however, found little or no increase in the resistance of Penicil-
lium digitatum or P. italicum when exposed to increasing levels
of sorbic acid.

Moir and Eyles (1992) compared the effectiveness of methyl
paraben and potassium sorbate on the growth of four psy-
chrotrophic foodborne bacteria, A. hydrophila, L. monocyto-
genes, Pseudomonas putida, and Yersinia enterocolitica. Little
or no adaptation was found to occur when cells were exposed to
sub-inhibitory concentrations of antimicrobials.

Innate resistance to sorbic acid is demonstrated by catalase-
negative LAB, Sporolactobacillus, some Pseudomonas spp., and
other bacteria, Brettanomyces, Candida, Saccharomyces, Toru-
lopsis, Z. bailii, and other yeasts, and Aspergillus, Fusarium,
Geotrichum, Mucor, Penicillium, and other molds (Sofos and
Busta 1993; Warth 1988). As with benzoic acid, some microor-
ganisms can metabolize sorbic acid. Molds isolated from cheese,
including 7 Penicillium spp., exhibited growth in the presence
and degradation of 0.3 to 1.2% sorbate (Finol and others 1982).
Penicillium puberulum and P. cyclopium were the most resistant
species evaluated.

Parabens. The antimicrobial activity of parabens or alkyl es-
ters of p-hydroxybenzoic acid increases with increasing length
of the alkyl chain or increased hydrophobicity. Bargiota and oth-
ers (1987) examined the relationship between lipid composition
of S. aureus and resistance to parabens. Differences were found
for total lipids, phospholipids, and fatty acids between S. aureus
strains which were relatively resistant or sensitive to parabens.
It was suggested that these changes could influence membrane
fluidity and therefore affect adsorption of the parabens to the
membrane. Russell and Chopra (1996) reported that deep rough
mutants (heptose-less) of Salmonella Typhimurium and E. coli
having exposed phospholipid were more sensitive to parabens
than wild-type strains that had an intact lipopolysaccharide layer.
Juneja and Davidson (1993) altered the lipid composition of L.
monocytogenes through growth in the presence of added fatty
acids (C14:0, C18:0, or C18:1) and saw a correlation between
lipid composition of the cell membrane and susceptibility to an-
timicrobial compounds. Some microorganisms are capable of
enzymatically degrading parabens (Russell and Chopra 1996).
Valkova and others (2002) reported that strains of Enterobacter
cloacae and E. gergoviae produced an enzyme controlled by the
prbA gene that hydrolyzes the ester bond of parabens. They sug-
gested that there is potential for a transfer system for the prbA
gene among bacteria.

Lysozyme. Lysozyme is a naturally occurring enzyme that is
approved by many regulatory agencies throughout the world for
use in foods. Lysozyme is mostly active against Gram-positive
bacteria, acting on the peptidoglycan component of the cell wall
(Cagri and others 2004). Gram-negative bacteria are more resis-
tant because they have a lipid bilayer outer membrane that acts
as a barrier to prevent access of lysozyme to its target (Masschalck
and Michiels 2003). Tamaki and Matsuhashi (1973) observed that

E. coli mutants with an incomplete lipopolysaccharide (glucose
residue-negative) membrane were sensitive to lysozyme.

Some bacterial species maintain the genetic machinery nec-
essary for survival against lysozyme. E. coli is known to encode
a lysozyme-binding protein that effectively inactivates the en-
zymatic activity of the compound (Deckers and others 2004;
Monchois and others 2001). Many species are able to posttrans-
lationally modify the constituents of their peptidoglycan walls to
achieve resistance to enzymatic cleavage by lysozyme (Clarke
and Dupont 1992; Zipperle and others 1984). Acetylation of
the n-acetylmuramic acid at C6 (O-acetyl) and N-acetylation of
n-acetylglucosamine of the peptidoglycan are both widespread
among Gram-positive species and influence lysozyme resis-
tance (Clarke and Dupont 1992; Masschalck and Michiels 2003;
Weidenmaier and others 2003; Zipperle and others 1984). Some
organisms also contain sigma factors (σ ), such as σ E, that upreg-
ulate stress response mechanisms against various environmental
stresses, including lysozyme (Kallipolitis and others 2003). Strep-
tomyces coelicolor mutants containing a σ E deletion were shown
to be up to 50 times more sensitive to lysozyme than were wild-
type cells (Paget and others 1999a, 1999b).

Resistance to lysozyme may also be acquired. Bacillus subtilis
mutants lacking bacilysin-production ability were demonstrated
to be 200 to 300 times less resistant to lysozyme than wild-type
cells (Ozcengiz and Alaeddinoglu 1991). Furthermore, following
transduction of a bacilysin-encoding DNA fragment, mutants re-
tained or acquired resistance to lysozyme equivalent to wild type
cell resistance.

Plant-derived antimicrobials. Naturally occurring antimicrobial
compounds obtained from plants include phytophenols, essen-
tial oils and their chemical components (some of which are phy-
tophenolic) from spices and herbs, and sulfur-based compounds
from onions, garlic, and cruciferous vegetables (Davidson 2001).
As with previously discussed food-related antimicrobial agents,
most research on resistance to these compounds has involved
innate or intrinsic properties of target microorganisms.

B. cereus exposed to nonlethal concentrations of carvacrol, a
component of the essential oils of oregano and thyme, demon-
strated resistance to the normally bactericidal compound (Ultee
and others 2000). Resistant cells had decreased cell membrane
fluidity and changes in the phospholipid and fatty acid composi-
tion of the cell membrane.

Koga and others (1999) reported that certain strains of Vibrio
parahaemolyticus are more resistant to basil and sage essential
oils than their parent strain. In contrast, Ohno and others (2003)
passed Helicobacter pylori through 10 transfers of lemongrass es-
sential oil without any increase in resistance. Rickard and others
(2004) exposed E. coli SPC105 to aqueous and ethanolic extracts
of 9 different spices to determine growth inhibition and induc-
tion of the mar operon. Ethanolic extracts of all 9 spices inhibited
growth of the microorganism, and cinnamon, tarragon, dill, gar-
lic, cayenne pepper, and paprika induced the mar operon. The
essential oil of the Australian tea tree (Melaleuca alternifolia), or
tea tree oil (TTO), is inhibitory to a number of foodborne mi-
croorganisms. Gustafson and others (2001) found that mutants of
E. coli AG100 exhibiting the Mar efflux phenotype were slightly
more resistant to TTO than the parent strain. Longbottom and oth-
ers (2004) investigated mechanisms of TTO-resistance among P.
aeruginosa, finding that resistance is related to barrier properties
of the outer membrane as well as efflux capabilities.

Bacteriocins. Nisin is an antimicrobial peptide (bacteriocin)
produced by Lactococcus lactis spp. lactis that is inhibitory to-
ward many Gram-positive bacteria and approved around the
world for use in many foods (Cleveland and others 2001). Nisin-
resistant isolates are generated from vegetative cells of S. aureus,
Bacillus licheniformis, B. subtilis, B. cereus (Ming and Daeschel

Vol. 5, 2006—COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY 105



CRFSFS: Comprehensive Reviews in Food Science and Food Safety

1993), and C. botulinum (Mazzotta and Montville 1997) at sim-
ilar frequencies. Nisin resistance in L. monocytogenes occurs at
a frequency of 10−6 (Harris and others 1991; Ming and Daeschel
1993). Membranes from nisin-resistant L. monocytogenes iso-
lates have decreased fluidity, presumably limiting or reducing the
ability of nisin to penetrate the membrane (Ming and Daeschel
1993).

The major limitation of nisin use in food products may be the
development of nisin-resistant strains (Harris and others 1992),
which has been reported for other bacteriocins. For example,
when pediocin Ach (PA1) is used to inhibit L. monocytogenes,
the preservation system ultimately fails when pediocin-resistant
cells grow out (Motlagh and others 1992). If resistance to specific
bacteriocins were conferred by unique mechanisms the problem
could be easily overcome by the use of multiple bacteriocins
(Hanlin and others 1993). In addition, surface treatment of RTE
meat products with nisin solutions induced an initial reduction
of inoculated L. monocytogenes cells, but allowed multiplication
of survivors during subsequent storage. When the nisin treatment
was followed by exposure to acetic or lactic acid or potassium
benzoate solutions, however, bacteriostatic and bactericidal ef-
fects were observed during product storage (Geornaras and others
2005; Samelis and others 2005b).

Sanitizers and disinfectants. Although sanitizers, disinfectants,
and sterilants are not intentionally incorporated into finished food
products, resistance to them may confer cross-resistance to some
antibiotics. The long-term effects of extensive sanitizer use in food
processing environments on the characteristics of resident mi-
croflora has been the subject of much debate. Many investigators
in this area have applied techniques used in antibiotic resistance
studies, such as the use of MICs, to the study of these biocides.
But doing so may be a serious limitation because in most of these
studies the MIC level determined to be resistant is as much as
10- to 100-fold lower than the level of biocide used in actual
practice.

In contrast to antibiotics, which inhibit a specific biosynthetic
cellular target, most biocides employed in the food industry
attack multiple, concentration-dependent targets, causing ma-
jor cell wall and membrane damage in a relatively short time
(Russell 2003a). Thus, mutations resulting in antibiotic resistance
are much more likely to occur than mutations resulting in ac-
quired resistance to biocides. Some researchers (Aase and oth-
ers 2000; Lunden and others 2003; Medrala and others 2003)
have suggested that persistence of some bacteria in the food

Table 7 --- Examples of bacterial resistance mechanisms

Mechanism Action Antibiotics Organic acids Bacteriocins

Export Specific Tetracycline
Phenicols

F0F1ATPase pumps out
protons, anions

Not applicable, bacteriocins not in
cytoplasm

Non-specific Organic solvent tolerance Accumulate intracellularly
Destruction Specific or general β-lactamases and

cephalosporinases
Not applicable Protease, specific “bacteriocinase”

Modification Specific Acetylation, adenylation,
methylation, or
phosphorylation of
aminoglycosides

Not applicable Dehydroreductases can inactivate
lantibiotics such as nisin

Acetylation of phenicols
Altered receptors Specific Penicillin binding proteins No receptor required Probable, but not reported to date

Ribosome
DNA gyrase
RNA polymerase

Membrane composition General Altered membranes in
resistant E. coli and bacilli

May affect permeability Demonstrated for nisin resistance

processing environment can be associated with sanitizer resis-
tance, while others (Earnshaw and Lawrence 1998; Heir and
others 2004a; Holah and others 2002) have discounted such a
relationship.

Because common food plant sanitizers are more effective
against planktonic cells than cells in biofilms (Stopforth and oth-
ers 2002), the apparent resistance of biofilms to sanitizers is
a concern. Biofilms are exopolysaccharide matrix-encapsulated
bacterial cells which adhere to each other and to surfaces.
Biofilms are considered as microcolonies or clusters of cells en-
closed within a hydrated matrix, with pores or channels through-
out their structure. The exopolysaccharide matrices form an
extensive network, facilitating the initial attachment of cells, for-
mation and maintenance of the biofilm structure, increased re-
sistance of the biofilm to environmental stress and sanitizers,
and nutrient capture. Cells in biofilms may exhibit increased
resistance to antibiotics, which may stem from a number of
factors—presence of a glycocalyx matrix preventing antimicro-
bials from accessing bacterial cell surfaces (Cloete 2003); chem-
ical interaction between the disinfectant and the biofilm itself;
modulation of the microenvironment; production of degradative
enzymes (and neutralizing chemicals); or genetic exchange be-
tween cells in a biofilm (McDonnell and Russell 1999). Further,
Cloete (2003) reported that cells in biofilms have the potential
to genetically adapt to antimicrobial biocides, such as sanitizers,
through mechanisms such as the mar operon. The parallels be-
tween mechanisms of resistance to antibiotics and organic acids
and bacteriocins are shown in Table 7. Concern over potential
development of sanitizer resistance has led some food proces-
sors to practice sanitizer rotation. However, Lunden and others
(2003) found that adaptation among related and unrelated disin-
fectants was nonspecific; therefore, rotation may be of question-
able effectiveness.

QAC-based sanitizers and disinfectants have been used glob-
ally in food manufacturing facilities for decades. Resistance
among staphylococci to low levels of QACs has been reported
in isolates from clinical and food processing environments (Heir
and others 1999). Resistance to QACs in clinical strains of
staphylococci appears to be encoded by 1 of 3 separate MDR
determinants—qacA, qacB, and qacC (Heir and others 1995).
The qacA/B family confers broad resistance and is predominantly
located on the large (19–30 kb) plasmids, but has also been
found on the chromosome of clinical S. aureus isolates (Gillespie
and others 1989). Transfer of resistance from coagulase-negative
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staphylococci to enterotoxin producers is also a concern. Heir
and others (1995) demonstrated that resistance plasmid pST827
or related plasmids are widespread in staphylococci isolated from
the food processing environment. They reported that the qacA-
C resistance determinant genes occurred among strains isolated
from food contact surfaces in three separate meat and poultry pro-
cessing facilities and qacA/B genes were found in staphylococci
isolated from bakery products.

Acquired QAC resistance in S. aureus is directly related to the
efficiency of efflux pump systems. This same proton motive force-
driven multidrug efflux pump appears to be present in some L.
monocytogenes strains (Aase and others 2000). Sensitivities of 19
L. monocytogenes isolates, including 5 strains linked to a large
outbreak from consumption of deli meats and hot dogs, were
evaluated against several sanitizing compounds used in the meat
industry (Romanova and others 2002). Five strains exhibited re-
sistance to a commercial QAC, myristalkonium chloride, and BC,
while all others were either sensitive or intermediate in resistance.
Three of the 5 resistant strains also were resistant to hydrogen per-
oxide, but none of the strains was resistant to hypochlorite. All of
the QAC-resistant strains contained two plasmids, although the
presence of the large plasmid was not correlated with resistance.
However, these researchers discovered that the mdrL gene can
be both chromosomal and plasmid-borne.

Characterization of the resistance of Listeria isolates from food,
human, and environmental sources revealed that QAC resistance
was related to the presence of a plasmid that readily transfers
among Listeria spp. and between L. monocytogenes and S. aureus
(Lemaitre and others 1998). The Listeria spp. showing resistance
probably harbored a plasmid conferring high-level resistance to
multiple disinfectants, and the strains may have a qacA–qacB
complex similar to that in S. aureus. Resistance to BC was de-
fined as an MIC of 16 ppm. Interestingly, only 11.5% of 26 total
clinical L. monocytogenes isolates were resistant, while 19% of
42 total foodborne isolates, including all 6 found on poultry car-
casses, were resistant. The study confirmed high transfer rates
of antimicrobial resistance-coding plasmids among members of
the genera Listeria and Streptococcus or Enterococcus, as well
as between Listeria and S. aureus. Although QAC resistance in L.
monocytogenes food processing isolates is more common than in
clinical isolates, no correlation was found between resistance and
pulsed-field gel electrophoresis (PFGE) profile nor persistence in
the environment (Heir and others 2004a). Such findings could
suggest an adaptive mechanism to obtain resistance, or environ-
mental selective pressure.

While there are a number of other sanitizers and disinfectants
used industrially, resistance to them has rarely been character-
ized. Bacterial isolates from ice cream and poultry manufacturing
facilities were found to have varying levels of sensitivity to QAC,
tertiary alkylamine, potassium persulfate, and sodium hypochlo-
rite (Lunden and others 2003). The authors observed adaptation
to QAC and tertiary alkylamine after 2 h of sublethal exposure;
the highest MIC increase observed was 3-fold. Progressive in-
creases in disinfectant concentration during incubation resulted
in increased resistance against all substances except potassium
persulphate. They reported that cross-adaptation among disin-
fectants occurred regardless of differing mechanisms of action.
The authors concluded that persistent strains are generally more
resistant to sanitizers than transient strains and that rotation of
sanitizers may prove ineffective because of cross-adaptation. Of
note, however, in the investigation, biocides such as hypochlo-
rite and QAC were added to nutrient broth, which would tend
to neutralize the biocides. Heir and others (1995) and Sundheim
and others (1992) observed some QAC resistance in Norwegian
meat and poultry facility staphylococcal isolates, including one
S. aureus isolate. The level of resistance in pure culture, however,

was below recommended QAC use concentrations and may be
of minimal practical importance. The study also demonstrated in-
creased resistance to BC, a common component of commercial
QAC products, following subculturing in the presence of the dis-
infectant. The enhanced resistance appeared to be retained upon
further subculturing in the absence of BC, and enhanced the abil-
ity of some strains to survive sanitizer suspension tests at 150 and
200 ppm.

Compared to other sanitizers and disinfectants, bacterial re-
sistance to QACs is the most studied and is of greatest con-
cern. While resistance is documented, the levels of use of QACs
and other agents typically exceed the MICs of “resistant” organ-
isms, making resistance of minimal concern with respect to food
safety.

Antibacterial products for the home
In addition to use of sanitizers during food manufacturing, var-

ious cleaning products, some of which make a hygiene claim,
are used by consumers. Induction of the mar operon by various
household items, including herbs and spices, food and bever-
ages, and household cleaning products, was assessed by Rickard
and others (2004). Bath foam, hair gel, a general cleaner, fab-
ric softener, and 1 mM sodium salicylate strongly induced the
mar operon in E. coli SPC105. An antibacterial spray cleanser,
antibacterial dishwashing liquid, regular dishwashing liquid, and
triclosan (10 μg/mL) inhibited growth of E. coli SPC105, with-
out inducing the mar operon. It is not known whether normal
triclosan usage levels would induce this same effect.

Aiello and others (2005) examined whether household use
of antibacterial cleaning and hygiene products is an emerging
risk factor for carriage of antimicrobial drug-resistant bacteria on
hands of household members. They found that antibacterial prod-
uct use did not lead to a significant increase in antimicrobial drug
resistance after a year, and that it did not have an effect on bacte-
rial susceptibility to triclosan. But, they said, more extensive and
longer term use of triclosan might provide a suitable environment
for emergence of resistant species and that further research on
the issue is needed. McBain and others (2003) studied the effect
of continuous triclosan dosing at commercial handsoap product
levels in a simulated drain microcosm environment. The results
indicated no effect on the bacterial community susceptibility pro-
file to test biocides or antibiotics, including triclosan itself. The
authors concluded that the emergence of antibiotic resistance
through TCS use in the kitchen is highly improbable.

Lear and others (2002) studied potential development of re-
sistance to PCMX and TCS in an industrial setting. The indus-
trial environment chosen was the laboratory and factories of two
biocide manufacturing companies. Environmental sites chosen in
these settings were those with likely regular exposure to PCMX or
TCS. The authors concluded that the presence of residual biocide
concentrations in these industrial environments did not promote
the emergence of bacterial tolerance or resistance.

More specifically, addressing triclosan, Russell (2004) reported
that while triclosan resistance in laboratory experiments may be
associated with changes in antibiotic susceptibility, comprehen-
sive environmental surveys have not demonstrated any associ-
ation between triclosan usage and antibiotic resistance. Several
others (Gilbert and McBain 2003; IFH 2003) have concluded that
there is no equivocal evidence that biocide usage contributes to
the development of antibiotic resistance either in clinical practice
or in the general environment. Russell (2004) pointed out that tri-
closan has several important uses, and the future aim must be
to retain these applications while eliminating the more frivolous
and unnecessary ones. Levy (2001) urged prudent use of these
products.
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Risk Factors for Human Infection by Antimicrobial
Resistant Foodborne Pathogens

Evidence linking antimicrobial use in food animals to human
health risk points to but does not prove a human health threat
(Barza and Travers 2002). The controversy about the contribution
of antimicrobial use in food animals to resistance among antimi-
crobials that are clinically important in human medicine is fos-
tered and sustained by the inability to obtain direct, quantitative
information about the magnitude and nature of the contribution
(Lipsitch and others 2002). It would help solve the controversy if
data were available demonstrating that there are more frequent or
severe infections or increased morbidity or mortality, than would
exist otherwise as a result of food animal-to-human transfer of
antimicrobial resistance.

There are several ways in which antimicrobial resistance in
foodborne pathogens may create an added public health burden.
The biggest risk factor for human infection by antibiotic-resistant
foodborne pathogens is the very existence of such resistant organ-
isms. If one accepts their existence, the most frequently identified
risk factor for infection with antibiotic-resistant bacteria is prior
antibiotic exposure. Other risk factors for acquiring antibiotic-
resistant foodborne infections are essentially the same as those
for acquiring infections with antibiotic susceptible foodborne
pathogens.

IFT’s Expert Report on Emerging Microbiological Food Safety
Issues: Implications for Control in the 21st Century includes a
thorough discussion of factors that affect host susceptibility to in-
fectious diseases in general, and foodborne diseases in particular
(IFT 2002b). Long recognized risk factors for infectious diseases
in general include age (less than 5 or greater than 50 years of
age), pregnancy, immunosuppression (due to chemotherapy, HIV
infection, or other illness), and reduced liver or kidney function.
People with HIV infection, for example, have been shown to be at
higher risk for Salmonella (Celum and others 1987; Gruenewald
and others 1994) and Shigella (Baer and others 1999) infections,
and to be more likely to develop invasive disease. The relative risk
for acquiring antibiotic-resistant versus susceptible infections in
such higher risk populations remains unclear, but it is a reasonable
assumption that the risk of treatment failure in immunosuppressed
individuals with antibiotic-resistant microbial infections would
be elevated. Risk factors for infection with foodborne pathogens
include all of the factors described above, as well as decreased
gastric acidity (often due to antacid use) and other factors (such
as consumption of fatty foods or large volumes of liquid) that may
protect bacteria from stomach acid.

It is possible that resistance to antimicrobials used in food
animal production may result in the spread of antimicrobial
resistant pathogens among food animals, thus increasing the
potential for human exposure to these pathogens. Very few stud-
ies have evaluated risk factors for acquiring antibiotic-resistant
versus susceptible infections with the same microorganism.
Kassenborg and others (2004) found that people with domes-
tically acquired fluoroquinolone-resistant Campylobacter infec-
tions were 10 times more likely than healthy controls to have
eaten chicken or turkey cooked at a commercial establishment.
These findings are very similar to those of Friedman and oth-
ers (2004) for all (resistant or susceptible) Campylobacter in-
fections; thus, they do not seem to be unique risk factors for
resistant infections. Kassenborg and others (2004), however, de-
termined that travel outside the United States is a risk factor for
fluoroquinolone-resistant Campylobacter infections compared
with fluoroquinolone-susceptible infections. Interestingly, the au-
thors did not find that prior use of fluoroquinolones was a risk
factor. (Patients with fluoroquinolone-resistant infections were
not more likely than patients with susceptible infections to have

taken fluoroquinolones in the month before the stool specimen
was collected.)

Additionally, it is possible that people taking antimicrobials for
reasons other than a foodborne illness may be at increased risk
of acquiring an infection with a resistant organism. Many lines of
evidence suggest this is the case. The increased risk of infection
with antibiotic-resistant foodborne pathogens in people taking
antibiotics for other reasons has been recognized for more than
20 y. The basis for this increased risk is believed to be the dis-
turbance of the commensal microflora and epithelial surfaces of
the intestinal tract which normally confer a barrier or protective
layer against colonization and infection by exogenous organisms.
Antibiotic use causes a transient decrease in an individual’s resis-
tance to colonization by noncommensal bacteria and increases
the potential of infection upon exposure to foodborne pathogens
(Anderson and others 2003; Angulo and others 2000). During
administration of antibiotics and a period afterward, the individ-
ual may have enhanced vulnerability to infection by intestinal
pathogens. This can be due to a lowering of infectious dose. The
belief that increased risk of infection results from suppression of
normal flora is supported by two decades of streptomycin use in
animal models to reduce the normal gut flora and render animals
more susceptible to colonization with enteric pathogens (Myhal
and others 1982).

Glynn and others (2004) compared risk factors for MDR ver-
sus pansusceptible infections with Salmonella Typhimurium. In
this study, MDR was defined as resistance to at least ampicillin,
chloramphenicol, streptomycin, sulfamethoxazole, and tetracy-
cline (the ACSSuT phenotype). People with MDR-Salmonella
Typhimurium infections were nearly 20 times more likely than
people with susceptible infections to have received one of the
ACSSuT drugs in the 4 w prior to illness. Eating turkey prepared
in the home was only a modest risk factor in both univariate and
multivariate analysis.

In a case-control study of Salmonella Newport infections,
Varma and others (2004) reported that patients with MDR infec-
tions were more likely than patients with susceptible infections
to have taken in the 4 w before illness a drug to which MDR-
Salmonella Newport strains are resistant. These patients were also
more likely to have eaten Mexican style cheese, cilantro, and fish.
None of these associations was particularly strong, however. In-
ternational travel was not identified as a risk factor for infection
with MDR-Salmonella Newport.

The evidence strongly supports the suggestion that antibiotic
resistance increases human infections by increasing the risk of
infection in people who have had prior antibiotic exposure. The
“attributable fraction” reflects the proportion of all infections that
would not have occurred in the absence of recent or concurrent
treatment with an antimicrobial to which the bacterium was resis-
tant (Barza and Travers 2002; Cohen and Tauxe 1986). Also called
“excess cases,” this phrase describes the mechanism by which a
person develops an infection as a result of use for unrelated rea-
sons of an antimicrobial to which the inciting pathogen is resistant
(Barza and Travers 2002). Although the magnitude of this increase
cannot be known with certainty, Barza and Travers (2002) esti-
mated that an additional 29379 nontyphoidal Salmonella infec-
tions and 17688 C. jejuni infections occur each year in the United
States due to this increased risk.

It is worth noting, however, that trends in the prevalence of an-
timicrobial resistance in a particular microorganism do not nec-
essarily reflect trends in the incidence of antimicrobial resistant
infections. If the prevalence of resistance to a particular antibiotic
in a pathogen doubles, but the incidence of infection is reduced
by 50%, the incidence of antibiotic-resistant infections with that
pathogen has not changed. As illustrated in Table 8, the incidence
of many foodborne illnesses has declined in recent years, and in
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Table 8 --- Changes in foodborne illness incidence and corresponding changes in antimicrobial resistance

Relative decrease Relative decrease

Year(s) Microorganism Case ratea or increaseb % resistant Case ratea increaseb

1996–98 Salmonella 15.9 28% (2 or more antibiotics, 1996) 4.5
2004 Salmonella 14.5 8% decrease 18% (2 or more antibiotics, 2003) 2.6 42% decrease
1996–98 Salmonella Typhimurium 4.9 34% (ACSSuT, 1996) 1.7
2004 Salmonella Typhimurium 2.8 43% decrease 26% (ACSSuT, 2003) 0.7 59% decrease
1996–98 Salmonella Newport 1.2 8% (2 or more antibiotics, 1996) 0.1
2004 Salmonella Newport 1.5 25% increase 25% (2 or more antibiotics, 2003) 0.4 300% increase
1996–98 Campylobacter 18.7 13% (ciprofloxacin resistance, 1997) 2.4
2004 Campylobacter 12.7 32% decrease 18% (ciprofloxacin resistance, 2002) 2.3 4% decrease

aPer 100000.
bDecrease relative to the earlier measurement.

many cases, the incidence of resistant infections has declined as
well. Nevertheless, the fraction of cases which can be attributed
to prior or concurrent antibiotic use is the same.

Impact of Antimicrobial Use, Nonuse, and Resistance

Food manufacturing
Modifications of food product formulation and processing con-

ditions to meet consumer demands for convenient, healthy, or
“preservative-free” foods may concomitantly involve reduction
of food preservation hurdle intensities and subsequently lead
to sublethal stressing of microorganisms. As a result, surviving
pathogens may have increased resistance and virulence and, thus,
be more difficult to control; as a result antimicrobial hurdles may
fail (Archer 1996; Samelis and Sofos 2003a, 2003b; Sheridan and
McDowell 1998). During exposure to sublethal stresses, bacteria
try to maintain their cellular integrity and homeostatic balance
but the effort may lead to metabolic exhaustion and cell death,
cell injury, or stress adaptation. Sublethal cell injuries may be
repaired during product storage potentially leading to undesir-
able outcomes, while multiple cell injuries may lead to extended
microbial lag phases and potentially cell death.

Spraying meat animal carcasses with organic acid solutions
may lead to establishment of acid-resistant pathogens such as
E. coli O157:H7, which may subsequently survive, colonize
in the food manufacturing environment, and cross-contaminate
subsequent batches of food. Studies have demonstrated that
the potential may exist for survival and resistance develop-
ment among E. coli O157:H7 in simulated environmental niches
of meat plants where carcass decontamination interventions
are applied (Samelis and others 2001a, 2001b, 2002a, 2002b,
2003, 2004a, 2004b, 2005b). Acid-adapted cultures (developed
through growth in glucose-containing broth) inoculated on beef
carcass samples were found more resistant than control cultures
upon exposure to simulated spray-chilling with water or chemical
solutions (that is, lactic acid, cetylpyridinium chloride [Stopforth
and others 2004b]). Acid-stressed cultures of E. coli O157:H7
and L. monocytogenes were found capable of forming biofilms
of increased resistance to sanitizers on stainless steel coupons ex-
posed to meat decontamination runoff fluids (Stopforth and others
2002, 2003a, 2003b). The potential may also exist for changes
in the microbial ecology and spoilage patterns of meat products
treated with acidic solutions (Samelis and Sofos 2003a, 2003b).
However, it is difficult to conduct in vivo studies in actual food
environments in order to prove or disprove such hypotheses.

It may be hypothesized that stress-resistant pathogens may have
played a role in the involvement in foodborne illness of tradition-

ally low risk foods, such as fruit juices, fermented meats, fresh
produce, and dried products. Irrespective of such concerns, it is
notable that decontamination treatments are effective in reducing
microbial contamination of carcasses and in helping meat proces-
sors meet regulatory performance standards and industry speci-
fications. Potential strategies for minimizing the development of
stress resistance may involve continuous application of lethal lev-
els of preservatives; rotation of antimicrobial interventions; or op-
timization of the type, intensity, and sequence of interventions,
to maximize microbial destruction and minimize resistance de-
velopment (Samelis and Sofos 2003a).

Strategies for pathogen control based on multiple or single hur-
dles need to consider prevention of microbial adaptation and re-
sistance development or selection, and should be designed to
control potentially resistant and stress-adapted microorganisms.
In all uses, selection of hurdles, their intensities, and application
sequence should aim to maximize microbial control while avoid-
ing pathogen stress adaptation or selection of resistant cells. The
goal should be to apply hurdles of proper intensity in the appropri-
ate sequence in order to metabolically exhaust cells through en-
ergy depletion during their efforts to repair injuries and maintain
homeostasis. If such a strategy is properly developed and applied,
surviving cells exhausted from initial stresses may be left without
sufficient energy reserves to cope with subsequent stresses or the
final gastric stress (Samelis and Sofos 2003a, 2003b).

Human health
The implications for human health and food safety of genetic

exchange between animal, food, and medical microbial isolates
are beginning to be explored (Teuber and others 1999).

Perreten and others (1997) demonstrated that a starter culture
strain of L. lactis ssp. lactis was found to have collected genetic in-
formation from 4 other species of pathogenic and nonpathogenic
bacteria associated with food environments. It is likely, they said,
that E. faecalis, S. aureus, L. monocytogenes, and E. coli were
sources for the antimicrobial resistance genes associated with the
plasmid occurring in L. lactis ssp. lactis. The broad range of some
plasmids and the action of transposons in many bacteria allow
antibiotic resistance genes to transfer by conjugation between
different species and genera.

Studies of the development of antimicrobial resistance in an-
imals and transfer to humans have focused on use of antimi-
crobials for growth promotion. There are some limitations in
these studies that warrant consideration. Generally, there is a
lack of standardization among studies, significant differences ex-
ist in populations evaluated, differences exist in culture sample
types and methods used to collect and culture pathogens, and

Vol. 5, 2006—COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY 109



CRFSFS: Comprehensive Reviews in Food Science and Food Safety

variations exist in the methods and definitions for determining
resistance. Further, the majority of studies did not evaluate the ef-
fects of other risk factors that may influence the development
of bacterial resistance. Until definitive, standardized methods
are devised and applied to the study of antimicrobial resistance
among human, plant, and animal isolates, these limitations must
be taken into consideration when evaluating study results.

Once foodborne illness with an antibiotic-resistant pathogen
does occur, the impact on human health may be manifest in loss
of treatment options or treatment failure. Most Salmonella in-
fections do not require antimicrobial treatment. However, it has
been reported that 40 to 50% of patients with salmonellosis are
treated with antimicrobial agents (Cohen and Tauxe 1986; Glynn
and others 2004; Lee and others 1994). Antimicrobials are not
indicated for uncomplicated Salmonella gastroenteritis because
antimicrobial treatment does not reduce the duration or severity
of symptoms, may prolong recovery and the carrier state, and in-
creases the likelihood of the emergence of antimicrobial-resistant
organisms.

Although treatment is not usually required for recovery from
uncomplicated salmonellosis, it is strongly indicated in cases of
severe or invasive disease. What constitutes “severe” disease may
be subjective, but Salmonella infections result in an estimated
16430 hospitalizations and 582 deaths in the United States each
year (Mead and others 1999). While it is certainly rational to as-
sume that treatment failure may contribute to this morbidity and
mortality, the contribution may be difficult to measure. It is not
possible to predict the clinical course of individual patients, re-
gardless of whether they are treated with an appropriate antimi-
crobial agent. However, there are numerous reports indicating
that treatment with an agent to which the infecting strain shows
decreased susceptibility does contribute to poor outcome. Many
of these reports are cited by Crump and others (2003) who called
for reevaluation of fluoroquinolone breakpoints for Salmonella
Typhi and non-Typhi Salmonella. Examples of probable treatment
failure due to decreased fluoroquinolone susceptibility, resulting
in two patient deaths in Denmark, were reported by Molbak and
others (1999).

Ceftriaxone is the drug of choice for treating invasive en-
teric Salmonella infections in children; fluoroquinolones are
not approved for use in children. Cases of ceftriaxone-resistant
Salmonella have been reported from several countries (Bradford
and others 1998; Fey and others 2000; Gazouli and others 1998;
Hammami and others 1991; Pitout and others 1998). Most of the
estimated 1.4 million Salmonella infections that occur each year
in the United States are in children and the elderly (Mead and
others 1999).

Although C. jejuni infections are less likely than Salmonella
infections to result in invasive disease or death, there is some evi-
dence of adverse consequences in patients with fluoroquinolone-
resistant infections who are treated with fluoroquinolones. In
a study of fluoroquinolone-resistant C. jejuni infections in
Minnesota, Smith and others (1999) reported that patients
infected with antibiotic-resistant C. jejuni who were treated with
fluoroquinolones had a longer duration of diarrhea (an average of
10 in contrast to 7 d) than patients infected with fluoroquinolone-
sensitive isolates. Similarly, Marano and others (2000) reported
longer mean duration of diarrhea (8 in contrast to 6 d) in patients
infected with fluoroquinolone-resistant Campylobacter strains;
longer diarrhea duration occurred among patients who took a
fluoroquinolone for their illness as well as those who did not.

There are also data supporting an increase in virulence of in-
fections by fluoroquinolone-resistant C. jejuni among people not
treated with an antimicrobial drug or antidiarrheal agent. In a
multistate study of FoodNet sites, it was determined that diarrhea
lasted longer (mean duration of diarrhea of 12 in contrast to 6

d) when campylobacteriosis was caused by a fluoroquinolone-
resistant strain; the increased duration of illness in people with
resistant infections was not a result of treatment failure. In con-
trast, however, Unicomb and others (2006) observed that diarrhea
duration was similar for patients infected with fluoroquinolone-
resistant strains and patients infected with sensitive strains of C.
jejuni (median duration for both groups was 7 d). Unicomb and
others (2006) noted the possibility that the larger sample size of
the Nelson and others (2004) study raised the statistical power to
enable detection of a difference.

Another way in which antibiotic resistance may contribute to
the burden of illness associated with foodborne pathogens is the
potential for increased virulence of resistant strains. The relation-
ship between antibiotic resistance and the apparent virulence
of intestinal pathogens has been integrated in several studies,
some of which are discussed below. Data for both nontyphoidal
Salmonella and Campylobacter infections suggest that antimicro-
bial resistant strains of these bacteria are somewhat more virulent
than susceptible strains (Barza and Travers 2002). However, some
believe that increased virulence of antibiotic-resistant Salmonella
has not been well characterized (Helms and others 2002).

As early as 1987, data from CDC outbreak investigations of
community-acquired and nosocomial outbreaks of nontyphoidal
Salmonella in the United States between 1971 and 1980 showed
higher death rates in Salmonella outbreaks due to drug-resistant
strains than drug-susceptible strains (Holmberg and others 1987).
In a more recent CDC study in which nontyphoidal Salmonella
infection was confirmed by culture, individuals with infections
caused by MDR-microorganisms tended to be ill and were sig-
nificantly more likely to be hospitalized and experience longer
periods of hospitalization than those with antimicrobial suscepti-
ble infections (Lee and others 1994). Neither of these studies ac-
counted for possible differences in virulence among Salmonella
serotypes, and neither study controlled for patient age, both of
which are possible confounding factors. A more recent study re-
viewed FoodNet and NARMS data between 1996 and 2001, and
controlled for these and other factors. Resistance was again found
to correlate with increased illness severity; Salmonella isolates
resistant to at least 1 antibiotic agent were more frequently iso-
lated from blood than were susceptible strains (Varma and others
2005).

Martin and others (2004) investigated the burden of illness
associated with Salmonella Typhimurium infections in Canada,
finding an increased hospitalization rate associated with isolates
having the R-type AK/CSSuT than isolates susceptible to at least
1 of the agents. The authors estimated that 57% of hospitalized
cases infected with Salmonella Typhimurium isolates having the
AK/CSSuT phenotype and 72% of hospitalized cases infected with
non-DT 104 isolates having the phenotype were attributable to
the resistance pattern. Interestingly, in contrast to earlier reports,
Wall and others (1994) did not find increased hospitalization
rates associated specifically with DT 104 infections. It should
be noted that Martin and others (2004) considered any isolates
susceptible to kanamycin, chloramphenicol, or any agent in the
AK/CSSuT group to be susceptible isolates. Therefore, isolates in
which small genetic events that might have affected only 1 of
the resistance genes, such as a small insertion or deletion, were
placed in the same group as isolates that lost (or never possessed)
the entire resistance cluster, and possibly other vital genes as well.

In a large study in Denmark, Helms and others (2002) de-
termined the death rates associated with drug resistance in
Salmonella Typhimurium through a matched cohort study. The
authors linked data from the Danish Surveillance Registry for
Enteric Pathogens with data from the Danish Civil Registration
System, which includes data on all live-born children and citizens
of Denmark, and data from the Danish National Patient Registry,
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which contains data on all patients discharged from nonpsychi-
atric departments. They compared 2-y death rates for patients in-
fected with Salmonella Typhimurium with a matched sample of
the Danish population (adjusted for differences in comorbidity).
Patients infected with pansusceptible Salmonella Typhimurium
strains were 2.3 times more likely to die in 2 y after infection
than the general population. The death rate for patients infected
with Salmonella Typhimurium strains having the ACSSuT pheno-
type (mostly DT104) was 4.8 times that of the general popula-
tion. For patients with quinolone-resistant infections, the death
rate was 10.3 times higher than the general population. Since
the authors did not have access to treatment data, it is impossi-
ble to assess the relative role of treatment failure versus possible
increased virulence of resistant isolates in this study.

Antibiotic resistance in foodborne pathogens has clear human
health impacts. Evidence strongly suggests that people who take
antibiotics for other reasons are at increased risk of developing in-
fections with antibiotic-resistant bacteria. Other risk factors may
differ between outbreak-associated and sporadic illness, but the
major risk factors for infection with resistant pathogens have gen-
erally been found to be similar to those for susceptible strains of
the same organisms.

Other reports suggest that failure of therapy due to antibiotic
resistance may result in longer duration of illness, more severe
illness, or death, but it is difficult to evaluate the impact of treat-
ment failure in an individual patient. Many recent studies also
report an increased severity of illness associated with resistant
infections, though the reasons are not entirely clear.

Trade
At the request of the U.S. Congress, the U.S. General Account-

ing Office (now known as the Government Accountability Office)
produced a report that included information on how antibiotic
use has affected trade (GAO 2004). The report notes that the
United States and several of its key trading partners, such as
Canada and South Korea, and its competitors, such as the EU,
differ in their use of antibiotics in animals, such as the specific
antibiotics that are permissible for the purpose of growth pro-
motion. The United States, as well as Australia, Canada, Japan,
and South Korea, allow the use in animals of some antibiotics
from classes important in human medicine. However, Australia
has reviewed risk assessments on virginiamycin and is currently
reviewing tylosin to determine whether to continue to allow the
use of these antibiotics for growth promotion. Canada plans to
conduct similar risk assessments, and Japan is reviewing the use
of all antibiotics for growth promotion. In contrast, New Zealand
has completed risk assessments of antibiotics used for growth pro-
motion, and no longer allows the use of any antibiotics for growth
promotion that are related to antibiotics used in human medicine.
The EU Commission has prohibited its member countries from
using antibiotics in feed for growth promotion. However, the EU
will still allow the use of coccidiostat and histomonostat drugs,
which are feed additives that control parasites. No coccidiostat
and most histomonostat drugs are used in humans.

The GAO report stated that according to officials of USDA’s
Foreign Agricultural Service, the Office of the U.S. Trade Repre-
sentative, the U.S. Meat Export Federation, and the U.S. Poultry
and Egg Export Council, to date, antibiotic resistance associated
with use in animals has not been a significant factor affecting U.S.
trade in meat products. Only Ukraine was identified in the re-
port as having import requirements banning fresh or frozen poul-
try products from animals that were treated with antibiotics for
growth promotion. Ukraine is not a significant market for U.S.
poultry, however.

The presence of antibiotic residues in meat has had some im-
pact on trade. In particular, Russia has previously banned U.S.

poultry because of the presence of tetracycline residues. Japan
established tetracycline residue tolerance at such a low level that
extended withdrawal periods are required for swine destined for
export to Japan. The U.S. officials reported that other issues have
been more prevalent in trade discussions, including the use of hor-
mones in beef cattle and animal diseases such as bovine spongi-
form encephalopathy and avian influenza.

Although Federal government and industry officials stated that
antibiotic use in animals has not significantly affected U.S. trade
to date, GAO found some indication that this issue might become
a factor in the future (GAO 2004). Antibiotic use in animals could
become a trade issue if certain countries apply their regulations
on antibiotic use in animals to their imports. For example, use
of antibiotics in the United States could become a trade issue
with the EU because it stopped use of all antibiotics for growth
promotion. However, the EU is not currently a significant market
for U.S. meat because of trade restrictions, such as its hormone
ban that effectively disallows U.S. beef.

The issue of antibiotic use in animals and the potential hu-
man health risk associated with antibiotic-resistant bacteria has
also received international attention. Two joint Food and Agricul-
ture Organization (FAO)/World Organization for Animal Health
(OIE)/World Health Organization expert workshops were held in
200315 and 2004.16 The WHO has been working on the issue of
resistance as pertains to clinical and nonclinical use of antimicro-
bials and human health. The OIE has been addressing the issue
as it relates to animal health, and during its 73rd general session
adopted updated international standards on antimicrobial resis-
tance (OIE 2005). In the Codex Alimentarius Commission (CAC),
the FAO/WHO food standards setting organization, a code on
minimizing and containing antimicrobial resistance was adopted
in 2005 (CAC 2005) and it was agreed in principle to establish an
intergovernmental task force to address the issue. The Commis-
sion agreed that any Codex work on the issue shall be based on
sound science, follow risk analysis principles, have a clear focus
on public health, and ensure a holistic approach to solving the
issue.

Economic
There are essentially two main perspectives to the economic

assessment of antibiotic resistance in food production. On the one
hand, the costs for patients with antibiotic-resistant pathogens has
been examined to some extent, and on the other, the economics
of antibiotic use, or non-use, with no distinction on resistance
status, in food animal production has also been estimated.

For antibiotic use in animals, the general approach to eco-
nomic valuations has focused on the improved financial return
to the producer on the use of a particular growth-promoting feed
additive antibiotic that has claims for better feed efficiency or
higher average daily gain. The rationale is that feed costs will de-
crease, as will time to market weight, and that there will be some
benefit to overall animal health and welfare in the prevention of
subclinical disease in the flock or herd. The savings (or return
on investment) will be more than if the product were not used.
In this general approach, the antibiotic resistance status of the
bacteria in the animal is not factored in. The ultimate application
of the economic valuation is to inform risk managers about the
trade-offs that might be likely should the use of feed additives for
growth promotion be discontinued.

15 1st workshop on non-human antimicrobial usage and antimicrobial resistance,
Geneva, Dec. 1-5.
16 2nd workshop on non-human antimicrobial usage and antimicrobial risk man-
agement options, Oslo, Mar. 15-18.
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Several reviews provide some specific insight into the complex-
ity of developing economic models of use/non-use of feed addi-
tive antimicrobials in various food animal sectors. Early analyses
dating from the 1970s can no longer be considered valid, due to
significant changes in animal production technologies during the
past three decades. Data from the 1990s are more contemporary;
however, caution is necessary due to multiple changes during
the past few years in areas such as consumer behavior (for ex-
ample, food safety awareness campaigns, food animal infectious
disease threats such as BSE, “antibiotic-free” marketing, “Atkins
diet” fads), supply issues (for example, avian influenza effects),
trade issues (for example, BSE, Foot and Mouth Disease threats),
increased on-farm biosecurity, and food animal production in-
dustry consolidation.

The GAO (2004) identified and summarized recent studies that
provided estimates of the potential economic impacts on produc-
ers and/or consumers of restrictions on antibiotics used in live-
stock production. Five of the 8 studies focused exclusively on
swine production, but beef and poultry were also addressed in
the remaining studies. Five of the 8 studies concentrated on U.S.
production; 2 others included comparisons to Danish or Swedish
production, and 1 was limited to Danish data.

Specifically, the studies estimated the economic effects of a par-
tial and/or total ban of antibiotics used in food animals. The eco-
nomic impacts on consumers and producers that were identified
were generally comparable despite the use of a variety of eco-
nomic models, assumptions about model parameters, and data
sets. Overall, the studies concluded that a ban or partial ban
on antibiotics in food animal production would increase costs
to producers, decrease production, and increase retail prices to
consumers.

The GAO (2004) cited an example in which the studies in-
dicated that the elimination of antibiotic use in pork production
could increase costs to producers from $2.76 to $6.05 per animal,
which translated into increased consumer costs for pork from
$180 million/year to more than $700 million/year.

An estimated increased consumer per capita annual cost of
$4.84 to 9.72 (for all major meat types) was calculated on the
basis of a partial to total ban on growth promoting feed additive
antibiotic use in the United States (NRC 1999). Factors such as
switching to non-antibiotic alternatives, cost, and further indus-
try consolidation with fewer small family farms, were addressed.
The swine industry has been the most analyzed food produc-
tion sector. Beneficial effects of the use of growth promoting
antibiotics were analyzed on an economic basis for reproduc-
tive efficiency, litter survivability, and feed utilization (Cromwell
1999). On a more generalized basis, a 10-y prospective analy-
sis of a ban on feed additives for growth promotion for swine
estimated that in the first year net profits (that is, cost per head
finished) would decrease to $4.17, but would still amount to a
$0.79 loss in the tenth year of a ban (Hayes and others 2002).
Additionally Miller and others (2003) estimated that antibiotics
used for growth promotion provide a 9% improvement in net
profits.

In poultry, cost estimates are difficult to obtain; however, a
long-term, multisite analysis found that there were variable effects
over time in live weights, feed conversion, total condemnations,
percent livability, and bird weight uniformity (Engster and others
2002). One study in cattle assumed that a partial (human use
antibiotics only) versus a total ban on growth promoters would
result in an increased price per pound of beef of 0.5 to 3.3%
(Mathews 2002).

From these estimations it is clear that there is a negative eco-
nomic impact on the removal of feed additives from food animal
production; the largest financial impact is at the producer level.
It is not clear that the increased costs borne by the consumer

would be substantial. Antibiotic resistance and associated eco-
nomic costs have not been fully analyzed with respect to food-
borne diseases and the effects on food animal production.

Clearly, antibiotic resistance of pathogens emanating from use
in both humans and animals has economic consequences as
well as major human health consequences. In human medicine,
the economic assessments of resistance seem to be nearly non-
existent, apparently owing to the diversity and breadth of the
issues. One report cites “unpublished data from CDC” as esti-
mating that in the early 1990s costs of antimicrobial resistance
were $100 to 200 million, with related medical costs exceeding
$4 billion (Cassell 1997). Also, in the mid-1990s, it was estimated
that human antibiotic sales were more than $7 billion, with $4 bil-
lion directed toward nosocomial infections of antibiotic-resistant
bacteria (John and Fishman 1997).

Miller and others (2006) noted that antimicrobial usage data
may become economically important for reasons unrelated to
animal productivity and animal health. The authors pointed out
that with expanding global trade of animals and animal products,
changes have occurred in restrictions and regulations associated
with product movement, and future trade opportunities may be
linked to antimicrobial usage.

Current economic studies on the use of antibiotics for con-
trol of bacterial diseases and fungicides (antimycotic agents) for
fungal diseases in plants are lacking. Fewer or no antibiotics
are expected to be available with the increased requirements
on manufacturers of the Food Quality Protection Act (FQPA) of
1996, including a new safety standard of reasonable certainty of
no harm that must be applied to all pesticides used on foods.
EPA regulates the use of antibiotics and fungicides for plants in
the United States. Analysis of profits versus the costs of reregis-
tration of some antimicrobials may also deter companies from
production.

Environmental
Phillips and others (2004) indicated that environmental consid-

erations of antimicrobial uses in livestock are less striking than the
economic considerations, noting that the increased demand for
cropland as a result of decreased food efficiency without antibi-
otics could be met in the United States by an additional 2 million
acres (USDA/NASS 2002). They added, however, that it can be
argued that because of reduced feed efficiency, a ban on cer-
tain types of antibiotic uses in animal agriculture would increase
animal waste per unit of animal product.

Very little is known about the exposure routes of antimicro-
bials into the environment (Halling-Sorensen and others 1998) or
the fate and effects of antimicrobials on ecosystems (Baguer and
others 2000; Gavalchin and Katz 1994; Halling-Sorensen and
others 1998; Jorgensen 1984; Kummerer 2001a, 2003). The de-
termination of risk from antimicrobials in the environment may be
dependent on the respective biodegradability and adsorption in
relation to the concentration, stability, and persistence of a drug
in ecosystems as well as temperature and other environmental
factors.

Most antimicrobials are water-soluble (tetracyclines,
sulphonamides) and are excreted in urine as parent compounds
(tetracycline and β-lactams) or metabolites (sulphonamides or
macrolides) (Halling-Sorensen and others 1998). It has been
estimated that 30% to 90% of a dose of an antimicrobial adminis-
tered to humans and animals is excreted in urine as an active
substance (Rang and Dale 1991). The same drug may be used
in varied species and applications, resulting in different dosages
and treatment durations, and wide-ranging environmental con-
centrations (Halling-Sorensen and others 2000). Concentrations
of antimicrobials are normally found in the environment at
significantly lower levels of magnitude than used therapeutically
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Table 9 --- Environmental fate of biocides

Active biocide Breakdown products Environmental impact

Chlorine dioxide Chloride and chlorate ions, or chlorite and chlorate Minimal
Peracetic acid Acetic acid, water, oxygen Minimal to none
Peroxyoctonoic Octanoic acid, water, oxygen Minimal to none
Iodophor Surfactant and iodine salt Depends on surfactant
Acidified sodium chlorite 95% Cl None to high dilution
Quaternary ammonium compounds Mineralizations --- readily to ultimately biodegradable May affect waste treatment

plants at high concentration

(Kolpin and others 2002; Kummerer 2003, 2004; Zuccato and
others 2000). There are some differences among sanitizers with
regard to their major breakdown products; these products and
their qualitative effect on the environment are shown in Table 9.

Factors that determine antimicrobial movement and distri-
bution include the chemical properties of the drugs and drug
metabolites; extent of biological degradation in feces, sludge, soil,
or water; propensity to separate in soil or water; and environmen-
tal characteristics such as temperature and soil type (Ingerslev and
Halling-Sorensen 2001). Adsorption rates also differ among an-
timicrobials. The fate of antimicrobials released into the environ-
ment includes biodegradable mineralization to carbon dioxide
and water, incomplete degradation and retention on sludge due
to lipophilic properties, and metabolization to a more hydrophilic
form of the parent lipophilic substance (Halling-Sorensen and
others 1998, 2002, 2003).

Some antimicrobials present in soil and sediment can lose their
antimicrobial properties as a result of binding to sediment parti-
cles or complex formation with ions (Kummerer 2004). However,
there are contradictory results concerning lack of reduced antimi-
crobial activity and bioavailability due to adsorption or complex
formation (Hansen and others 1992; Nygaard and others 1992).
Mobility in the soil of a drug or metabolite through leaching deter-
mines whether the drug may impact the groundwater, terrestrial
organisms, or aquatic organisms. Researchers have reported that
antimicrobials may persist in sediment cores (Hektoen and others
1995; Jacobsen and Berglind 1998).

Fluoroquinolones strongly adsorb onto sewage sludge, soil,
and sediments (Kummerer 2001b). In one study, over 99% of
sarafloxacin, a fluoroquinolone that was formerly but is no longer
approved in the United States to treat poultry diseases, persisted
in soils for more than 80 days, theoretically due to its high ability
to bind to soil (Marengo and others 1997). In a study of marine
sediments, sarafloxacin was found in deeper layers of the sedi-
ment after 180 d at its initial concentration, with an estimated
half-life in excess of 300 d. Eventual removal of the drug from the
sediment was most likely the result of leaching and redistribution
instead of degradation (Hektoen and others 1995).

Adsorption of oxytetracycline to solids was found to be neg-
ligible, in contrast to that for tylosin, the majority of which ap-
peared to adsorb to the soil. Although the adsorption appeared
to be reversible, there was the possibility that tylosin adsorp-
tion affected biodegradability (Ingerslev and Halling-Sorensen
2001). One study determined that metronidazole is moderately
persistent in soil (Ingerslev and Halling-Sorensen 2001), and an-
other demonstrated that 99.98% of the parent compound and
its metabolites would be distributed in the water compartment
(Macri and others 1988). Because metronidazole is both water
soluble and relatively nonbiodegradable, it may also accumulate
within ecosystems (Rang and Dale 1991).

Investigations of environmental effects of antimicrobials have
most often been performed as acute toxicity tests in systems at-
tempting to simulate biodegradation in natural ecosystems. As

the fate and effects of these drugs are influenced by properties of
respective aquatic or terrestrial ecosystems, test situations have
been found to differ from natural conditions. Yet on the basis
of present knowledge, the risks to human, animal, and environ-
mental health from the direct impact of antimicrobials on bacteria
in aquatic and terrestrial environments appears low. The Ameri-
can Academy of Microbiology concluded, however, that within
a variety of interconnected ecosystems, antimicrobial agents can
lead to drastic alterations in the biodiversity of affected ecosys-
tems, reduction of microorganisms susceptible to the agents, and
development of antimicrobial resistance (AAM 1999).

Several studies have used tylosin as a model to study the disper-
sion of antimicrobials via application of livestock manure onto
soil and the potential impact of food animal antimicrobials on
the environment. The studies have focused on tylosin, which is
specifically active on certain bacteria, and presumably only has
secondary effects on other groups of soil organisms (Muller and
others 2002). In a controlled study in Denmark, within 2 w after
tylosin was applied onto soil, the drug could not be detected,
and within 3 w all degradation products had disappeared (Muller
and others 2002). The drug did not reduce microbial diversity
or system function and was thereby considered a “transient dis-
turbance” from which the soil system function may eventually
return to its former state (Muller and others 2002). Results of two
other studies also demonstrated that tylosin did not have any sig-
nificant effect at environmentally relevant concentrations (Baguer
and others 2000; Muller and others 2002).

However, in a U.S. study, results suggested a link between the
number and type of tylosin-resistant bacteria at agricultural sites
using antimicrobials at sub-inhibitory levels compared to sites
on which tylosin was not used (Onan and laPara 2003). The re-
searchers noted, however, that limitations on their experimental
design precluded them from excluding variables such as soil type
and climate as significant factors in accounting for antimicrobial
resistant bacteria.

Information from studies of aquatic environments shows that
antimicrobials may be toxic for organisms other than the intended
target bacteria (Baguer and others 2000). Cyanobacteria are the
most sensitive algal species to be affected by antimicrobials in wa-
ter systems (Halling-Sorensen 2000). Metronidazole was found
to be relatively toxic to green algae, but did not have any di-
rect acute effect on marine cocopeds and fish, which suggests
the possibility of an indirect effect on algae (Lansky and Halling-
Sorenson 1997). Furazolidine, used in fish farming outside the
United States, is toxic to the mosquito larvae Culex pipiens (Macri
and others 1998). However, the significance of the risks from con-
tamination to the different aquatic and/or terrestrial organisms and
ecosystems remains unknown.

Since the inception of the use of antibiotics for certain bacte-
rial diseases in plants in the 1950s, no human health effects on
applicators or harvesters with respect to infectious microbes have
been documented (Vidaver 2002). Antibiotics that are not legally
permitted for use in plant agriculture can contaminate plants and
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have toxic or other growth and developmental effects. In stud-
ies of crop plants, sulfadimethoxine and enrofloxacin at high-
est concentrations depressed postgerminative development in all
tested plants (Forni and others 2002), and flumequine depressed
postgerminative development in weeds (Migliore and others
2000). The studies demonstrated that when plants are grown in ar-
eas contaminated with these and other antimicrobials, the storage
of antimicrobials in plant tissues may result in the introduction
of antimicrobials into the food chain (Migliore and others 2003).
Fungicides for the control of plant diseases have been in use since
the late 1800s; new fungicides, though few, are still being discov-
ered and marketed because of the many and devastating fungal
diseases of food and other plants (Agrios 2005). Plant viruses over-
come plant resistance through a variety of mechanisms which are
counteracted through cultural practices, resistant varieties, or in-
secticides targeting insect vectors.

The expression of virulence factors and the transfer of antimi-
crobial resistant bacteria and resistance genes are favored partic-
ularly by the presence of antimicrobials for a long period of time
and at subinhibitory concentrations (Ohlsen and others 1998;
Salyers and others 1995). Studies indicate that the conditions for
transfer of resistance and the selection of resistant bacteria are
not favorable at antimicrobial concentrations found in the envi-
ronment (Summers 2002).

Overall, there is a demonstrable lack of knowledge and agree-
ment about the frequency and extent of occurrence, fate, and
effects associated with the antimicrobials entering the environ-
ment. As a result, it is difficult to assess the environmental impact
of the use of antimicrobials without comprehensive knowledge
of the use and fate of the drugs. The lack of data on the impact of
the release of antimicrobials in the environment hinders appro-
priate risk assessment and management of the impact on human,
animal, and environmental health of the use of antimicrobials in
humans, animals, and on plants and resultant residues and resis-
tance.

Management of Antimicrobials to Control Resistance

Responsible use
Guidelines exist for responsible (proper, appropriate, prudent,

or judicious) use of antibiotics in veterinary and human medicine,
and are similar in the medical and agricultural sectors (Phillips
and others 2004). The guidelines are predicated on the assump-
tion that use will sooner or later result in the development or
expression of antibiotic resistance. The corollary that frames the
prevention and control guidelines and activities is that voluntary
or regulatory limitations on the overuse of antibiotics will lessen
the development of antibiotic resistance and prevent further in-
crease in resistance where already present.

Responsible use is not necessarily reduced use, however.
In 2001, a U.S. Federal Interagency Task Force on Antimi-
crobial Resistance (USDHHS, AHRQ, HCFA, HRSA, USDA,
USDOD, USDVA, EPA 2001) issued an action plan for four
areas—surveillance, prevention and control, research, and prod-
uct development. Defining appropriate antimicrobial drug use
as that which “maximizes therapeutic impact while minimizing
toxicity and the development of resistance,” the Task Force noted
that appropriate antimicrobial drug use should not be interpreted
simply as reduced use, because the drugs offer valuable bene-
fits when used appropriately. Further, in practice, this involves
prescribing antimicrobial therapy when and only when it is ben-
eficial to the patient, targeting therapy to the desired pathogens,
and using the appropriate drug, dose, and treatment duration. It
is overuse and misuse that must be decreased to reduce the se-
lective pressure favoring the spread of resistance, the Task Force
stated.

A substantial set of clinical guidelines, many of which are
available from the CDC (2004a), has been developed for human
medicine. These include recommendations for nosocomial infec-
tions (vancomycin-resistant enterococci, for example), malaria,
sexually transmitted diseases, tuberculosis, and upper respiratory
tract infections. Also, the Infectious Diseases Society of Amer-
ica cooperated with the Society for Healthcare Epidemiology of
America to develop Guidelines for the Prevention of Antimicro-
bial Resistance in Hospitals (Shlaes and others 1997). Guidelines
having a holistic approach for practitioners in several medical
sectors were issued by the Alliance for the Prudent Use of An-
tibiotics (APUA 2006). Veterinary and animal producer organiza-
tions in many countries have also developed and implemented
responsible use principles or guidelines. These address use in var-
ious species, including poultry, swine, dairy and beef cattle, and
sheep. A number of organizations having such documents are
listed in Table 10.

International organizations, such as the OIE, WHO, and the
CAC, also have developed or are developing principles or codes
of practice to contain antibiotic resistance. The WHO published
Global Principles for the Containment of Antimicrobial Resis-
tance in Animals Intended for Food (WHO 2000). The OIE issued
5 documents concerning antibiotic resistance, including Guide-
lines for the Responsible and Prudent Use of Antimicrobial Agents
in Veterinary Medicine. The other 4 documents deal with risk
analysis methodology, monitoring of use quantities, surveillance
programs, and laboratory methodologies (Acar and Rostel 2001).
Additionally, several Codex committees are addressing aspects
of antibiotic resistance, including the committee on Residues of
Veterinary Drugs in Foods (CCRVDF) and committee on Food
Hygiene.

Most of the recommendations of the various guidelines can be
summarized in three objectives: (1) emphasize actions to prevent
disease, thereby eliminating the need for therapeutic use of an-
tibiotics; (2) if a disease occurs in or threatens animals, consider
methods other than antibiotic use to mitigate or prevent the ef-
fects of the disease; and (3) if antibiotics are necessary to prevent,
control or treat a disease, first consider the use of antibiotics that
are less important to human or veterinary medicine.

The guidelines mentioned above have substantial differences.
Differences include target audience(s) (veterinary professional in
contrast to an animal producer, for example), type of antibi-
otic use (for example, targeting therapeutic in contrast to growth
promotion uses), and general (in contrast to specific nature of
guidelines). There are common tenets in the various documents,
however. Most have the dual aim of protecting human and animal
health. They recognize that any use of antibiotics, human or ani-
mal, has the potential to select for antibiotic resistance. But they
also recognize that all uses of antibiotics cannot be eliminated or
severely constrained. Therefore, the intent of the documents is to
promote appropriate use of antibiotics, maximizing efficacy and
minimizing resistance development.

Far fewer guidance documents exist for responsible use of food
antimicrobial agents, sanitizers, and other antimicrobials than for
antibiotics. Regulations on food antimicrobial agent uses and lim-
its are based on efficacy and human health impact of the agent
itself. The recommended use levels do not consider the issue of
resistance.

Responsible use guidelines recognize the unfortunate fact that
little is known about the different conditions of use under which
antibiotics may select for resistant bacteria. This leaves deci-
sion makers with the challenge of developing guidelines when
the underlying, specific causes of antibiotic resistance are in-
completely understood. But decision makers, including veteri-
narians and animal producers, cannot wait for the ultimate
answer.
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Table 10 --- Examples of responsible antibiotic use guidance documents

Source Website or reference

Alliance for the Prudent Use of Antibiotics http://www.tufts.edu/med/apua/
American Association of Avian Pathologists Guidelines to Judicious Therapeutic

Use of Antimicrobials in Poultry
http://www.avma.org/scienact/jtua/poultry/poultry00.asp

American Association of Bovine Practitioners Prudent Drug Usage Guidelines http://www.avma.org/scienact/jtua/cattle/cattle00.asp
American Association of Swine Veterinarians Basic Guidelines of Judicious

Therapeutic Use of Antimicrobials in Pork Production
http://www.avma.org/scienact/jtua/swine/swine99.asp

American Veterinary Medical Association Position Statement and Principles for
Judicious Therapeutic Antimicrobial Use by Veterinarians

http://www.avma.org/scienact/jtua/jtua98.asp

Australian Veterinary Association Code of Practice for the Use of Antimicrobial
Drugs in Veterinary Practice

AVA (1999)

British Veterinary Association General Guidelines on the Use of Antimicrobials BVA (1998)
British Veterinary Poultry Association Antimicrobials Guidelines http://www.bvpa.org.uk/medicine/amicguid.htm
Canadian Veterinary Medical Association Guidelines for the Prudent Use of

Antimicrobial Drugs in Swine
http://www.cvma-acmv.org/journals2.asp?sub=8

Federation of Veterinarians of Europe Antibiotic Resistance & Prudent Use of
Antibiotics in Veterinary Medicine

http://www.fve.org/papers/pdf/vetmed/antbioen.pdf

National Cattlemen’s Beef Association Producers Guide for Judicious Use of
Antimicrobials in Cattle, National Cattlemen’s Beef Association Beef Quality
Assurance National Guidelines

http://www.bqa.org

National Pork Board Basic Guidelines of Judicious Therapeutic Use of
Antimicrobials in Pork Production for Pork Producers

http://porkscience.org/documents/Other/psantibicprod.pdf

OIE Terrestrial Animal Health Code. Antimicrobial Resistance. Guidelines for the
Responsible and Prudent Use of Antimicrobial Agents in Veterinary Medicine

http://www.oie.int/eng/normes/mcode/en titre 3.9.htm

RUMA Alliance Guidelines --- Responsible Use of Antimicrobials in Poultry
Production

http://www.ruma.org.uk

RUMA Alliance Guidelines --- Responsible Use of Antimicrobials in Pig Production http://www.ruma.org.uk
RUMA Alliance Guidelines --- Responsible Use of Antimicrobials in Dairy and Beef

Cattle Production
http://www.ruma.org.uk

RUMA Alliance Guidelines --- Responsible Use of Antimicrobials in Sheep
Production

http://www.ruma.org.uk

World Veterinary Association/International Federation of Animal Producers/World
Federation of the Animal Health Industry Prudent Use of Antibiotics: Global
Basic Principles

http://www.worldvet.org/manuals/t-3-2.pru.doc

Alternative practices
Herd, flock, and other health management programs overseen

by veterinary or other professionals attempt to minimize infec-
tious disease outbreaks by using nonantibiotic interventions early
in the life of the animals. The rationale is to promote healthy
animals that do not become ill and are, thus, unlikely to be
treated with an antimicrobial agent. Several current approaches
are available. These nonantibiotic approaches have led to a need
to establish performance standards for regulatory and commer-
cial purposes (Rosen 2003). It should be noted that none of these
“alternative” approaches can be used for therapeutic purposes as
replacements for antibiotics.

Vaccines. Vaccines have been a key component of disease
prevention for many years because they have many favorable
attributes such as low cost, ease of administration, efficacy, mul-
tiple agent efficacy (viruses, bacteria, mycoplasma, and parasites,
for example), and safety (worker, animal, environmental, lack of
food residue). Adjuvants are sometimes included with vaccines
to enhance the immune response. Various delivery systems or
routes of administration (for example, muscle or in ovo injection,
aerosol, topical, or oral [mucosal]) are used to administer the
vaccine into the animal.

In the salmon and trout industries, vaccines against ERM and
vibriosis have proven to be highly efficacious, and vaccination
of young fish “fingerlings” is standard practice. Vaccines are also
commercially available for use in the catfish and tilapia industries.

The vaccines are usually applied to fingerlings by immersion,
but in some cases (that is, vaccines for vibriosis in salmon and
streptococcus in tilapia) injection is required (Klesius and others
2000). Probiotics and immunostimulants such as β-glucans are
being used on a limited basis in aquaculture.

Future research in veterinary vaccine adjuvants will focus on
particle delivery to antigen-presenting cells and immunostimula-
tory adjuvants to effect a higher and longer lasting state of im-
mune response (Lowenthal and others 2000; Singh and O’Hagan
2003). New oral delivery systems, such as plant-based vaccines,
are being developed that offer ease of administration, production,
and other benefits, although the regulatory acceptance of these
products remains to be clarified (Streatfield and Howard 2003).

Competitive exclusion. Direct-fed microbial products contain-
ing live microorganisms (known as probiotics) or products con-
taining enzymes as the active ingredient are currently marketed in
many countries (Anonymous 2006b). Probiotics, which contain
one or more types of microorganisms and are administered orally,
are currently approved for use in food animals in Europe and other
countries, but as for the use of antibiotics for growth promotion,
their mode of action is not fully understood. Probiotic bacteria
could affect normal gut microflora by competitive exclusion of
pathogenic bacteria, production of antibacterial products or en-
zymes that act on gut bacteria, or production of other metabolites
that affect gut commensals (Reid and Friendship 2002; Simon
and others 2001). Other approaches are the use of prebiotics
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(nondigestible oligosaccharides) that permit beneficial gut bac-
teria to preferentially thrive, thus promoting overall host health
(Mosenthin and Bauer 2000; Verstegen and Williams 2002). Sup-
plementation of feedstuffs with phytase, an enzyme that allows
greater host utilization of phosphorous, has also been advocated
(Hatten and others 2001; Verstegen and Williams 2002).

Antimicrobial peptides. Antimicrobial peptides are host-cell-
produced compounds that have been identified in plants, ani-
mals, and insects. Extensive research has led to an increased un-
derstanding of the mechanisms of action of porcine antimicrobial
peptides, but has not addressed the numerous practical aspects
that are necessary to achieve regulatory approval or marketplace
success (Zhang and others 2000).

Bacteriocins. Pore-forming antibacterial proteins produced by
microorganisms—bacteriocins—have been investigated for their
potential use in the control of certain zoonotic pathogens in the
avian intestinal tract (Joerger 2003). One bacteriocin, nisin, has
been approved for use in several food products (Cleveland and
others 2001).

Bacteriophages. Bacteriophages have been used successfully
to prevent and treat bacterial diseases in humans and animals
in Russia, but have failed to gain acceptance in Western coun-
tries owing to the focus on antibiotic use (Barrow 2001). They
have also been used experimentally to control bacterial diseases
in plants (Greer 2005). The possibility of using avian cytokines17

as potential therapeutic agents has also been reported, but issues
including dose and safety have not been resolved (Lowenthal
and others 2000). As anti-infectives, bacteriophages have sev-
eral attractive attributes including specificity, since each bacte-
riophage is directed toward a single kind of bacterium (although
this results in a limited host range), lethality, projected low cost,
and no residues in the food product (Greer 2005, Joerger 2003).
However, questions surrounding the safety of using recombinant
therapies, environmental containment, and phage resistance re-
main unresolved (Moldave and Rhodes 2003). As development
of new antibiotics becomes less likely, interest in adapting bac-
teriophage therapy for plant and food animal applications may
increase.

Alternative management practices. As noted in the National
Pork Board’s document—“Take Care: Use Antibiotics
Responsibly”—antibiotics are only one part of an overall
plan to maintain animal health (NPB 2005). The guidance
discourages the automatic reliance on antibiotics without
consideration of changes in management practices that may
also address animal health issues. Several industries have found
benefit in modifying practices as an alternative to antibiotic use.

Withholding feed. In the catfish industry, feeds medicated with
sulfadimethoxine/ormetoprim 5:1 have an objectionable taste
and catfish may not consume them as vigorously as standard
feeds. Further, bioavailability of oxytetracycline is very low in
catfish and individual fish must consume the proper amount of
feed for a therapeutic dose to be obtained (Plakas and others
1988). Because of these problems, the current trend in the cat-
fish industry involves withholding feed at the first sign of disease
particularly when entering the “temperature window” for ESC dis-
ease and resuming normal feeding when water temperatures rise
out of the permissive range. Farmers have found this technique
to be almost as effective as administering medicated feeds, and
the practice saves on the increased cost of medicated feeds.

17 cytokine: any of a class of immunoregulatory proteins (as interleukin, tumor
necrosis factor, and interferon) that are secreted by cells especially of the immune
system (definition from Merriam Webster’s Medline Plus: www.nlm.nih.gov/
medlineplus/mplusdictionary.html)

Risk Analysis

Risk analysis has three components—risk assessment, risk man-
agement, and risk communication. An effective food safety sys-
tem integrates science and risk analysis at all levels of the system,
including food safety research, information, technology trans-
fer, and consumer education (IFT 2002b). Risk assessment is the
use of scientific data to identify, characterize, and measure haz-
ards; assess exposure; and characterize risks. Risk assessment
is currently being recommended as an important method for
“science-based” decision making regarding food policy and an-
tibiotic use in food animals. A thorough risk assessment can be
a useful first step in the decision making process. It can provide
a framework for the needed “big picture” view of a problem,
its sources, and the consequences of proposed policy changes.
However, risk assessment does not provide the necessary whole
picture of an issue. Ideally, the entire system, including potential
secondary effects, must also be considered in decision making.
Additionally, the benefits, or the alternative risks of various risk
management options, must also be evaluated. Due to the data
requirements and uniqueness of bacterial and antibiotic interac-
tions, analysis should be done on specific “bug–drug” combina-
tions. Some of the decision analysis tools, as related to antibiotic
use in food animals, are addressed below; a quantitative risk as-
sessment of macrolide use in food animals is presented as an
example.

When examining a potential policy change, it is critical to re-
member that a complex scientific phenomenon, such as resis-
tance gene transfer, takes place within a much larger macrobi-
ologic ecosystem and social system. Therefore, observance of
similar resistance genes in food animals and humans does not
explain the causal pathway of events or the flow of genetic in-
formation. An understanding of the system through good “shoe
leather” epidemiology is essential (Phillips and others 2004).

Whenever a society is making a decision about a “risky” new
technology, the negative impact or risk is only part of the equa-
tion. Rarely do people add extra risk to their lives unless there
is some benefit. Most people agree that automobile travel is a
risky practice; and, data support this view. Most of us, however,
prefer the benefit of automobile use to that of alternatives, for ex-
ample horse and buggy. The regulatory environment, however, is
geared toward protecting the public from additional risk without
consideration of benefits, hence the emphasis on risk assessment.
Any objective risk assessment will show some risk, albeit very
small. Within the context of the current U.S. regulatory frame-
work, it is not possible for regulatory agencies, such as the FDA,
to judge between the benefits of antibiotic use to livestock pro-
ducers and risks to the public at large. Therefore, regulators must
reject any practice that appears to produce any apparent risk un-
less a demonstrated higher risk would exist upon rejection of the
practice.

For example, some evidence is accumulating, especially in the
poultry industry, that there are significant human health benefits
from antibiotic use to prevent or control food animal disease. It
has been shown that subclinical disease levels of birds at slaughter
significantly impact carcass contamination with pathogens such
as Salmonella and Campylobacter (Russell 2003b). The levels of
subclinical disease are reduced by antibiotic use. Therefore, the
risk of antibiotic use is more than compensated for by a human
health benefit. Cox and Popken (2004) conservatively estimated
that at least 40000 illness-days/year are prevented by contin-
ued use of virginiamycin to reduce bacterial illnesses in chicken
flocks. For every day of illness caused by continued antimicrobial
use, an estimated 4000 excess illness-days are prevented. Similar
results were recently reported for enrofloxcin and macrolide use
in poultry (Cox and Popken 2006).
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Case study: Overview of Macrolide Risk Assessment
The current regulatory environment strongly infers that “science-based” decision making utilizes risk assessment (Snary and others 2004).
FDA’s Center for Veterinary Medicine (CVM) issued a guidance document advising veterinary drug sponsors of one potential process for
conducting a qualitative risk assessment of drug use in food animals (FDA/CVM 2002). Using this guideline, a quantitative deterministic model
to assess the risk associated with two macrolide antibiotics—tylosin and tilmicosin—was developed. Tylosin is administered via medicated
feed, drinking water, or injection to poultry, swine, and cattle to treat, prevent, or control disease, and enhance growth performance.
However, not all routes of administration or claims have been approved in the United States for each species. Tilmicosin, a semisynthetic
derivative of tylosin, is approved for treatment and control of respiratory disease in cattle and swine. The scenario presented below is
discussed in more detail in the assessment publication by Hurd and others (2004), which sought to advance and inform the public debate
regarding the use of food animal antibiotics.

The basic framework provided by the CVM guidance document was used to conduct a quantitative risk assessment of two macrolide
antibiotics, tylosin and tilmicosin. Although other antimicrobial agents in the macrolide-lincosaminide-streptogramin B (MLSB) class, in-
cluding lincomycin and virginiamycin, exhibit some cross-resistance with macrolides and are also used in food animals, this risk assessment
was restricted to tylosin and tilmicosin. Consistent with CVM guidelines, a company or individual using the CVM framework should model
only a single drug. The example assessment modeled tylosin and tilmicosin together, however, because of their close structural relationship.
The risk assessment considered all label claim uses for both macrolides in the United States for poultry, swine, and beef cattle.

Because foodborne transmission of an antimicrobial resistance determinant (RzD; a genetic element that confers antimicrobial resistance)
was considered the most likely hazard, it was the only route modeled (Figure 5). The microorganisms evaluated were Campylobacter
spp. and E. faecium. Although differences in host range are known for C. jejuni and C. coli, the species were not separated. Salmonella is
inherently resistant to macrolides; therefore, human salmonellosis is not treated with the drugs and was not considered in the risk assessment.

The guidance document was followed to define the hazard, which is illness: (1) caused by foodborne bacteria having an antibiotic
resistance-determinant; (2) attributed to a specified animal-derived meat commodity; and (3) treated with a human-use drug of the same
class. For the purposes of the risk assessment, the hazard was thus defined as human illness that is: (1) caused by macrolide-resistant
Campylobacter spp. or E. faecium; (2) attributable to consumption of contaminated poultry, pork, or beef; and (3) treated with a human
antibiotic of the macrolide class (FDA/CVM 2002). Risk was defined as the probability of the hazard combined with the consequence of
treatment failure due to resistant Campylobacter spp. or E. faecium. A binomial event model was applied to estimate the annual risk for
the U.S. population. Parameters were derived from industry drug use surveys, scientific literature, medical guidelines, and government
documents. In all situations where there was a wide variation or uncertainty of data estimates, the most conservative (risk producing)
estimates were used.

The FDA guideline treats the consequence assessment as a separate risk assessment, based on the drugs’ importance to human medicine.
Therefore, this method of combining the probability of an event with the consequences was a slight deviation from the guidance. In the
study, the risk was defined and modeled as the yearly probability that an average individual in the U.S. population would be affected by the
defined hazard and would experience an adverse therapeutic event (that is, poorer efficacy than usual as manifested by longer duration of
diarrhea, progression to more severe disease, or unlikely mortality). A FoodNet review of 11275 human Campylobacter infections, showed
that only 7 (0.006%) individuals died; less than 1% of cases were invasive (Kennedy and others 2000).

As noted, the example risk assessment is quantitative, as opposed to the qualitative type of assessment proposed by CVM. Data and resource
constraints associated with a full-scale stochastic quantitative risk assessment led the CVM to recommend the simpler type of analysis, using
high, medium, and low estimates for each of the three analyzed components—release-, exposure-, and consequence-assessment. However,
CVM did not prohibit the quantitative approach. This example, however, uses a deterministic quantitative model which provides greater
transparency regarding calculations and assumptions at each point in the chain of events. Additionally, a quantitative risk assessment can
be revised as improved data estimates become available.

For human illness to occur as a result of antibiotic administration to a food animal, a number of events must occur. As generalized in
Figure 5, the antibiotic must be administered to food animals. An increased prevalence of RzD must occur in the intestinal bacterial flora
of the animals due to tylosin and tilmicosin administration. The resistant bacteria (Campylobacter spp. or E. faecium containing macrolide
resistance genes) must leave the place of administration, for example, farm or feedlot. The RzD must move from the intestine in the treated
animal to contaminate the carcass, rinse fluids, and/or neighboring carcasses during slaughter and processing operations and must survive
processing, storage, and placement into the retail consumer sales environment. The meat product must then be mishandled, undercooked,
or otherwise improperly prepared such that human infection or colonization can occur. For Campylobacter spp. the inoculating dose must
be sufficient to cause the person to become ill, to seek medical treatment, and to be treated with a macrolide which would consequently be
ineffective due to the RzD. In addition to being consistent with the CVM-defined hazard, the model provided an estimate of the probability
that treatment would be ineffective (treatment failure), in terms of expected illness/per capita-year in the United States for which human
macrolide treatment is presumed to fail or to be compromised by the presence of resistant bacteria due to administration of tylosin and
tilmicosin to food animals.

This farm-to-patient risk assessment demonstrated that use of tylosin and tilmicosin in food animals presents a very low risk of human
treatment failure, with an approximate annual probability of <1 in 10 million of treatment failure during human illness in the United States
due to macrolide-resistant campylobacteriosis for all meat commodities combined. For poultry, the probability was slightly less than 1 in
14 million. For beef and pork, the probabilities were 1 in 53 million and 1 in 236 million, respectively. High Campylobacter spp. carcass
contamination rates presumably drove the increased risk of treatment failure due to macrolide use in poultry. However, the estimated risk
of 1 in 14 million was much less than fluoroquinolone-resistant Campylobacter spp. in chickens (1 in 30000), as reported in a CVM risk
assessment (FDA/CVM 2001).

This model also indicated far less than one potential case per year of macrolide treatment failure from food-derived enterococcal infections
in the United States (1 in 3 billion). This low result is due to the combined low level of macrolide susceptibility in E. faecium and the extremely
low probability that foodborne enterococcal infections will occur in humans.

This example shows, using a rigorous quantitative model and conservative assumptions, that the foodborne risk of macrolide use in
poultry and other livestock is estimated to be very low (<1 in 10 million). This analysis suggests that policies regarding antibiotic use in
food animals should be developed on a case-by-case basis. Additionally, the potential benefits of antibiotic use, such as more uniform food
animal quality, better evisceration, and reduced levels of pathogen (Salmonella spp., Campylobacter spp.) carcass contamination should
also be considered.
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Figure 5 --- Chronology of treatment
failure due to antimicrobial
resistance. Reprinted with
permission from the Journal of Food
Protection. Copyright held by the
International Association for Food
Protection, Des Moines, Iowa, U.S.A.
(Hurd HS, College of Veterinary
Medicine, Iowa State University and
others).

A review of recent risk management actions, such as elim-
ination of antibiotic uses labeled for growth promotion in
Europe (avoparcin, bacitracin, spiramycin, tylosin, and virgini-
amycin), has resulted in increased intestinal disease in an-
imals and the concomitant use of more therapeutic antibi-
otics with a resultant increase in resistance (DANMAP 2004;
WHO 2003). The discontinuation in the EU of use of an-
timicrobials for growth promotion has not been shown to
have reduced the prevalence of certain antibiotic-resistant
strains in human medicine; in fact, resistance increased among
some pathogens, for example, tetracycline-resistant Salmonella
Typhimurium, ampicillin-resistant Salmonella Typhimurium,
tetracycline-resistant C. jejuni, erythromycin-resistant C. jejuni,
virginiamycin-resistant E. faecium, tetracycline-resistant E. fae-
cium, and ampicillin-resistant E. coli). Additionally, discontin-
uation of growth promotants was followed by increased thera-
peutic uses in some food animal production sectors. Further, the
prevalence of resistant strains decreased for some antibiotics in
some animals, but increased for other antibiotics and other bac-
teria in other animals. For example, while the total use of an-
tibiotics in animals in Denmark decreased 30% between 1997
(before the ban) and 2004, there was a 41% increase between
1999 (after the ban) and 2004. During the 5-y period (1999 to
2004), resistance to tetracycline and ampicillin of Salmonella Ty-
phimurium isolates from pigs increased. Resistance of Salmonella
Typhimurium isolates from poultry increased from 0% in 1997 to
17% in 2004. Resistance of isolates from ill humans increased
from 18% to 46% (DANMAP 2004).

A WHO review (WHO 2003) said, “It is probable, however, that
termination of antimicrobial growth promoters had an indirect ef-
fect on resistance to tetracycline among Salmonella Typhimurium
because of an increase in therapeutic tetracycline use in ani-
mals . . . . Increased tetracycline resistance among Salmonella is

therefore not likely to result in ineffective treatment of Salmonella
infections. Increased tetracycline resistance among Salmonella
may result in additional human Salmonella infections, however,
since persons who take tetracycline for other reasons are at an
increased risk of becoming infected with tetracycline-resistant
Salmonella.” If the measure of success is reduced resistance in an-
imals or humans, the ban in Denmark had mixed success. WHO
said, “From a precautionary point of view, Denmark’s program
of antimicrobial growth promoter termination appears to have
achieved its desired public health goal.” The Danish experience
is instructive for showing that thorough risk assessments should
be used to guide selection of risk management actions so that
unintended consequences are avoided or minimized.

Faced with concerns about the impact that the use of antibi-
otics in agriculture poses to public health, the FDA developed
a set of guidelines, entitled “A Proposed Framework for Eval-
uating and Assuring the Human Safety of the Microbial Effects
of Antimicrobial New Animal Drugs Intended for Use in Food-
Producing Animals.” The guidelines designate antibiotics into
three classes: (1) drugs that are: [a] essential for treating a serious
or life-threatening disease in humans (conditions of high mor-
bidity or mortality) for which no satisfactory alternative therapy
exists, [b] important for treating foodborne diseases in humans
where resistance to alternative antimicrobial drugs may limit ther-
apeutic options, or [c] a member of a class of drugs for which the
mechanism of action and/or the nature of resistance induction is
unique, and resistance to the antimicrobial is rare among human
pathogen(s), and the drug holds potential for long-term therapy
in human medicine; (2) of choice or important in treating a po-
tentially serious disease, whether foodborne or otherwise, but for
which satisfactory alternative therapy exists; and (3) which ei-
ther have little or no use in human medicine, and are not the
drug of first choice or a significant alternative for treating human
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infections, including foodborne infections (FDA/CVM 1999).
However, since it is impossible to predict the future for antibi-
otic discovery for substances for human use, the question arises
as to whether analogs of current class 3 compounds could be-
come class 1 drugs. The “Framework Document” was ultimately
followed by FDA’s issuance of its Guidance for Industry #152.

In 2006, the EU banned the remaining 4 nonhuman classes
of antibiotics used in feed for growth promotion on the basis of
the precautionary principle. This is a highly controversial and
much debated concept originally developed for use in environ-
mental protection but which is an element of human, animal,
and plant health, as well as environmental risk management
decision-making in the EU when scientific information is insuf-
ficient, inconclusive, or uncertain. In its strongest formulations,
the precautionary principle can be interpreted as calling for ab-
solute proof of safety before allowing new technologies to be
adopted (Foster and others 2000). For example, the World Charter
for Nature (WCN 1982) states “where potential adverse effects are
not fully understood, the activities should not proceed.” If inter-
preted literally, no new technology could meet this requirement.
Pointing out the importance of mathematical models to help un-
derstand underlying mechanisms and guide policy responses,
Smith and others (2005) stated that, given the intrinsic problem of
knowability of the effects of agricultural antibiotic use on human
health and the biological complexity of the problem, “precau-
tionary decision making” is particularly suitable in this arena.

In the United States, precaution is embedded in the food safety
system as an inherent part of relevant food safety statutes and
regulations, as well as risk analysis policies and processes (risk
assessment and risk management [FDA USDA 2000]). With re-
gard to antimicrobial resistance, this inherent precaution has
involved taking progressive action that included issuing draft in-
dustry guidance—the framework document—which introduced
risk management, industry guidance pertaining to consideration
of resistance in drug approvals, risk assessments, partnerships,
and research (FDA USDA 2000).

Phillips and others (2004) conducted a critical review of pub-
lished data to determine whether the use of antibiotics in food an-
imals poses a risk to human health. They determined that the ben-
eficial consequences of agricultural use of antimicrobials might
very well outweigh the adverse effects. Moreover, they stated that
the banning of any antibiotic usage in animals based on the pre-
cautionary principle in the absence of a full quantitative risk as-
sessment is likely to be wasted at best and even harmful to animal
and human health. For example, banning agricultural use of an-
tibiotics might increase the pathogen load on the animals, which
would increase the number of humans becoming ill, increasing
the use of antibiotics in human medicine, and ultimately increas-
ing the prevalence of antibiotic resistant pathogens and treatment
failure.

The complexity of the antibiotic resistance issue precludes sim-
ple solutions. Resistance proclivity varies with the antimicrobial,
bacterium, and usage patterns. Therefore, sweeping risk manage-
ment measures that are proposed for a certain classification of
use (nontherapeutic, growth promotion, and routine disease pre-
vention, for example) can be draconian and without predictable
results. Analysis must be carried out on a case-by-case basis, and
driven by product specific, science-based risk assessments. The
most effective way to address the complexity and totality of the
farm-to-food-to-failure chain is to use a risk assessment approach.
Conducting a risk assessment for a specific product use and track-
ing those bacteria that may become resistant as a result of that use
would provide insight into what mitigation interventions would
be most effective.

Given the impact of actions of the EU, EPA, and FDA and those
of some corporations, incentives to develop new antibiotics for

agricultural use have been severely diminished. Consequently,
most large pharmaceutical and agrichemical companies are de-
creasing or abandoning their new antibiotic discovery efforts for
agricultural use. While this may have some positive effect on pub-
lic health, the effect is that there will be few or no new antibiotics
for use in livestock or plants.

Data Gaps
Further research into mechanisms of action of antibiotics, food

antimicrobial agents, sanitizers; microbial resistance to these
agents; and genetic transfer of resistance determinants has im-
plications for the medical, public health, veterinary, and food
science and technology communities. A number of data gaps per-
tinent to specific sectors of the food system are outlined below.

Microbial ecology
� Identify environmental reservoirs of resistant microorganisms
� Elucidate the rate of transfer of resistance genes from bacteria

in the environment to fecal flora of the human gastrointestinal
tract

� Elucidate whether fungi in human mycotic infections have the
same resistant genes as agriculturally significant fungi belong-
ing to the same taxa

Microbial pathogenicity
� Determine the impact of antibiotic resistance on foodborne

pathogen virulence
� Determine the impact of acid tolerance induction on food-

borne pathogen dose response
� Correlate data from sentinel studies, including trends in sus-

ceptibility of key bacteria, on clinical outcomes of antibiotic
use to microbiological endpoints

� Determine variability in avian flu isolates from poultry that are
resistant to antiviral agents

Food production
� Clarify understanding of the mechanism for growth promotion

effects of antimicrobials, to enable exploration of novel, effec-
tive, alternatives

� Conduct epidemiological and molecular level investigations
to determine if antibiotic use in plant agriculture and aquacul-
ture correlates with antibiotic resistance in human microflora,
which would be particularly valuable in countries where an-
tibiotic use on plants or in aquaculture is greater than in the
United States

� Quantify on-farm selection for resistance, above the back-
ground, among zoonotic pathogens

Food manufacturing
� Using validated methods, determine the mechanisms of resis-

tance and adaptation of microorganisms to food antimicrobial
agents

� Investigate the bacterial stress hardening phenomena in actual
food systems

� Elucidate the relationship between laboratory findings of resis-
tance or adaptation to stress and food manufacturing microbial
control practices

� Determine the stressing influences of foods and food process-
ing environments, including biofilms, on resistance and viru-
lence

� Enhance understanding of the genetic basis of antimicrobial
resistance and adaptation to stresses

� Confirm that antibiotic-resistant microorganisms respond to in-
terventions in a similar fashion as susceptible microorganisms
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� Develop new, improved interventions to control foodborne
pathogens based on optimized, efficient, economical, and in-
tegrated approaches that prevent resistance development and
virulence enhancement, and assure product quality, process-
ing efficiency, and control of resistant pathogens18

� Optimize the application of the hurdle concept by increas-
ing knowledge of microbial regulatory processes under var-
ious environmental conditions, and exploring strategies that
can induce activation of genes that sensitize microorganisms
to subsequent stresses.

Conclusions

The United States has a complex and interdependent food pro-
duction and manufacturing system that functions to meet the
demands of the U.S. population and an active export market.
Antimicrobials are important tools that are integral to food pro-
duction and manufacturing. Beneficial antimicrobial applications
are numerous, ranging from providing for high quality or good
physical condition of crops, to good health of food animals en-
tering the food chain, and maintaining sanitation during food
processing.

Antibiotics are used to treat, prevent, and control disease
among food animals and in some cases to improve feed uti-
lization and, thus, growth rate. Administration of antibiotics to
food animals is one aspect of an overall management system
that is a critical component in securing the health and wel-
fare of the animals as well as the safety of the products de-
rived from them. Further, several nonantibiotic antimicrobials,
including disinfectants and sanitizers are used to disinfect or
sanitize animal production premises, transport equipment, car-
casses, and slaughter facility equipment. These substances are an
important part of pathogen reduction strategies. Sanitizing and
decontaminating agents are used to control microorganisms on
fresh produce. Several different types of antimicrobial agents are
used in food manufacturing to either clean food manufacturing
environments or ensure food quality and safety. In addressing
quality and safety, traditional and naturally occurring food an-
timicrobials are increasingly applied as multiple, synergistic hur-
dles to inactivate or inhibit growth of spoilage and pathogenic
microorganisms. The use of multiple hurdles in food manu-
facturing is likely to combat resistance to singular food safety
interventions.

Although the total amount of antimicrobials used in human
medicine and agriculture is not precisely known, both sectors
use appreciable quantities. Estimates of use are influenced by
data gaps and inaccuracies. Estimates of the total amount of an-
tibiotics produced annually during the 1970s, 1980s, and 1990s
range from 14.0 to 22.7 million kg (31 to 50 million pounds). Esti-
mates of the amount of antibiotics used in production agriculture
range from 18.4 to 30 million pounds. Quantity of use, however,
does not necessarily correspond with efficacy in antibiotic use in
humans, animals, or plants.

The availability of antibiotics to treat infectious diseases has
radically improved human and animal well-being. Paradoxically,
this very success threatens their future utility. Both the prudent
and inappropriate use of antibiotics in human medicine, vet-
erinary medicine, and animal husbandry create selective pres-
sure that favors the emergence of antibiotic resistant microbes.

18 Additional studies of this type are necessary to examine the hypothesis that
stress-resistant or adapted pathogens may be of more concern in food safety
than their sensitive counterparts. Results could be useful in proving or disprov-
ing hypotheses such as the suggestion that pathogen resistance to food-related
stressors may have played a role in the new involvement in foodborne illness of
traditionally low risk foods, such as fruit juices, fermented meats, fresh produce,
and dried products.

Coupled with specific genetic resistance mechanisms, the selec-
tive pressure of antimicrobials may result in foodborne bacteria
that are resistant to antimicrobials. Antibiotic resistance among
foodborne pathogens may create an increased burden to human
health in different ways: (1) resistant pathogens contaminating
food animals have the potential to reach humans; (2) human use
of antibiotics may increase the risk of acquiring an infection with
an antimicrobial resistant pathogen; (3) human infection with a
resistant microbe may limit illness treatment options (in the un-
common instances of foodborne illness in which antibiotic use is
warranted); and (4) antibiotic-resistant foodborne pathogens may
develop increased virulence. Of these potential impacts, prior
exposure of humans to antibiotics is the greatest risk factor for
acquiring an infection with antibiotic-resistant bacteria. The pre-
ponderance of evidence strongly supports the suggestion that an-
tibiotic resistance results in a larger number of human infections
by increasing the risk of infection in people who have had prior
antibiotic exposure.

Antibiotic-resistant foodborne pathogens are a subset of food-
borne pathogens, any of which may cause illness. Antibiotic-
resistant intestinal bacteria may be present in food animals,
regardless of exposure of the animals to an antibiotic. The types
of bacteria, their resistance profiles, and prevalence vary from an-
imal to animal and species to species. In spite of the best efforts
to prevent or eliminate them, some antibiotic-resistant bacteria
contaminate carcasses, as do antibiotic susceptible bacteria. In-
terventions that effectively reduce the prevalence of foodborne
pathogens also reduce the prevalence of those that are resistant to
antibiotics.

There are a variety of resistance mechanisms and genes that
complicate the antibiotic resistance issue. Commensals, such
as nonpathogenic E. coli and Enterococcus spp., may serve as
reservoirs of potential antimicrobial resistance genes in the en-
vironment from which resistance may be transferred to other
commensals or pathogenic bacteria. However, of singular in-
terest are those antibiotic-resistant intestinal bacteria, such as
Salmonella and Campylobacter that can contaminate foods dur-
ing slaughter or processing and result in human illness. The key
points of influence that food scientists have in preventing the
spread of antibiotic-resistant and sensitive pathogenic microor-
ganisms in foods are preventing them from entering the food sup-
ply, and if present, inactivating them or preventing their growth.

Selective pressure for the development of antimicrobial resis-
tance occurs within all uses of antimicrobials, including use in
the food system from production to processing. Resistance among
some foodborne bacterial pathogens has increased during the
past 15 to 25 years. Increases in resistance have generated heated
debate about the appropriate use of antibiotics in agriculture, par-
ticularly in food animal production. Although the people involved
in the various stages of the food system can influence dissemina-
tion of foodborne pathogens, including those resistant to antibi-
otics, through various intervention strategies, they control neither
the development of antibiotic resistance nor human antibiotic use
patterns. Given the different resistance mechanisms, conditions
selecting for resistance, and dissemination patterns of resistant
microorganisms, a single approach to solving the resistance issue
is not possible.

Various factors complicate our ability to fully understand the
transfer of resistant bacteria through the food chain to human ill-
ness causation. These factors include resistance genes unique
to the various foodborne pathogens; animal production and
distribution prior to slaughter; processing practices; retail food
preparation, distribution, and storage; consumer food prepara-
tion practices; varying susceptibility to pathogens among differ-
ent subpopulations; and varying medical practices and treatment
options.
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The extent to which antibiotic use in food animals produces
clinically important antibiotic resistant infections in humans is
unknown. Contributing to this problem is the inability to obtain
quantitative data about the magnitude of antibiotic use in animal
husbandry, subsequent resistance, and impact on human health.
Additionally, the economic impact of antibiotic resistance is dif-
ficult to assess, as are potential affects on trade.

To address the complexity of resistance selection, transfer
through the food chain, and human health consequences, qual-
itative and quantitative risk assessments are now being applied.
For many antibiotics—such as tylosin, tilmicosin, and virgini-
amycin used in food animals and for which a risk assessment has
been conducted—estimated risk to human health is small. Fluo-
roquinolone use to treat poultry disease through water, however,
was deemed by the FDA as an unacceptable risk to humans and
its approval was withdrawn. The FDA/CVM now requires new
animal drug sponsors to satisfy microbial food safety criteria for
antibiotic products by submitting evidence outlined in Guidance
152 that appropriate use conditions are ensured.

Risk management strategies to minimize and contain
antibiotic-resistant foodborne bacteria are in place all along the
food chain, but can be improved. The strategies that have been
implemented include use of various antibiotic alternatives, im-
plementation of judicious or prudent antibiotic use guidelines,
and implementation of national resistance monitoring programs.

Although there are concerns with antibiotics entering the an-
imal production environment through manure or other waste
streams, more information is needed to better understand the situ-
ation to implement effective control strategies. Very little is known
about the exposure routes of antimicrobials in the environment
and the fate of antimicrobials within ecosystems; environmental
impacts are not completely understood. Current evidence sug-
gests that it is not likely that antimicrobials in manure will pose
any direct risk to soil microbiota. However, it is not yet possible to
exclude other indirect effects on soil microbiota and ecosystems
that are driven by changes in the microbial community from the
presence of antibiotics. Environmental research is in its infancy,
currently able to simply identify whether a hazard exists and is
not yet able to measure impact.

Although bacteria may be exposed to an antibiotic for an
intended period of time, on the farm or in humans, bacterial
exposure to food antimicrobials (for example, sanitizers) gener-
ally occurs only once. The prevalence and mechanism of resis-
tance among most food-use antimicrobial compounds is often
unknown. When it occurs, resistance to food antimicrobials is
of little practical relevance to the food industry because the an-
timicrobial concentrations used in food manufacturing are well
above the low-level bacterial resistance (a comparatively low
MIC). However, the ability of some sanitizers and disinfectants
to induce MDR-pumps, which also confer antibiotic resistance,
is of some concern.

The impact on human health of bacterial pathogen resistance
to food antimicrobials is not fully understood. Although some
studies have suggested that in certain situations (sublethal use,
overuse, biofilms, and cross-resistance mechanisms, for exam-
ple) the potential for negative impact on public health exists, re-
sistance to food antimicrobials is not considered a major public
health concern because the resistance mechanisms are often tem-
porary adaptations. To date, the use in foods of chemical and bio-
logical antimicrobials and physical preservation systems has been
remarkably successful in providing safe foods and has not been
compromised by the occurrence of resistant microorganisms.

Monitoring and surveillance of antibiotic resistance in plant
production agriculture is not done on a regular basis, and the
effects on the microflora of applicators and transient visitors, in-
cluding workers in treated fields and orchards, have not yet been

investigated. At present there is little evidence of an impact on
human health of use of antibiotics in plant production. Similarly,
ingestion of antibiotic-resistant bacteria from aquaculture and
contact with animals, including pets, does not appear to com-
prise a significant threat to human health.

NARMS and FoodNet surveillance data are now beginning to
reveal resistance trends. NARMS resistance trends are not con-
sistently in one direction. Trends reported by other surveillance
programs during the past 20 to 25 years reveal increasing re-
sistance, while other sources reveal decreasing resistance trends
particularly in the last 6 to 7 years.

It is difficult to correlate antibiotic resistance among foodborne
pathogens with particular types of antibiotic use (for example,
therapeutic growth promotion) on the farm. Increased incidence
of illness within a herd or flock, and concomitant therapeutic use
of antibiotics in any given year may or may not result in increased
use of antibiotics potentially selecting for resistant microorgan-
isms. Therefore, it is difficult to compare year-to-year resistance
trend data without correlating the data with disease prevalence
and corresponding changes in annual use of a specific antibiotic
or class of antibiotics.

FoodNet trends of foodborne illness show a decline in
salmonellosis and a decline in campylobacteriosis to levels ap-
proaching the national health objective targets for the year 2010
(CDC 2004b). The declines may be due in part to HACCP im-
plementation, pathogen reduction actions in food slaughter and
manufacturing facilities, and other intervention modalities.

The history of the epidemiology of Salmonella shows that
clones, including MDR-clones, spread worldwide, and then lost
predominance. Some clones of Salmonella Typhimurium DT104,
which possess a penta-resistance gene cassette, have spread
widely and resulted in foodborne disease outbreaks. It appears
that the prevalence of Salmonella Typhimurium DT104 and/or
the penta-resistant Salmonella Typhimurium may have peaked in
1996, and declined since then.

Regulatory targeting of specific antibiotic-resistant foodborne
pathogens may not be the most successful or cost effective means
to reduce overall foodborne illness. A HACCP approach applied
throughout the food chain is considered the most effective mea-
sure to controlling foodborne pathogens and thereby reducing
foodborne illnesses. Most interventions, critical control points to
kill or reduce foodborne pathogens, for example, are equally ef-
fective in controlling microbes regardless of their resistance to
antibiotics. Thus, applying interventions to control foodborne
pathogens in general, rather than focusing on antibiotic-resistant
strains specifically, would have the greatest impact in reducing
overall foodborne illnesses.

There are limited new veterinary drugs in the pipeline. Of
drugs under development, many of them are targeted for non-
infectious diseases. Although alternatives to antibiotics have been
explored, none can replace those used for therapeutic purposes.
Thus, maintaining the continued efficacy of currently available
antibiotics is critical.

Specific recommendations
Antibiotic resistance among microorganisms, commensal and

pathogenic alike, is a concern for food safety worldwide. Re-
sistance can be controlled or mitigated, however, in a number
of ways. Those who control or administer antibiotic use in hu-
man medicine, veterinary medicine, and production agriculture
can have the greatest impact in controlling resistance. In hu-
man medicine, practice of appropriate therapy and use of im-
proved patient diagnostics and treatments minimize resistance
selection. In veterinary medicine and production agriculture im-
plementation of various management strategies (such as respon-
sible use guidelines, quality assurance programs, and antibiotic
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alternatives), coupled with government regulations, should de-
crease opportunities for the selection of antibiotic-resistant mi-
croorganisms. Despite the significant role that many people have
in controlling antibiotic resistance and its potential impacts, the
IFT Expert Panel concluded that the following areas warrant at-
tention or investigation.
� Increase attention to the public health benefits, as well as risks,

of losing the efficacy of existing and future antimicrobials.
� Determine the public health impact of antimicrobial resistance

on the basis of risk assessment, and consider resistance on the
basis of an individual microorganism exposed to a specific
agent under a specific condition of use.

� Guide risk management strategies by the results of risk assess-
ments.

� Always practice prudent use of antimicrobials to limit resis-
tance selection and to maintain maximal benefit of antimicro-
bials in the future.

� Expand development of prudent use guidelines to include all
antibiotic uses. Prudent use does not necessarily correlate with
reduced use; an unknown risk of maintaining use may be less
than an equally unknown risk of reducing use.

� Modify prudent use guidelines as new scientific evidence on
antimicrobial resistance becomes available.

� Develop, validate, and implement prudent use guidelines for
bactericidal food antimicrobial agents and sanitizers.

� Conduct more research to identify effective alternatives to an-
tibiotics.

� Implement surveillance programs and food attribution models
as means for measuring the effectiveness of the food industry’s
microbiological interventions.

� Determine and evaluate the relationship between use of spe-
cific antibiotics in food animal husbandry to resistance se-
lection rates among major foodborne bacteria at slaughter on
farms where antibiotics are used and farms where antibiotics
are not used.

� Initiate characterization of resistance to food antimicrobial
agents and sanitizers.

� Advance understanding of the mechanisms of resistance to
food antimicrobial agents and sanitizers.

� Improve the ability of scientists to predict the potential for
cross-resistance with antibiotics through increased focus on
determining and understanding mechanisms of resistance.

� Aid in elucidating reasons that some combinations and se-
quences of antimicrobial interventions result in synergistic
“multiple hurdle” effects while others cause stress-hardening
or adaptation through increased knowledge of mechanisms of
resistance.

� Implement further study to confirm that current data indicate
that microbial interventions are equally effective for antimicro-
bial susceptible and resistant microorganisms.
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Appendix 1. Use of Antimicrobials in Companion
Animals

Antibiotics are used most often in dogs; and, the substances
used are often very similar, or identical to those used in humans.
Some canine infections, such as pyoderma (bacterial skin inflam-
mation marked by pus-filled lesions) or otitis externa (infection of
the external ear canal) require repeated or prolonged therapy. Re-
current pyoderma caused by Staphylococcus intermedius is often
treated with cephalexin in continuous low-dose or regular pulse
therapy (periodic higher dose therapy [Mason and Kietzmann
1999]). Difficult cases are often treated with fluoroquinolones
for extended periods (Carlotti and others 1999). Chronic otitis
externa, which often involves MDR-drug resistant Pseudomonas
aeroginosa, is often treated topically with ticarcillin or fluoro-

quinolones (Martin Barrasa and others 2000; Petersen and others
2002).

The most common infections in cats correspond to wounds
(Love and others 2000). Penicillin G is the drug of choice for most
skin infections, as well as for acute viral upper respiratory tract in-
fections (with secondary bacterial component), while amoxicillin
is the suggested antibiotic treatment for bacterial lower urinary
tract infections. Cats are more prone to infections in the oral cav-
ity than dogs and are often treated with amoxicillin, amoxicillin
with clavulinic acid, clindamycin, or metronidazole (Watson and
Rosin 2000).

Among horses, foals are the most vulnerable to infection; thus,
antibiotic use occurs more often in them than in adult horses
(Sternberg 1999). Due to the high risk of diarrhea from antibiotics
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administered orally, only a narrow range of antibiotics are used
in adult horses. Therefore, nonparenteral administration, often
by injection, is necessary for treating bacterial disease in horses.
In adult horses, penicillin G is suggested for most upper respi-
ratory infections, as well as for abdominal and subcutaneous
abscesses; broad-spectrum antibiotics are usually suggested for
treating bone and joint conditions; trimethoprim-sulfonamide are
recommended for superficial wounds; and, broad-spectrum an-
tibiotics are recommended for deep and contaminated wounds.
In neonatal foals, a broad-spectrum antibiotic is recommended,
pending culture results (Giguere and Prescott 2000).

Unlike indications for use in poultry, few antibiotics are ap-
proved for use in pet birds. Considering the numerous avian
species kept as pets and the very small quantities of drugs ad-
ministered to pet birds, testing of the large majority of antibiotics
for approved labeling for use in pet birds is not warranted. Extra-
label use is therefore critical to treating infections in pet birds and
other minor species. Due to the often advanced immunosuppres-
sion of clinically ill birds, rapid progression of potentially fatal
diseases, and suspected diagnosis of a mixed bacterial infection,
a combination of antibiotics is the empirical treatment choice of
treatment in pet birds (Flammer 1992, 1994).

Quantitative usage
Estimates of antimicrobial use in companion animals in the

United States are derived from studies that attempt to quantify
use in food animals. While the NAHMS contributes information,
albeit limited, about antibiotic use in food animals, there is no
Federal or private surveillance or monitoring system of antibiotic
use in companion animals.

In contrast to the United States, companion animal antibiotic
use data is available from the European Union. In the United King-
dom and several other European countries, use of antimicrobials
in companion animals represents approximately 6% of the to-
tal amount used in animals (Guardabassi and others 2004; VMD
2000). Whether from EU countries or the United States, how-
ever, companion animal use estimates most likely underestimate
actual use. These figures usually do not include antimicrobials
administered to companion animals by veterinarians in clinical
settings, those originally purchased for use in food animals, and
in the United States, prescriptions for antibiotics indicated for
human use that are dispensed from pharmacies. The antibiotics
purchased from pharmacies by companion animal owners in the
United States for use in their pets are often via the discretionary
extra-label policy of the FDA, which enables veterinarians to use
drugs for which use or dosage is not in accordance with label in-
dications. There are specific criteria by which veterinarians must
abide for extra-label use.

Resistance
In contrast to the substantial amount of literature on antimicro-

bial resistance in humans and food animals, there is a paucity
of information relating to antimicrobial resistance in companion
animals (Guardabassi 2004; Prescott and others 2002). Within
several studies that have attempted to determine trends in usage
and prevalence of resistance among companion animals, there
tend to be marked annual variations in data, probably resulting
from small sample sizes, changing patterns of use by veterinari-
ans, and differing methods of susceptibility testing among other
factors (Sternberg 1999; van den Bogaard and Stobberingh 1999).
In the relatively limited number of investigations of antimicrobial
use in companion animals, recent studies demonstrate increasing
prevalence of resistance (Guardabassi 2004; Normand and others
2000; Prescott and others 2002; Sternberg 1999; Walker 2000).
Resistant nosocomial pathogens, including methicillin-resistant
E. faecium, Acinetobacter baumannii, and MDR-uropathogenic
E. coli, have been reported by several veterinary teaching hospi-
tals (Boerlin and others 2001; Sanchez and others 2002); these
organisms are primarily of concern in referral hospitals where
more advanced procedures are performed and the patients are
more debilitated.

Transfer of resistance to humans
Companion animals, primarily cats and dogs, are potential

sources of antimicrobial resistance dissemination, due to the clin-
ical use of antimicrobials in their veterinary medical care and
their direct, close contact with humans. The commensal, S. in-
termedius, has appeared with increased frequency in veterinary
clinic staff and owners of dogs treated for atopic dermatitis (Har-
vey and others 1994). In these instances, transmission likely oc-
curs via dogs-to-humans, as S. intermedius is rarely isolated in
humans (Mahoudeau and others 1997; Talan and others 1989),
and strains found in humans correlated with strains found in their
dogs (Goodacre and others 1997; Tanner and others 2000). Thus,
there is the potential risk that resistance genes from antimicrobial-
resistant S. intermedius strains in dogs may be transferred to hu-
man pathogenic staphylococci. Cefai and others (1994) reported
human carriage of methicillin-resistant S. aureus (MRSA) linked
with a pet dog. Although there is some risk for transfer of fluoro-
quinolone resistance from companion animals to humans, the
risk is difficult to assess and poorly defined (Sternberg 1999).
Companion animals, particularly cats on farms, could serve as
a source for or recipient of antibiotic-resistant microorganisms
from farm animals. Humans were speculated to be the source
of vancomycin-resistant E. faecium associated with dogs (Simjee
2002).

Appendix 2. Resistance Determinants in Bacteria

Plasmids
Conjugative transfer of DNA between bacteria, especially via

specialized organelles called sex pili, was once considered the
sole mechanism of transfer of DNA conferring antibiotic resis-
tance (Bower and Daeschel 1999). Following a paradigm shift,
it is now believed that the majority of genetic change occurs
through transferable plasmid DNA (R Factors) capable of au-
tonomously replicating (duplicating) themselves within bacteria.
These R Factors often carry genes that code resistance to multiple
antibiotics.

Generally, plasmids are closed circular DNA molecules. These
mobile genetic elements vary in their ability to transfer among

bacteria, due to the presence of ancillary, unessential, plasmid
genes necessary for their mobilization (oriT , for example) and
physical transfer (tra operon) upon cell-to-cell contact between
donor and recipient bacteria (Figure 6). Conjugative plasmids
also vary in their spectrum of transmission, from narrow (Kues
and Stahl 1989) to broad host range (Adamczyk and Jagura-
Burdzy 2003; Kurenbach and others 2003; Rawlings and Tietze
2001).

Conjugation is probably the most efficient means for transfer-
ring genetic information, especially among disparate bacterial
species. Interspecies gene transfer in vivo occurred in associ-
ation with an outbreak of shigellosis in 1983 (Tauxe and oth-
ers 1989). The Shigella isolate associated with the outbreak car-
ried a plasmid encoding resistance to ampicillin, carbenicillin,
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Figure 6 --- Plasmid. Representative, conjugative plasmid
drawn schematically to illustrate basic plasmid replicon
(oriV, repA) and plasmid segregation genes (parA,B), mo-
bilization (oriT), and conjugation features (tra operon).
Included are ancillary genes including those involved in
plasmid addiction (pasA,B), and antibiotic resistance res-
ident in class 1 integron.

streptomycin, sulfisoxazole, tetracycline, and trimethoprim/
sulfamethoxazole that was identical antimicrobial resistance to
an E. coli isolate associated with a urinary tract infection of 1 of
the case patients occurring prior to the onset of shigellosis.

Hunter and others (1992) addressed the potential for transfer of
an apramycin resistance plasmid from E. coli to Salmonella Ty-
phimurium in calves involved in a salmonellosis outbreak. Prior
to antibiotic treatment apramycin-resistant E. coli were present,
but all Salmonella Typhimurium isolates were susceptible. Fol-
lowing treatment, however, apramycin-resistant Salmonella Ty-
phimurium were isolated from the calves. Subsequent in vitro
experiments demonstrated that plasmids conferring resistance to
apramycin could be transferred by conjugation to Salmonella
Typhimurium. Mizan and others (2002) observed that the
acquisition of conjugative R plasmids by E. coli O157:H7 from
a commensal E. coli strain while suspended in rumen fluid, and
suggested that the rumen may be a favorable environment for ex-
change of plasmids between commensals and E. coli O157:H7
within the host.

The process of plasmid transfer involves a switch in plas-
mid replication to rolling circle replication, and transmission of
the plasmid as single-stranded DNA to the recipient bacterium
(Adamczyk and Jagura-Burdzy 2003). As the recipient cell trans-
forms the plasmid DNA from single to double-stranded form, the
DNA becomes hemi-methylated by the bacterial host’s methy-
lases, Dam and Dcm, making the recipient plasmid resistant to
its host restriction endonucleases, therefore overcoming one im-
portant barrier to genetic exchange—restriction (Stein and others
1988). Depending on the microorganism, this modification is not
necessarily sufficient in completely resisting the host’s type I re-
striction/modification (R–M) system (Butler and Gotschlich 1991).
However, plasmids can counter by either inhibiting the host’s re-
striction defenses or, through selection, having evolved a plasmid
genome devoid of the restriction enzyme’s target site (Murray and
others 2000).

Plasmids are generally classified according to transference (that
is, nonconjugative or conjugative) and ability to coexist with

other plasmids (known as incompatibility). Conjugation is reg-
ulated (Camacho and Casadesus 2002; de Boever and others
2000; Starcic and others 2003), with plasmid transference af-
fected by: (1) growth medium (Ahmer and others 1999), as it
impacts on cellular cAMP levels (Starcic and others 2003), and
growth rate (Smets and others 1993); (2) cell density (Andrup
and others 1999; He and others 2003); (3) growth phase (Frost
and Manchak 1998); (4) oxygen tension (Burman 1975); and (5)
temperature (Chaslus-Dancla and Lafont 1985; Sherburne 2000).
Plasmid transference occurs in situ, within epithelial cells (Fergu-
son and others 2002), biofilms (Licht and others 1999; Molin and
Tolker-Nielsen 2003), or gastrointestinal (Doucet-Populaire and
others 1991; Klimuszko and others 1989; Licht and others 2002).
Transfer can occur even in the presence of bacteriostatic antibi-
otics (Cooper and Heinemann 2000). Plasmids encode surface
exclusion factors and restriction/modification system(s) that affect
the host cell’s ability to acquire new plasmids (Anthony and oth-
ers 1999; De Boever and others 2000; Naderer and others 2002).
The mechanism(s) involved in incompatibility result from com-
petition between plasmids regarding replication or partitioning
to daughter cells following bacterial cell division (Novick 1987).
Therefore, depending on selection pressure, fitness cost, and the
benefit (Enne and others 2004) the plasmid provides the cell, plas-
mids belonging to the same incompatibility group cannot coexist
through successive cell divisions following the first introduction
of the new plasmid into the recipient bacterial cell. In addition
to genes essential to replication (ori and rep, for example) and
partitioning (par, for example) to daughter cells, many plasmids
contain genes or sequences important to regulation of replication
(Chattoraj 2000) and copy number (Chattoraj 2000; del Solar and
Espinosa 2000). Unlike genetically engineered, high-copy num-
ber (100 copies per cell, for example) plasmids used in molecular
biology, most plasmids in nature are present as single or low copy
(5–8 copies per cell, for example) (Adamczyk and Jagura-Burdzy
2003). Despite their large size (>100 kb), many of these mobile
genetic elements are maintained due to their efficient regulation
of plasmid replication (Chattoraj 2000), copy number (Adamczyk
and Jagura-Burdzy 2003; Chattoraj 2000; del Solar and Espinosa
2000), and partitioning between daughter cells following cell di-
vision (Adamczyk and Jagura-Burdzy 2003).

Plasmids can be maintained in the absence of selection pres-
sure (that is, antibiotic usage) via a “plasmid-addiction” system,
wherein the plasmid contains genes that specify “toxin” along
with “antidote.” Cells that maintain the plasmid are protected
while those that lose the plasmid are killed by the plasmid toxin
(Dao-Thi and others 2002). Not all plasmids have the ancillary
genes necessary for their persistence and ultimate survival within
a bacterial population; plasmid loss can occur at a frequency of
0.304/generation. Therefore, without selection pressure to main-
tain the plasmid within the bacterial population, a plasmid can be
completely lost after 30 generations (Lenski and Bouma 1987).
Plasmids can coevolve with their bacterial host, however, and
be maintained within the bacterial population in the absence of
antibiotic selection (Dahlberg and Chao 2003).

Plasmids can provide the bacterial host selective advantages
that can ensure the maintenance and survival of the organism
(Chu and others 2001; Guerra and others 2002) as well as the
plasmid’s own survival (Enne and others 2004). Once the resis-
tance gene pool is spread into the indigenous bacteria, there may
be a better chance of persistence and mobility, thereby increasing
the gene frequency in local populations.

Transposons
Transposons are genetic elements that physically transpose

from one genetic position, within the chromosome or plasmid
in which they reside, to another. Insertion within a transferable or
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Figure 7 --- Transposon. Insertion of transposable element can inactivate a gene through its physical insertion into
the gene’s open reading frame (ORF), the actual sequence that is translated into protein/gene product, or alter gene
expression through its insertion into region upstream of its ORF. Transposon’s own promoter can then influence
transcription of gene(s) downstream of its insertion point.

conjugative plasmid can provide a fortuitous means for dissem-
ination and propagation of a genetic element. “Minimal” trans-
posons, known as insertion sequence (IS) elements, contain just
transposase and the inverted, repeat (IR) sequences that flank the
element. The transposase recognizes core IR sequence and tar-
get sequence into which the transposon inserts itself through a
“cut and paste,” RecA-independent mechanism (Reznikoff 2003).
The transposon can either vacate its current position in the chro-
mosome or plasmid or copy itself during transposition (Berg and
others 1984). The excision and insertion rate for transposons vary
(Egner and Berg 1981) depending on site of insertion (Egner and
Berg 1981), GC (guanine: cytosine) composition (Lodge and oth-
ers 1988), and chromatin structure (Lee and others 1987; Lodge
and Berg 1990; Signon and Kleckner 1995).

The transposon’s insertion into a new gene can have the same
effect as introduction of a single nucleotide into the gene’s open
reading frame, causing a frame-shift, inactivating this gene as well
as others downstream within the operon (Figure 7). Transposons
can also decrease or increase promoter activity, directly or indi-
rectly, by disrupting the promoter sequence, inactivating ancillary
genes that regulate promoter activity, or providing a secondary
promoter for transcription of gene(s) downstream of the promoter
(Wang and Roth 1988). Transposons can also acquire and “mo-
bilize” ancillary genes, creating composite transposons follow-
ing IS upstream and downstream of bacterial gene(s), obtaining
antibiotic resistance (Liebert and others 1999), heavy metal re-
sistance (Liebert and others 1999), and bacteriocin (Horn and
others 1991), catabolic (Tan 1999) and virulence genes (Bacciu
and others 2004; Lee and others 1985). Transposons associated
with antibiotic resistance are composites of IS elements flank-
ing an antibiotic resistance gene (for example, tetracycline resis-
tance transposon, Tn10). Unlike plasmids, the same transposon or
transposon class can coexist in the same cell in multiple copies,
provided multiple copies of the gene(s) borne by the element
do(does) not have a detrimental effect on its bacterial host (Nor-
gren and Scott 1991). In addition to the ability of transposons to
move genetic information themselves, they can also serve as fo-
cal points for recombination that allow re-assortments (Berg and
others 1998), rearrangements (Szabo and others 1999), deletions
(Szabo and others 1999), and insertions of new and old genetic
information, accounting for the genetic plasticity evident in many
bacterial species (Hofreuter and Haas 2002; Schneider and others
2002; Warren and others 2000).

Transposons vary with regard to where within a bacterial
genome they can insert themselves, which is based on the size of
the target recognition site. For “mutator” transposons such as Tn5
(Goryshin and others 1998), and Tn10 (Pribil and Haniford 2000),
the target sequence is short. For a 5-bp recognition target se-
quence, a 4000000 bp genome (50% GC content) is expected to
contain 3906 random target sites for transposon insertion (Haapa-
Paananen and others 2002). Although mutator transposons are
expected to insert randomly within a bacterial genome, there are
“hot spots” and “cold spots” from transposon insertions (Lee and
others 1987). Depending on the bacterial host, these transposons
vary in transposition frequency, and rate of excision and/or inser-
tion (Goldberg and others 1990). Other composite transposons
such as Tn7 a have a longer recognition site, effectively having
a single insertion site; insertion is, therefore, contingent on the
presence of this sequence within the bacterial genome (Waddell
and Craig 1989).

There are several composite transposons, where regulation of
antibiotic resistance gene(s) is tied into control of transposition
(Tomich and others 1980; Tribble and others 1999) and transmis-
sion (Tribble and others 1999). Low, inhibitory concentrations of
an antibiotic induce expression of both the antibiotic resistance
gene and the transposase (Tomich and others 1980), resulting in
the subsequent amplification and propagation of the transposable
element.

As for plasmids, one class of transposons is capable of conjuga-
tion, independent of helper plasmids (Salyers and others 1995).
These conjugative transposons are remarkable in their movement
across broad phyla, capable of moving between Gram-positive
and Gram-negative bacteria (Roberts 1990). Conjugative trans-
posons have been linked to widespread dissemination of resis-
tance to vancomycin (de Lencastre and others 1999; Quintiliani
and Courvalin 1996), macrolide, lincosamide, streptogramin B
(MLSB [Chung and others 1999a, b; Roberts 1996b]), and tetra-
cycline (Franke and Clewell 1981; Nikolich and others 1994).

Integrons
Integrons are important catalysts in the development, dissem-

ination, and diversity of multiple drug resistance. They are ge-
netic elements similar to transposons in the possession of a cut–
paste recombinase, referred to as the integrase or IntI. Adjacent
to intI, is an integration site attI (Stokes and others 1997). IntI
pastes gene(s) into attI site that possess the enzyme’s target core
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Figure 8 --- Class 1 Integron.
Integrase, IntI1 recognizes attC (59
be) sequence of gene cassette and
mediates excision of the gene
cassette into a circular intermediate
(Collis and others 1993) and/or its
insertion into attC site, producing
integrons In3 and In4 shown in this
figure.

recognition sequence, GTTRRRY, part of the signature 59 base
element (be) sequence of integron gene cassette(s) (Stokes and
others 1997). A single integron can acquire multiple genes in
tandem, and may contain as many as eight genes (Naas and oth-
ers 2001). Within intI1, there is an internal promoter that drives
expression of gene(s) downstream of the integration site attI (Col-
lis and others 1995) (Figure 8). Transcription of integron gene
cassettes decreases the further the integron gene cassette is from
this promoter (Collis and others 1995). Exceptions are those gene
cassettes that possess their own promoter (Naas and others 2001).

There are 8 classes of integrons, based on genetic similari-
ties and differences in IntI recombinase. Two of the integron
classes—4 and 5—have only been described in vibrios (Mazel
and others 1998). Currently, no antibiotic resistance gene cas-
sette(s) have been identified within these integrons (Mazel and
others 1998). Integron classes 6 through 8 have been isolated
from a soil ecosystem (Nield and others 2001), and several unique
gene cassettes have been identified within these “new” integrons,
including genes with similarity to aminoglycoside phosphotrans-
ferase and RNA methylase. Their contribution to antibiotic resis-
tance, however, is currently unknown (Stokes and others 2001).
The three remaining integron classes—1, 2, and 3—are associ-
ated with antibiotic resistance (Arakawa and others 1995; Stokes
and Hall 1989). The class 1 integrons have been well character-
ized, and possess additional genes, downstream of the attI site and
their resident gene cassette(s) which include a functional sulfon-
amide resistance gene, sul1 (Stokes and Hall 1989) and partially
deleted, nonfunctional quaternary ammonium resistance gene,
�qacE (Paulson and others 1993). The class 1 integrons are,
in and of themselves, not mobile, but they do reside on trans-
posons and plasmids (Liebert and others 1999) that ferry them
around within the microbial world. It is, therefore, not surpris-
ing to find their widespread dissemination in nature (Holmes and
others 2003; Nield and others 2001). Integron gene cassettes en-
code resistances to 6 classes of antibiotics and a disinfectant,
quaternary ammonium, representing 51 distinct resistance genes
and 9 mechanisms for resistance (Fluit and others 1999). The

only resistances not ascribed to integrons are the tetracyclines
and several of the Gram-positive-specific antibiotics (for exam-
ple, vancomycin and streptogramins).

Once believed to be limited in distribution to Gram-negatives,
class 1 integrons have now been identified in several Gram-
positive bacteria (Clark and others 1999; Martin and others 1990;
Nandi and others 2004; Nesvera and others 1998). Class 1 inte-
grons and their associated resistance genes have been identified
in clinical (Heir and others 2004b; Soto and others 2003; Zhao
and others 2003b) and environmental isolates (Nandi and others
2004; Petersen and others 2000; Roe and others 2003); foodborne
pathogens, including Salmonella (Chen 2004; Goldstein and oth-
ers 2001; Randall and others 2004), E. coli O157 (Zhao and others
2001a), Yersinia enterocolitica (Soto and others 2003), and C. je-
juni (Lee and others 2002); commensals (Barlow and others 2004;
Hofacre and others 2001; Lu and others 2003; Nandi and others
2004; Roe and others 2003); veterinary pathogens isolated from
various animal sources (Bass and others 1999; Goldstein and oth-
ers 2001; Hudson 2000; Sanchez and others 2002; Schmidt and
others 2001); and retail meats (Chen 2004; Roe and others 2003).
Their distribution within bacterial populations varies depending
on animal source (Goldstein and others 2001), possibly reflecting
selection pressures or ecology of each animal niche.

Other mechanisms of genetic exchange
Although conjugation (bacterial cell-to-cell contact allowing

transfer of DNA) is probably the most efficient means of antibi-
otic resistance spread, other mechanisms—transformation and
transduction—also play a role. Transformation involves the up-
take of naked DNA followed by its subsequent integration into the
genome of the bacterial cell. This process is limited in nature to
40 known bacterial species including Neisseria, Acinetobacter,
ε-proteobacteria, Helicobacter, Campylobacter, Bacillus, and se-
lect Streptococcus species (Lorenz and Wackernagel 1994). Anal-
ysis of bacterial genomes, however, suggests that more microor-
ganisms, for example, E. coli, Lactococcus, and L. monocyto-
genes, may be or were capable of natural transformation earlier
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in their evolution (Claverys and Martin 2003). Bauer and others
(1999) reported that E. coli developed competence and took up
free plasmid DNA in model food systems (milk, carrot juice, and
soy drink) via transformation. Transformation appears to occur
frequently among several members of this select group, evident
from the “mosaic” nature of their genomes (Claverys and others
2000). Depending on the microorganism, transformation is lim-
ited within the bacterial population, and is influenced by growth
phase and restricted in acceptability of donor DNA for uptake
(Lorenz and Wackernagel 1994). Restriction–modification sys-
tems limit the overall efficiency of transformation for distantly
as well as closely related species or strains (Stein and others
1988).

Bacteriophages are also important players in ferrying gene(s)
among microorganisms. At low frequency, phages can mistak-
enly package random bacterial DNA fragments (plasmid or chro-
mosome) and subsequently transmit the genetic information to a
new bacterial host. Referred to as generalized transduction, this
process may explain dissemination of the Salmonella MDR lo-

cus of DT104 among S. enterica serotypes and strains (Boyd and
others 2001; Cloeckaert 2000b; Doublet and others 2003; Me-
unier and others 2002). Lysogenic19 phages inadvertently incor-
porate bacterial DNA flanking their integration site when phage
DNA imprecisely excises itself from the bacterial host chromo-
some. This genetic information is then passed on to the new host
cell upon infection and integration of the phage genome into the
chromosome. This process of specialized transduction is impor-
tant in the evolution of both phage and host. Bacteriophages have
acquired ancillary genes that encode toxins, lipopolysaccharide
modifying enzymes, and other virulence factors (Canchaya and
others 2003) as well as antibiotic resistance genes (Muniesa and
others 2004). However, the probability at which either process,
generalized in contrast to specialized transduction, may occur in
nature is influenced by the frequency at which bacterial DNA is
inadvertently incorporated into the phage capsid (Sternberg and
Maurer 1991), the host range of the phage (Chibani-Chennoufi
and others 2004), and inducing host recombination (Sternberg
and Maurer 1991).

19 lysogenic: harboring a prophage as hereditary material (definition
from Merriam Webster’s Medline Plus: www.nlm.nih.gov/medlineplus/mplus
dictionary.com).
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