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Vegetation samples from King George Island, Antarctica (62�050S, 058�230W) were collected in the austral
summer of 2004–2005. Lichens (Usnea aurantiaco-atra and Usnea antarctica), mosses (Sanionia uncinata,
Syntrichia princeps and Brachytecium sp.), and one angiosperm (Colobanthus quitensis) species were ana-
lyzed for persistent organic pollutants as well as d13C and d15N stable isotopes. The following contami-
nants were found above the method detection limit (MDL): HCB (0.141–1.06 ng g�1 dry weight), HCHs
(<MDL to 1.20 ng g�1 dw), DDTs (<MDL to 1.73 ng g�1 dw), PCBs (7.76–18.6 ng g�1 dw) and PBDEs
(0.146–0.811 ng g�1 dw). In all cases, levels in mosses were higher than in lichens (one order of magni-
tude higher for OCs), suggesting that specific biogeochemical processes were involved in the transport,
exposure and absorption for each group. Carbon stable isotope ratios showed clearly different ranges
for lichens (d13C from �21.13‰ up to �18.43‰) and mosses (�25.99‰ to �21.64‰). The only angio-
sperm species investigated exhibited 13C signature within the moss range. A large range of d15N was
found (�7.67‰ to 20.75‰) and seemed to be related to nitrogen uptake from different animal-derived
sources. Pearson’s correlation showed significant results for some contaminants (e.g. HCHs/HCB and
PCBs/DDTs) and suggested the influence of the origin of both nitrogen and pollutants, notably taking sec-
ondary sources (animal excrements/remains, for instance) into consideration.

� 2011 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

Antarctica still is one of the least polluted regions on Earth,
what provides unique opportunities for studying environmental
pollution processes at both local and global scales (Borghini
et al., 2005). Even though Antarctica has had limited direct
exposure to persistent organic pollutants (POPs), the atmosphere
represents a source of contaminants through long range transport.
According to a mechanism known as ‘‘global distillation’’,
semi-volatile compounds evaporate in warmer regions and are
atmospherically transported to colder regions (i.e., high altitudes/
latitudes) where they are deposited and enter the ecosystem
(ARQP, 2007; Cipro et al., 2010). Oceanic currents and animals also
play a minor role in this transport as described in Roosens et al.
(2007) and Choy et al. (2010).

Lichens and mosses have been extensively used in environmen-
tal pollution studies throughout the world, since their collection is
relatively easy and they can absorb contaminants directly from the
sevier OA license.
air. In the Antarctic environment, a variety of contaminants has
been reported in these organisms such as trace metals (Poblet
et al., 1997) and radioactive elements (Mietelski et al., 2000). Infor-
mation on POPs, especially PBDEs, is scarce in these matrices (see
Borghini et al., 2005; Yogui and Sericano, 2008).

According to Liu et al. (2010), d13C has been extensively used to
examine physiological, ecological, and biogeochemical processes
related to C cycling, providing insights to the interactions between
plants and environmental factors at a variety of temporal and spa-
tial scales (Farquhar et al., 1989; Israeli et al., 1996). d15N, on the
other hand, has been recognized as an effective tool holding
source-specific information for tracing the deposition of N pollu-
tants and N availability to plants (Robinson, 2001). Because of
the close correlation between C and N, d13C and d15N are recog-
nized as a biologically important stable isotope pair and are
frequently used in combination to investigate N supply and C
fixation occurring from individual organism to ecosystem level
(e.g. Hietz et al., 1999; Robinson et al., 2000). Xiao et al. (2010)
state that this isotope pair is used to understand mixing processes,
transport pathways, deposition, and history of atmospheric
pollutants in the environment (Xiao and Liu, 2002; Liu et al.,
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2009). The d15N values of atmospheric N sources range from �15‰

to +10‰, with the oxidized N (NOx) more positive and the reduced
N (NHx) more negative (Heaton, 1990; Xiao and Liu, 2002).

The aim of this work is to determine concentration of several
POPs in Antarctic vegetation as well as their carbon and nitrogen
stable isotope signatures. Correlation between these variables is
also investigated in order to better understand pollution processes
in Antarctica.
2. Materials and methods

2.1. Area of study and sample collection

King George Island (62�050S 58�230W), the largest one of the
South Shetlands Islands, is separated from the northern portion
of the Antarctic Peninsula by the Bransfield Strait. The island is
mostly ice-covered and even during summer an ice cap remains
over at least 90% of its surface area (SCAR, 2010). Ice-free areas
are abundantly vegetated by lower plants such as lichens and
mosses (Lee et al., 2009). In the present study, plants were col-
lected at eleven sites along the coast of Admiralty Bay, the largest
fjord-like embayment on King George Island encompassing a sur-
face area of 122 km2 (Rakusa-Suszczewski et al., 1993). The coast
of Admiralty Bay is fairly irregular alternating between gravel/san-
dy beaches, rocky shores and glaciers along its ca. 84 km long
shoreline (Rakusa-Suszczewski, 1995). Its climate is predomi-
nantly cold oceanic, characteristic of maritime Antarctica. It can
be considered relatively warm and humid, supporting a substantial
bryophyte flora including mosses and liverworts, lichens, and some
freshwater algae. Bryophytes predominate in moister and more
sheltered habitats, while lichens in more arid and exposed rocky
habitats (Kim et al., 2007).

Samples were collected in the austral summer, from early
December 2004 to early January 2005. Plants were collected by
hand, and carefully shaken to remove animal-related debris and/
or soil particles. They were then stored in clean containers (previ-
ously combusted at 450 �C for 4 h), frozen at �20 �C upon return to
the Brazilian Research Station (Estação Antártica Comandante
Ferraz), and kept frozen until analysis.
2.2. Chemical analyses

Organochlorine (OC) analyses were performed at University of
São Paulo (Brazil). Laboratory protocol was based on MacLeod
et al. (1986) and quality assurance/quality control (QA/QC)
followed guidelines described by Wade and Cantillo (1994). Briefly,
10 g of wet sample were ground with anhydrous Na2SO4 and
surrogate (PCB103) was added before extraction in a Soxhlet appa-
ratus for 8 h with 80 mL of n-hexane and methylene chloride (1:1,
v/v). The extract was concentrated to 1 mL and cleaned up in a
column filled (from top to bottom) with 16 g alumina and 8 g silica
gel (both 5% deactivated with water). The extract was eluted with
100 mL of methylene chloride and subsequently concentrated to
900 lL. Finally, internal standard (TCMX, used to estimate surro-
gate recovery) was added to the purified extract prior to injection
in the gas chromatograph.

OC analyses were run in a gas chromatograph equipped with an
electron capture detector (GC-ECD, Agilent Technologies, model
6890N). Hydrogen was used as carrier gas at constant pressure
(13.2 psi, i.e. 91.01 kPa). The injector was operated in splitless
mode and kept at 300 �C. The capillary column used was a DB-5
(30 m length � 250 lm internal diameter � 0.25 lm film thick-
ness). The detector operated at 320 �C using N2 as makeup gas at
a flow rate of 58 mL min�1. The oven was programmed as follows:
70 �C for 1 min, 5 �C min�1 to 140 �C (1 min), 1.5 �C min�1 to 250 �C
(1 min) and 10–300 �C (5 min). The investigated compounds were
PCBs (IUPAC Nos. 8, 18, 28, 31, 33, 44, 49, 52, 56, 60, 66, 70, 74, 77,
87, 95, 97, 99, 101, 105, 110, 114, 118, 123, 126, 128, 132, 138, 141,
149, 151, 153, 156, 157, 158, 167, 169, 170, 174, 177, 180, 183, 187,
189, 194, 195, 199, 201, 203, 206 and 209), DDTs (o,p0-DDE, p,p0-
DDE, o,p0-DDD, p,p0-DDD, o,p0-DDT, and p,p0-DDT), HCB, HCHs (a,
b, c, and d isomers), chlordanes (a- and c-chlordane, heptachlor,
and heptachlor epoxide), mirex and drins (aldrin, dieldrin, and
endrin). Surrogate recovery ranged from 98% to 111%. Detection
limits were set as three times the standard deviation (r) of seven
method blank replicates. Spiked matrices were recovered within
the acceptance ranges (i.e., 40–130% for at least 80% of the spiked
analytes) suggested by Wade and Cantillo (1994). Method valida-
tion was performed using NIST SRM 1945. Blanks were included
in every analytical batch (usually 10–12 samples) and all data were
blank-subtracted.

PBDE analyses were performed at Texas A&M University (USA)
following procedures described in Yogui and Sericano (2008).
Briefly, approximately 10 g of wet plant tissue was mixed with
40 g of anhydrous Na2SO4 and extracted with 300 mL of methylene
chloride using a tissumizer (PRO Scientific Inc., model PRO250).
Plant extracts were extensively cleaned up with sulphuric acid, sil-
ica/alumina chromatography and gel permeation chromatography/
high performance liquid chromatography (GPC/HPLC). A suite of 36
di- through hepta-BDEs was measured including the following
congeners: 7, 8, 10, 11, 12, 13, 15, 17, 25, 28, 30, 32, 33, 35, 37,
47, 49, 66, 71, 75, 77, 85, 99, 100, 116, 118, 119, 126, 138, 153,
154, 155, 166, 181, 183 and 190 (numeration according to the
same IUPAC system used for PCBs. Dry and lipid weights were
gravimetrically determined using an analytical balance following
standard procedures used at the Geochemical and Environmental
Research Group (GERG) facilities.

Stable isotope analyses were performed at University of La Ro-
chelle (Plateau Analyses Elementaires et Isotopiques). Samples
were ground and lyophilized. Clean up was performed in a test
tube containing 100 mg of sample and 4 mL of cyclohexane. The
mixture was shaken for an hour, then centrifuged for separation
(as many times as needed, until the liquid phase, which is dis-
carded, comes out clear) and dried at 50 �C for 48 h. Purified sam-
ples were analyzed using a Thermo Scientific Delta V Advantage,
ConFlo IV interface (NoBlank and SmartEA) and Thermo Scientific
Flash EA1112 Elemental Analyzer. Each injection corresponded to
1 mg of sample encapsulated in tin cups, and there were no repli-
cates. Pee Dee Belemnite and atmospheric nitrogen were used as
standards for calculation of d13C and d15N, respectively. Based on
replicate measurements of internal laboratory standards, experi-
mental precision is of ±0.15‰ and ±0.20‰ for d13C and d15N,
respectively.
3. Results and discussion

3.1. Organic pollutants

Average concentrations of POPs are shown in Table 1. PCBs pre-
sented the highest concentration among POPs in all plant species,
exhibiting values at least an order of magnitude higher than all
other contaminants. Similar distribution of POPs was observed by
Borghini et al. (2005) for several moss species (Bryum argenteum,
Pottia heimii and Ceratodon purpureus) collected in Antarctica at
latitudes ranging from 72� to 77�S, sites possibly subject to distinct
contaminant trapping effects due to colder temperatures. Total
PCBs found by Borghini et al. (2005) ranged from 23 to 34 ng g�1

dry weight. DDTs were an order of magnitude lower, while HCB
and HCHs were 1–2 orders of magnitude lower than PCBs. Similar
trends in organochlorine pattern between both studies may be an



Table 1
Average concentration of POPs (ng g�1 dry weight) and standard deviations (when possible) in plants collected at King George Island, Antarctica
during the austral summer 2004–2005.

Angiosperm Mosses Lichen

Colobanthus quitensis Brachitecyum sp. Syntrichia princeps Sanionia uncinata Usnea spp.
n = 1 n = 1 n = 2 n = 7 n = 6

HCB 1.01 0.779 1.06 0.811 ± 0.18 0.141 ± 0.10
P

HCHs 1.05 <0.18 <0.18 1.20 ± 0.81 0.205 ± 0.08
P

DDTs <0.11 1.22 1.73 1.62 ± 0.58 0.353 ± 0.04
P

PCBs 14.5 15.7 16.8 18.6 ± 2.5 7.76 ± 2.3
P

PBDEs 0.328 0.276 0.718 0.893 ± 0.28 0.236 ± 0.05
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indication of the long range transport and exposure characteristics.
Bacci et al. (1986), whose work investigated the genus Usnea and
Sanionia uncinata (there described as Drepanocladus uncinatus, a
synonym), had observed similar patterns two decades ago. This
may be associated to the long lifespan of such organisms, whose
age estimation may reach over 500 years (Tatur et al., 1997) as well
as very low productivity rates (Glime, 2007). The combination of
such factors may account for a large difference in PCBs and PBDEs
concentrations due to the more recent environmental inputs of the
latter. Levels of POPs in eggs of gentoo penguin collected at King
George Island also revealed large differences between PCBs and
PBDEs (Yogui and Sericano, 2009a; Cipro et al., 2010). Roosens
et al. (2007) also show this difference in soil from Adélie penguin
colonies and reference sites at Hop Island, Antarctica: PCBs totals
reach up to 328 pg g�1 dw and PBDEs totals were in none of the
cases superior to the limit of quantification of 200 pg g�1 dw.

Distribution of PCBs and PBDEs as a function of their respective
chlorination and bromination numbers (i.e., molecular weight) in
plant species is shown in Fig. 1. In the case of PCBs, there is a
prevalence of tetra-, followed by penta- and tri-CBs, except for
S. uncinata which exhibited a balanced distribution (�20%) from
tri- through hexa-CBs. Although concentration levels are on the
same order of magnitude, the pattern of PCBs in lichens in this
study is slightly different from the one found by Park et al.
(2010) that had a different congener composition aimed. Negoita
et al. (2003) presents results within this same quantitative range
for lichens from East Antarctica coast, however an even different
Fig. 1. Percent distribution of PCB and PBDE homologues in plants collected a
distribution: hexa, penta and tri-CBs, in this order. Nevertheless,
both of these previous studies strongly suggested the influence of
PCBs resulting from anthropogenic activity and/or local biotic ori-
gin rather than sole atmospheric transport as a significant pathway
of contamination. Indeed, it has been demonstrated that seabird
colonies represent a secondary source of contamination with per-
sistent organic pollutants (Roosens et al., 2007) or heavy metals
(Choy et al., 2010). In this respect, large colonies of penguins at
King George Island would likely constitute an input of POPs con-
tamination to terrestrial organisms such as lower plants. Since
Montone et al. (2001) found no evidence of local sources after ana-
lyzing the marine macroalgae Desmarestia sp., it is hereby hypoth-
esized that terrestrial plants are more likely to be affected by these
secondary sources (such as the local transport of pollutants in run-
off water or physiological factors, for instance).

With regard to PBDEs, tetra and penta homologues represented
over 90% of the total composition (Fig. 1). Such a distribution is
similar to commercial mixtures of penta-BDE, which has over
70% of its formulation comprised of BDE-47 (tetrabrominated)
and BDE-99 (pentabrominated) which also dominated the compo-
sition of plants. These are congeners of great environmental con-
cern since they are known to best bioaccumulate among PBDEs
(de Wit, 2002; Alcock et al., 2003; Darnerud, 2003; Hale et al.,
2003; Yogui and Sericano, 2009b). Homologue pattern correspon-
dence between penta-BDE technical mixtures and Antarctic vege-
tation suggests that PBDEs do not undergo major fractionation
during transport to Antarctica. The composition of brominated
t King George Island, Antarctica during the austral summer 2004–2005.



Table 2
Pearson’s product-moment correlation matrix between all paired variables investi-
gated in plants collected at King George Island, Antarctica during the austral summer
2004–2005. Significant results at a = 0.05 are marked with an asterisk.

HCB
P

HCHs
P

DDTs
P

PCBs PBDEs d15N

All samples
HCB 1.00
P

HCHs 0.48� 1.00
P

DDTs �0.33 0.17 1.00
P

PCBs �0.17 0.18 0.49� 1.00
PBDEs �0.35 �0.21 0.51� 0.33 1.00
d15N �0.19 �0.60� �0.01 0.17 0.55� 1.00

Mosses
HCB 1.00
P

HCHs 0.14 1.00
P

DDTs 0.49 0.91� 1.00
P

PCBs 0.41 0.75� 0.64� 1.00
PBDEs �0.21 0.52 0.30 0.13 1.00
d15N 0.39 �0.28 �0.42 �0.03 0.23 1.00

Lichens
HCB 1.00
P

HCHs 0.37 1.00
P

DDTs �0.50 0.01 1.00
P

PCBs �0.13 0.40 �0.44 1.00
PBDEs 0.15 0.72 �0.32 0.36 1.00
d15N 0.24 �0.28 �0.54 �0.28 0.38 1.00
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homologues in the samples resembles patterns observed in pen-
guin eggs (with deviation of samples in regard to penta-BDE not
superior to 5% for skuas and chinstrap penguins) and other vegeta-
tion samples collected at King George Island (Yogui and Sericano,
2008, 2009a). BDEs 47 and 99 were also prevalent congeners in
the composition of mosses from Norway (Mariussen et al., 2008),
probably due to the use of penta-BDE mixtures in Europe.

3.2. Stable isotopes

Stable isotope ratios of d13C and d15N are plotted in Fig. 2. Car-
bon stable isotope analysis showed a clearly different range for li-
chens (d13C from �21.13‰ up to �18.43‰) and mosses (d13C from
�25.99‰ up to �21.64‰). The sole angiosperm sample (Coloban-
thus quitensis) was within the mosses range. A previous study
(Lee et al., 2009), also in King George Island, showed similar trends,
however with some overlapping between moss and lichen ranges,
attributing the differences probably to plant physiology and bio-
chemistry. Overall, the d13C values of the mosses are more consis-
tent with that of C3 photosynthesis (Smith and Epstein, 1971).

Regarding nitrogen isotopes, Heaton (1986) suggests that once
deposited, urea and uric acid hydrolyze, producing a temporary
rise in pH, favoring the formation of ammonia, which easily volatil-
izes to the atmosphere. The kinetic fractionations accompanying
these steps result in strongly 15N-depleted ammonia, while the
remaining ammonium is 15N-enriched. These fractionations result
in plants around the excrement zone assimilating 15N enriched in
inorganic nitrogen while the species at the upland sites have
d15N signatures that reflect the d15N of the isotopically depleted
ammonia source. That is the reason why animal-derived nitrogen
uptake is associated with large d15N ranges (e.g. Erskine et al.,
1998). Typical values of d15N of seabird excrement and soil under
influence of the colonies range between 6‰ and 26‰ (Wada
et al., 1981; Mizutani and Wada, 1988; Cocks et al., 1998;
Wainright et al., 1998), which comes in agreement to the values
hereby presented, ranging from �7.67‰ up to 4.30‰ for lichens
and from �0.53‰ up to 20.75‰ for mosses.

Mosses are characterized by higher sensitivities to atmospheric
N supply due to the lack of a true root system to acquire N from
substratum (Liu et al., 2010). Unlike some lichens and algae,
mosses can barely utilize atmospheric N2 due to the lack of azoto-
bacteria, but the deposited N, which accounts for higher variability
as well. Overall, moister habitats and marine influence were
related to lower d13C and higher d15N (Lee et al., 2009), which
comes in agreement with our results, since mosses are more water
δδ

δ

Fig. 2. d13C and d15N values (‰) of lower plants (lichens are represented in closed, full
summer.
dependant than lichens. Interestingly, the only plant species with
true root system, C. quitensis, exhibited one of the highest 15N
enrichments. This may be explained by water uptake via roots
since dissolved ammonium (and its byproducts) is 15N-enriched.

3.3. Correlation between variables

Pearson’s product-moment correlation analysis was performed
between paired variables (see Table 2). Since a large range of d15N
was found (from �7.67‰ up to 20.75‰, i.e. a range of 28.42‰),
which is related to animal-derived nitrogen uptake, this variable
was also included in order to investigate if these nitrogen sources
would act as a secondary organic pollutants sources as well.

Significant positive correlations were found between HCB and
HCHs when all plants are taken into account. This is probably a
consequence of similar long range atmospheric transport processes
since these chemicals have high volatility. DDTs showed significant
correlation with both PCBs and PBDEs. These POPs have intermedi-
ate to low volatility. The moderate association between DDTs and
PCBs is hypothesized to be related to the plants long lifespan that
markers) collected at King George Island, Antarctica during the 2004–2005 austral
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would contribute to proportional contaminant burdens being
deposited after several depositional cycles in spite of the discrep-
ancy between the restrictions for these groups. This observation
is also plausible when mosses are taken separately. In regard to
mosses only, HCHs correlation with both DDTs and PCBs could
be related to the interaction of HCHs with the water phase (result-
ing from recent snowpack melting, or even water from glacier
melting that percolates a bird or seal colony, for instance), as they
are more water soluble, and not directly atmosphere-moss, since
mosses have tremendous ability to sequester water (Glime,
2007). The absence of correlation between PCBs and PBDEs is prob-
ably due to the temporal shifts in production, utilization and
restriction/banning policies throughout the world. The differences
in volatility might also play a role, since a PCB is more volatile than
its PBDE equivalent.

d15N correlations should be examined carefully. Two significant
correlations were observed when all plants are taken into consider-
ation: a negative correlation between d15N and HCHs, and a positive
correlation between d15N and PBDEs. As described above, uptake of
volatilized ammonia from animal-derived nitrogen sources leads to
depletion in d15N, while uptake of dissolved ammonium leads to
enrichment in d15N. Therefore, it is suggested that plant species
relying on the latter would have positive correlation between low
volatility contaminants and d15N. Conversely, plants relying on vol-
atilized ammonia would have negative correlation. This may ex-
plain the significant negative correlation between d15N and HCHs
(high volatility chemicals) and the positive correlation between
d15N and PBDEs (low volatility compounds). When lichens and
mosses are taken separately, no significant correlation is found
probably due to the relatively small sampling number and occa-
sional cross interference of nitrogen sources in a smaller sample
set; however it is noticeable that lichens results are generally more
negative than the ones for mosses, which indicates a higher depen-
dency on volatilized ammonia. The absence of correlation with
PCBs could be due to temporal issues already considered in this
work, but also to the comparatively higher volatility of PCBs when
compared to PBDEs.
4. Conclusions

Lichens and mosses present similar contamination patterns.
Overall, there is a predominance of PCBs, being one order of mag-
nitude higher than the other organochlorines (DDTs, HCB and
HCHs) and one to two orders of magnitude higher than PBDEs.
Considering the contamination levels, our results for lower plants
from King George Island are consistent with findings of previous
studies. Nonetheless, the use of carbon and nitrogen stable iso-
topes provides a deeper insight on the origin of POPs in these ter-
restrial plants.

Lichens and mosses exhibited clearly distinct fractionation of
carbon as observed in d13C ratios. Nitrogen stable isotope signa-
tures are less specific, but they apparently indicate a sensitivity
to the influence of animal-derived nitrogen and therefore, to its
source.

Correlation analyses showed significant results in some histor-
ically linked contaminant groups and suggested the influence of
the origin of both nitrogen and pollutants, notably taking second-
ary sources into consideration.
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