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Verocytotoxin (VT)-producing Escherichia coli (VTEC) infection

is associated with a spectrum of clinical manifestations that

includes diarrhea, hemorrhagic colitis, and the hemolytic

uremic syndrome (HUS). The occurrence of HUS in a minority

of individuals in outbreaks of VTEC infection is a function of

several pathogen and host factors. Pathogen factors include

the inoculum size and serotype of the infecting strain,

horizontally acquired genetic elements known as

pathogenicity islands, and probably the VT type. Host factors

that increase the risk of developing HUS include age,

pre-existing immunity, gastric acidity, the use of antibiotics

and anti-motility agents, and, probably, stress and genetic

factors that modulate host response to infection, such as

innate immunity and toxin receptor type, expression, and

distribution. A better understanding of the pathogen and

host determinants of HUS can aid in the development of

more effective public health strategies to reduce the risk

of developing HUS.
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Verocytotoxin (VT)-producing Escherichia coli (VTEC)
infection is associated with a spectrum of clinical manifesta-
tions that includes diarrhea, hemorrhagic colitis, and the
hemolytic uremic syndrome (HUS).1–3 Systemic VT toxemia
is considered to be central to the genesis of HUS.3 Although
over 200 different OH serotypes of VTEC have been isolated
from cases of human illness,4 only O157:H7 and a handful of
other serotypes are associated with HUS,5 suggesting that
bacterial factors other than VTs also contribute to the
development of HUS. The whole genome sequences of two
E. coli O157:H7 outbreak strains6,7 have revealed a large
number of candidate virulence factors, often present on
pathogenicity islands (PAIs), that may contribute to the
development of this syndrome. During outbreaks of E. coli
O157:H7 infection, only a proportion of infected individuals
develop HUS,8 suggesting that, in addition to pathogen
factors, host factors also contribute to its development. E. coli
O157:H7 is evolving and diversifying rapidly.9 Some
O157:H7 strains appear to be non-pathogenic for humans,10

whereas others may have developed an enhanced propensity
to cause HUS.11 The purpose of this paper is to review the
disease mechanisms of VTEC with special reference to the
pathogen and host determinants of HUS.

PATHOGEN DETERMINANTS OF HUS

The low infectious dose of E. coli O157:H7 (B100–500
organisms)12 is a major determinant of its ability to cause
severe and epidemic disease, although the underlying
mechanisms for this are not fully understood. Gastric acid
is an important first barrier to ingested pathogens, and thus
the reported resistance of the organism to gastric acid13 helps
to explain the low infectious dose.

Over 200 different serotypes of VTEC have been associated
with human disease, but outbreaks of disease and HUS have
been associated only with serotype O157:H7 and occasionally
with a handful of non-O157 serotypes, such as O26:H11,
O103:H2, O111:NM, O121:H19, and O145:NM. The ex-
planation for why only a restricted number of serotypes are
associated with HUS has been unclear. However, growing
evidence suggests that a major pathogen determinant of
serotypes that are associated with outbreaks and HUS is the
presence of specific horizontally acquired gene cassettes
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known as PAIs. The best known PAI is the locus of enterocyte
effacement (LEE),14–16 which allows the organism to colonize
the mucosal epithelial cells of, probably, the large bowel with
a characteristic ‘attaching and effacing’ cytopathology.17,18

LEE encodes the structural, accessory, and effector mole-
cules of a type III secretion system (TTSS),19 which is a
macromolecular complex spanning both bacterial mem-
branes that is used by many Gram-negative bacterial
pathogens to inject virulence factors directly into host cells
to subvert host cellular function for the benefit of the
pathogen.20 However, LEE cannot alone be the determinant
of outbreaks and HUS because several VTEC serotypes that
are not associated with HUS and outbreaks are also LEE-
positive. On the other hand, the type III secretion system also
secretes many other effector molecules, encoded outside the
LEE on other PAIs, that are referred to as non-LEE-encoded
effectors (Nle’s).21,22 At least three Nle-encoding PAIs (OIs
57, 71, and 122) have now been linked to non-O157 VTEC
that cause HUS,23 and the critical virulence function of the
proteins they encode, especially in OI-122, is being elucidated
in experimental animal models.24 It is thus becoming clear
that a number of PAIs, including LEE, play a major role in
enhancing the ability of various serotypes to cause HUS. It
should be noted that some O157:H7 strains appear to be
non-pathogenic for humans,10 whereas others may have
developed an enhanced propensity to cause HUS.11 However,
the genetic basis for these observations has not been fully
elucidated.

Human VTEC strains elaborate at least four potent
bacteriophage-mediated VTs: VT1, VT2, VT2c, and
VT2d.16,25 Each may be present alone, or in a combination
of two or three different VTs. VT1 is virtually identical to Shiga
toxin, but is serologically distinct from VT2c.3,26 The toxins
share a common polypeptide subunit structure, consisting of
an enzymatically active A subunit (B32 kDa) linked to a
pentamer of B subunits (B7.5 kDa). VTs are produced in the
bowel and are translocated intact into the circulation, although
the mechanisms of toxin translocation and distribution to
target endothelial cells in the renal glomeruli, gastrointestinal
tract, pancreas, and other organs and tissues27 are not fully
understood.28,29 After binding to the glycolipid receptor
globotriaosylceramide (Gb3)30 on the endothelial cell, the
toxins are internalized by receptor-mediated endocytosis.31

They then target the endoplasmic reticulum through the Golgi
by a process termed ‘retrograde transport.’31 Inside the host
cell, the A subunit is proteolytically nicked to give an
enzymatically active A1 fragment,26 which cleaves the
N-glycosidic bond at position A4324 of the 28S rRNA of the
60S ribosomal subunit.32 This blocks elongation factor-1-
dependent aminoacyl tRNA binding, resulting in the inhibi-
tion of protein synthesis.26 VTs may also damage eukaryotic
cells by apoptosis.33 Cytokines, especially TNF (tumor necrosis
factor)-a and IL1 (interleukin 1)-b, potentiate toxin action
through upregulation of the cellular receptor, Gb3. It is
thought that increased cytokine production might be the result
of VT action on monocytes.33

The different VTs show differences in specific binding
affinities and cytotoxic activities in cell culture,26,34 as well as
in tissue specificities35,36 and clinical syndromes in experi-
mental animals.37,38 Two or more binding sites for Gb3 have
been recognized on the VT1 B subunit,39 and the VT/Gb3
interaction is influenced by the length of the fatty acid side
chain in vitro.40 The clinical and pathophysiological implica-
tions of different toxin type and Gb3 conformations are not
fully understood. However, there is evidence that VT2 is
associated with more severe disease in humans,41 and,
further, that it may enhance gut colonization by VTEC.42

VT2c has been speculated to contribute to enhanced disease
severity associated with an emerging clone of E. coli
O157:H7.11

HOST DETERMINANTS OF HUS

Several host factors influence the risk of acquiring VTEC
infection and of developing HUS, including behavioral
factors (such as eating undercooked hamburger), age,43

immunity,44 health status,45 the use of antibiotics and anti-
motility agents,46 stress, and genetic factors.

The highest age-specific frequency of VTEC-associated
HUS is in infants and young children.43 The age-specific
frequency declines with increasing age and increases again in
the elderly. This age distribution of HUS correlates inversely
with the age-specific frequency of antibodies to VT1 and
VT2,44 suggesting that pre-existing immunity plays a
significant role in host resistance to HUS.

Gastric acidity is an important initial host barrier to
ingested pathogens. Evidence for its protective role against
E. coli O157:H7 infection is that individuals with low gastric
acidity (for example, owing to gastrectomy or pernicious
anemia) are at a significantly higher risk of developing HUS
than those with normal physiological gastric function.45

The genes that regulate colonization of the bowel by E. coli
O157:H7 may be modulated by hormone-like soluble factors
produced by other bacterial cells in a density-dependent
manner in a process referred to as ‘quorum sensing.’47

Interestingly, the quorum sensing pathway can also be
activated by host stress hormones such as epinephrine and
norepinephrine.48,49 The pathophysiological implications of
this, as well as the possible role of stress as a risk factor for
severe disease, are under study.

Host genetic factors may influence host–pathogen inter-
actions, including the innate immune response to infection
and the nature of the toxin–cell interaction. However,
knowledge of this is in its infancy.

CONCLUDING REMARKS

A better understanding of the pathogen and host determi-
nants of HUS can aid in the development of more effective
public health strategies to reduce the risk of developing HUS.
For example, knowledge of specific pathogen risk factors for
HUS can contribute to the identification of potential vaccine
candidates as well as to the improvement of diagnosis and
surveillance of high-risk VTEC to allow for more rapid
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recognition and containment of outbreaks, thus reducing
morbidity and mortality. Similarly, knowledge of host risk
factors, such as the use of antibiotics and anti-motility agents,
can help to modify behaviors that can mitigate the risk
of HUS.
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