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Prevalence and pathogenicity of Shiga toxin-producing Escherichia coli
in beef cattle and their products1,2

H. S. Hussein3

Department of Animal Biotechnology, University of Nevada, Reno 89557

ABSTRACT: During the past 23 yr, a large number
of human illness outbreaks have been traced worldwide
to consumption of undercooked ground beef and other
beef products contaminated with Shiga toxin-producing
Escherichia coli (STEC). Although several routes exist
for human infection with STEC, beef remains a main
source. Thus, beef cattle are considered reservoirs of
O157 and nonO157 STEC. Because of the global nature
of the food supply, safety concerns with beef will con-
tinue, and the challenges facing the beef industry will
increase at the production and processing levels. To be
prepared to address these concerns and challenges, it
is critical to assess the beef cattle role in human infec-
tion with STEC. Because most STEC outbreaks in the
United States were traced to beef containing E. coli
O157:H7, the epidemiological studies have focused on
the prevalence of this serotype in beef and beef cattle.
Worldwide, however, additional STEC serotypes (e.g.,
members of the O26, O91, O103, O111, O118, O145,
and O166 serogroups) have been isolated from beef and
caused human illnesses ranging from bloody diarrhea
and hemorrhagic colitis to the life-threatening hemo-
lytic uremic syndrome (HUS). To provide a global as-
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INTRODUCTION

The importance of beef safety increased since re-
porting the first 2 human illness outbreaks caused by
consumption of ground beef contaminated with Esche-
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sessment of the STEC problem, published reports on
beef and beef cattle in the past 3 decades were evalu-
ated. The prevalence rates of E. coli O157 ranged from
0.1 to 54.2% in ground beef, from 0.1 to 4.4% in sausage,
from 1.1 to 36.0% in various retail cuts, and from 0.01
to 43.4% in whole carcasses. The corresponding preva-
lence rates of nonO157 STEC were 2.4 to 30.0%, 17.0
to 49.2%, 11.4 to 49.6%, and 1.7 to 58.0%, respectively.
Of the 162 STEC serotypes isolated from beef products,
43 were detected in HUS patients and 36 are known
to cause other human illnesses. With regard to beef
cattle, the prevalence rates of E. coli O157 ranged from
0.3 to 19.7% in feedlots and from 0.7 to 27.3% on pas-
ture. The corresponding prevalence rates of nonO157
STEC were 4.6 to 55.9% and 4.7 to 44.8%, respectively.
Of the 373 STEC serotypes isolated from cattle feces
or hides, 65 were detected in HUS patients and 62
are known to cause other human illnesses. The results
indicated the prevalence of a large number of patho-
genic STEC in beef and beef cattle at high rates and
emphasized the critical need for control measures to
assure beef safety.

richia coli O157:H7 (Riley et al., 1983). Because of trac-
ing a large number of E. coli O157:H7 outbreaks to beef
in the United States during the past 23 yr (CDC, 1993,
2003; Rodrigue et al., 1995), most US studies focused
on this pathogen in beef cattle (Hancock et al., 1994;
Galland et al., 2001; Barkocy-Gallagher et al., 2003) or
their edible products (Doyle and Schoeni, 1987; Elder
et al., 2000; Barkocy-Gallagher et al., 2003). Worldwide,
other Shiga toxin-producing E. coli (STEC) serotypes
were isolated from beef cattle (Beutin et al., 1997; Pra-
del et al., 2000; Leomil et al., 2003) or their products
(Sekla et al., 1990; Leung et al., 2001; Khan et al., 2002)
and caused human illnesses (WHO, 1998; Blanco et al.,
2003; Bettelheim, 2006).

In addition to beef (CDC, 1993; López et al., 1997;
CDC, 2003), human infections were traced to vegetables
(Cieslak et al., 1993), raw milk (Martin et al., 1986;
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Herriott et al., 1994; Lahti et al., 2002), dairy products
(Morgan et al., 1993; Reid, 2001), and drinking water
(Yatsuyanagi et al., 2002) containing STEC. Other in-
fection routes included person to person (Reida et al.,
1994) and animal to person (Synge et al., 1993; Crump
et al., 2002). The infection caused human illnesses
(Griffin and Tauxe, 1991; Paton and Paton, 2000) rang-
ing from mild diarrhea to hemolytic uremic syndrome
(HUS) that could lead to death (Pavia et al., 1990; CDC,
1993; Cowden, 1997). Because beef cattle are considered
reservoirs for O157 (Hancock et al., 1994; Chapman et
al., 2001; Al-Saigh et al., 2004) and nonO157 STEC
(Schurman et al., 2000; Geue et al., 2002; Barkocy-
Gallagher et al., 2003), safety concerns with beef, espe-
cially in the ground form, will continue to be a major
challenge for the beef industry. This is critically im-
portant because recent evidence (Hussein and Bol-
linger, 2005a,b; Hussein and Sakuma, 2005) illustrated
a large number of pathogenic STEC serotypes to derive
from bovine origin. To be prepared to address current
and future safety concerns and challenges, it is critical
for the beef industry to develop strategies supporting
beef safety. This review is intended to provide a global
assessment of the beef cattle role in human infection
with STEC.

HUMAN DISEASE OUTBREAKS FROM STEC
OF BEEF CATTLE ORIGIN

In a large number of the reported outbreaks and spo-
radic cases of human illnesses, STEC infection was at-
tributed to consumption of undercooked ground beef or
other beef products (i.e., roast or smoked beef, sausage,
steak, or tri-tip, and veal) contaminated with O157 (Orr
et al., 1994; Cowden, 1997; CDC, 2003) or nonO157
(Caprioli et al., 1994; López et al., 1997; Henning et al.,
1998) serotypes. The human illnesses included (Nataro
and Kaper, 1998) mild diarrhea, abdominal pain, vom-
iting, bloody diarrhea, hemorrhagic colitis (HC),
strokes, and HUS. The HC is characterized by bloody
diarrhea, abdominal cramps, fever, and vomiting (Grif-
fin and Tauxe, 1991). The HUS is characterized by
thrombocytopenia, microangiopathic hemolytic ane-
mia, and acute renal failure due to production of toxins
that damage endothelial cells and trigger the clotting
mechanism (Donnenberg, 2002). The HUS is more com-
mon in infants, children, the elderly, and those with
compromised immune function (Paton and Paton,
2000). Although most HUS patients recover, some die
and some may develop strokes (Griffin and Tauxe, 1991)
or chronic renal failure (Remuzzi, 1987; Fitzpatrick et
al., 1991; Siegler et al., 1991). Other symptoms of STEC
infection include diabetes mellitus and necrotizing coli-
tis (Paton and Paton, 2000).

Evaluation of published reports in the past 23 yr
revealed 146 STEC outbreaks and sporadic cases of
human illnesses to be traced to consumption of beef
contaminated with various E. coli O157 strains (Bol-
linger, 2004). These strains belonged to E. coli O157:H7,

O157:H− (a nonmotile isolate), and others that were
not typed for the H antigen. Of these outbreaks and
sporadic cases, 88% were traced to ground beef, 89%
occurred in the United States, and 11% occurred in the
United Kingdom (8), Canada (2), Germany (2), Japan
(2), Argentina (1), and Central African Republic (1).
The large number of outbreaks and cases in the United
States could be explained by the high level of ground
beef consumption at fast food restaurants and by avail-
ability of E. coli O157 diagnostic methods. Some of the
outbreaks involved large numbers of affected people
(ranging from 303 to 736) as shown in Canada (Orr et
al., 1994), the United Kingdom (Cowden, 1997), and
the United States (CDC, 1993, 2003). These outbreaks
emphasized the role of beef as an important vehicle of
E. coli O157 transmission (CDC, 1993; USDA-APHIS-
VS, 1997; CDC, 2003).

A smaller number of outbreaks (6 total) of human
illnesses was attributed to infections with nonO157
STEC strains from contaminated beef (Bollinger, 2004).
These infections involved 8 STEC serogroups (O1, O2,
O15, O25, O75, O86, O111, and O160) and 3 serotypes
(O26:H11, O111:H7, and O111:H−). These outbreaks
were reported in Argentina, Australia, Germany, and
Italy and were traced to consumption of undercooked
ground beef or its sausage. Two of these outbreaks in-
volved large numbers of affected people (161 and 433)
as shown in Australia (CDC, 1995) and Argentina (Ló-
pez et al., 1997), respectively. The significance of
nonO157 STEC infections through contaminated beef
was illustrated in the incidence of HUS cases in 5 of
the 6 reported outbreaks (Bollinger, 2004). In these
outbreaks, most HUS patients were children or the el-
derly, reflecting the naivety of the immune system of
young children and the declining immune function of
the elderly (Paton and Paton, 2000). Although infection
with E. coli O26:H11 did not lead to HUS in the out-
break reported (Werber et al., 2002), it is known to
cause HUS (WHO, 1998; Anonymous, 2001; Blanco et
al., 2003).

BEEF CATTLE AS RESERVOIRS FOR STEC

Although various STEC strains have been isolated
from different animals (Beutin et al., 1993; 1995), they
have been shown to be more prevalent in ruminants
than in other animals (Beutin et al., 1993; Caprioli
et al., 1993; Beutin et al., 1995). In addition, human
illnesses due to STEC infection have been traced in
most cases to cattle (Bielaszewska et al., 2000; Crump
et al., 2002), their manure (Wilson et al., 1992; Cieslak
et al., 1993; Lahti et al., 2002), or their edible products,
especially beef (Riley et al., 1983; López et al., 1997;
CDC, 2003). A wide distribution of STEC among various
beef cattle categories was documented by isolation of
different serotypes from bulls (Čižek et al., 1999), cows
(Shinagawa et al., 2000; Gannon et al., 2002; Hussein
et al., 2003), heifers (Schurman et al., 2000; Thran et
al., 2001; Ezawa et al., 2004), steers (Schurman et al.,
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2000; Gioffré et al., 2002; Smith et al., 2004), and calves
(Gannon et al., 2002; Leomil et al., 2003; Cobbold et
al., 2004). Additionally, STEC are commonly detected
in cattle in feedlots (Hancock et al., 1997; LeJeune et al.,
2004; Padola et al., 2004) and under grazing conditions
(Gannon et al., 2002; Cobbold et al., 2004; Pearce et
al., 2004).

BEEF CATTLE AS TRANSIENT CARRIERS
OF STEC

Beef cattle have not been reported as long-term carri-
ers of STEC. Besser et al. (1997) reported that the dura-
tion of detected excretion of E. coli O157:H7 by individ-
ual US cattle was shorter than 1 mo in 63% of the cattle
tested. Similar results were also reported for Japanese
cattle (Ohya and Ito, 1999). It is worth noting that
the carriage of these pathogens was shown to fluctuate
significantly over time in US feedlots (Hancock et al.,
1997; Khaitsa et al., 2003; LeJeune et al., 2004). Testing
feedlot cattle in 13 states during winter showed a de-
crease in prevalence rate from 4.6 to 1.3% by increasing
the time on feed from 7 to 185 d (Hancock et al., 1997).
In a North Dakota study, however, the prevalence rate
rose during winter from 1.4% on arrival to 6.9% at 28
d on feed (Khaitsa et al., 2003). Testing cattle in 20
feedlot pens during spring also showed fluctuations in
the prevalence rates (15, 28, 22, and 12%) at different
times (7, 14, 28, and 42 d, respectively) on feed (LeJeune
et al., 2004). Shedding of STEC by beef cattle has been
shown to increase during the warm months, which is
consistent with the timing of most human illness out-
breaks (USDA-APHIS-VS, 1997). In the US, testing
beef cattle over 1 yr revealed the highest (9%) and low-
est (5%) prevalence rates for the fall and winter, respec-
tively (Cobbold et al., 2004). Similar results were re-
ported in Germany when 2 grazing beef herds were
tested over 2 yr (Geue et al., 2002). In our laboratory
(Thran et al., 2001), however, fecal testing of grazing
beef heifers over 1 yr revealed the highest (15%) preva-
lence rate to occur in winter and the lowest (4%) to
occur in the spring and fall. In another grazing study
(Jenkins et al., 2002), the highest (22%) and lowest
(6%) prevalence rates occurred in the summer and fall,
respectively. Testing cattle at slaughter for E. coli O157
revealed the highest and lowest prevalence rates to
occur in the warm and cold months, respectively, in
Finland (Lahti et al., 2001) and the United Kingdom
(Chapman et al., 2001; Paiba et al., 2002). In the United
States, testing Midwestern cattle (Barkocy-Gallagher
et al., 2003) at slaughter showed E. coli O157:H7 to be
more prevalent in the summer than in winter (12.9 vs.
0.3%) and nonO157:H7 STEC to be more prevalent in
the fall (27.1%) than in the summer or winter (14.0%).
In France (Pradel et al., 2000), 58 STEC serotypes were
prevalent at very high rates in the summer (85%) and
spring (46%), and the cattle were transient in infection.

PREVALENCE OF STEC IN BEEF CATTLE

Hussein and Bollinger (2005a) reviewed published
reports in the past 3 decades and summarized the prev-
alence of STEC in beef cattle feces and hides. In general,
the prevalence rates of E. coli O157 ranged from 0.3 to
19.7% in feedlot cattle, from 0.7 to 27.3% in cattle on
irrigated pasture, and from 0.9 to 6.9% in cattle grazing
rangeland forages. These observations suggest a high
potential for infection and reinfection of cattle with E.
coli O157 during grazing of the dense vegetation on
pasture. On the range, however, cattle travel in large
and less-dense areas seeking edible vegetation. With
regard to testing for E. coli O157 at slaughter, the prev-
alence rates ranged from 0.2 to 27.8%. Worldwide, the
prevalence rates of nonO157 STEC ranged from 4.6 to
55.9% in feedlot cattle and from 4.7 to 44.8% in grazing
cattle. With regard to testing for nonO157 STEC at
slaughter, the prevalence rates ranged from 2.1 to
70.1%. These observations indicate that nonO157 STEC
are prevalent in all beef production systems at rates as
high as 70.1%. The ranges of prevalence rate, however,
varied widely and could be explained by the significant
impact of environmental factors, by management prac-
tices on promoting or decreasing STEC prevalence, or
both.

Cattle hides have been identified as an important
source of microbial contamination of carcasses (Ridell
and Korkeala, 1993; Bell, 1997; McEvoy et al., 2000).
It has been shown that O157:H7 and nonO157:H7
STEC can be easily transferred from cattle hides to the
carcass (Barkocy-Gallagher et al., 2003). Because of the
role that cattle hides can play in carcass contamination
with STEC at slaughter, efforts (Bacon et al., 2000;
Elder et al., 2000; Barkocy-Gallagher et al., 2003) have
been devoted to evaluate its significance. Testing swab
samples from cattle hides at 12 US beef processing
plants in the fall revealed a 3.6% prevalence rate of E.
coli O157:H7 (Bacon et al., 2000). A higher prevalence
rate (10.7%) of E. coli O157 was reported when cattle
hides were tested in the summer at 4 Midwestern beef
processing plants (Elder et al., 2000). These different
prevalence rates could be explained by sampling time
(i.e., fall vs. summer). Because a large number of vari-
ables (e.g., management practices, diets fed, animal fac-
tors, and methods of STEC detection) can influence
STEC prevalence, comparisons among studies should
be carefully evaluated. Significant seasonal differences
in the prevalence rates of O157:H7 and nonO157:H7
STEC were also found (Barkocy-Gallagher et al., 2003)
preharvest (i.e., feces and hides) and postharvest (i.e.,
carcasses). In this study, testing fecal, hide, and carcass
swab samples from cattle at 3 Midwestern beef pro-
cessing plants over 1 yr (Barkocy-Gallagher et al., 2003)
revealed the prevalence of O157:H7 and nonO157:H7
STEC at high rates. The prevalence rates for O157:H7
and nonO157:H7 STEC, however, varied among cattle
hides (60.6 and 56.6%, respectively), feces (5.9 and
19.4%, respectively), and carcasses (26.7 and 58.0%,
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respectively). With regard to cattle hides, prevalence
of E. coli O157:H7 was highest in the spring, summer,
and fall (averaging 71.5%) and lowest in winter (29.4%).
Prevalence of nonO157:H7 STEC, however, was lowest
in the winter, spring, and summer (averaging 49.2%)
and highest in the fall (77.7%). In this study, no attempt
was made to serotype the nonO157:H7 isolates.

The concentration at which STEC is shed in feces
varies from animal to animal as demonstrated in a US
study (Zhao et al., 1995), where a range from 102 to 105

cfu of E. coli O157:H7/g of wet feces was observed. It
is important to note that quantitative fecal shedding
of STEC is considered (Omisakin et al., 2003; Ogden et
al., 2004) a more important factor than prevalence in
influencing the risk of human exposure and infection
with these foodborne pathogens. For example, preva-
lence of E. coli O157 in Scottish beef cattle at slaughter
was found (Ogden et al., 2004) to be greater (P < 0.05)
during the cooler months (11.2%) than during the
warmer months (7.5%). This is the reverse of the known
seasonality of human infections with STEC (WHO,
1998). Ogden et al. (2004) reported their high shedding
beef cattle (i.e., excreting > 104 cfu/g of wet feces) to shed
greater concentrations of E. coli O157 in the warmer
months, which may explain increased human infections
at that time. Interestingly, the high shedding cattle (9%
of the cattle tested) excreted the largest amount of E.
coli O157 (96%) produced.

PREVALENCE OF STEC IN BEEF PRODUCTS

Contamination of beef carcasses with STEC usually
occurs during removal of the hide or the gastrointesti-
nal tract (Elder et al., 2000; McEvoy et al., 2003). The
site and extent of carcass contamination subsequently
affect prevalence of STEC in various beef products.
Hussein and Bollinger (2005b) evaluated published re-
ports in the past 3 decades on STEC prevalence in beef.
With regard to E. coli O157, the results showed preva-
lence rates ranging from 0.01 to 43.4% in packing
plants, from 0.1 to 54.2% in supermarkets, and an aver-
age of 2.4% in fast food restaurants. In general, the
prevalence rates of E. coli O157 ranged from 0.1 to
54.2% in ground beef, from 0.1 to 4.4% in sausage, from
1.1 to 36.0% in unspecified retail cuts, and from 0.01
to 43.4% in whole carcasses. In 57% of the E. coli O157
studies evaluated by Hussein and Bollinger (2005b),
the beef samples were tested only for E. coli O157:H7.
This was due to the availability of simple methods to
detect this serotype (Bettelheim, 2003), which is known
for its high virulence (CDC, 2003). It is worth noting
that in the remaining 43% of the studies, the E. coli
O157 isolates were not typed for the H antigen. In gen-
eral, E. coli O157:H7 and O157:H− were detected on
the whole carcass and were isolated from various beef
products. These serotypes are known to cause major
outbreaks and sporadic cases of human illnesses, in-
cluding HC and HUS (CDC, 2003). Hussein and Bol-
linger (2005b) showed increased prevalence rates of E.

coli O157 in recent years, which could be explained
by the development and adaptation of more sensitive
methods (e.g., immunomagnetic separation) to detect
E. coli O157 strains (Chapman et al., 2001). Methods
designed to detect only E. coli O157 isolates, however,
usually underestimate the true prevalence of STEC
(Read et al., 1990).

In the same evaluation, Hussein and Bollinger
(2005b) found nonO157 STEC to be more prevalent in
beef products than E. coli O157. The prevalence rates
of nonO157 STEC ranged from 1.7 to 58.0% in packing
plants, from 3.0 to 62.5% in supermarkets, and an aver-
age of 3.0% in fast food restaurants. In general, the
prevalence rates of nonO157 STEC ranged from 2.4 to
30.0% in ground beef, from 17.0 to 49.2% in sausage,
from 8.6 to 49.6% in unspecified retail cuts, and from 1.7
to 58.0% in whole carcasses. Testing other beef products
such as steaks and ground veal revealed prevalence
rates of 19.0% (Zhao et al., 2001) and 62.5% (Samadpour
et al., 1994), respectively.

PATHOGENICITY OF STEC OF BEEF
CATTLE ORIGIN

For 23 yr, E. coli O157:H7 has been recognized (Riley
et al., 1983) as the cause of major outbreaks of human
illnesses in North America. Over 50% of the nonO157
STEC strains are also known for their pathogenicity
(WHO, 1998). Some of these strains have caused major
outbreaks of human illnesses worldwide (Mariani-
Kurkdjian et al., 1993; Karch et al., 1997; Morabito et
al., 1998). Examples of these include E. coli O26:H11,
O26:H−, O91:H10, O91:H21, O103:H2, O103:H−,
O111:H2, O111:H8, and O111:H− (WHO, 1998; Blanco
et al., 2003; Bettelheim, 2006). It is important to note
that not all STEC strains are harmful to humans and
pathogenicity of a STEC strain depends on production
of key virulence factors. Pathogenic STEC strains are
often referred to as enterohemorrhagic E. coli (EHEC)
and are known to produce 1 or 2 toxins that resemble
those of Shigella dysenteriae (O’Brien and Holmes,
1987). These are Shiga Toxin 1 (Stx1) and Shiga Toxin
2 (Stx2). Because of their toxic effects on Vero (African
green monkey kidney) cells (Konowalchuk et al., 1977),
pathogenic STEC strains are also known as verotoxin-
producing E. coli.

Although Stx1 and Stx2 are different proteins, en-
coded by different genes (stx1 and stx2, respectively),
their biological activities are similar (Acheson and
Keusch, 1996; Neill, 1997). These activities involve de-
purinating specific residues of the host cell’s ribosomes,
blocking the binding of aminoacyl tRNA to the ribo-
somes, and inhibiting protein synthesis (Saxena et al.,
1989). The toxins also bind to and damage the endothe-
lial cells in the intestine, kidney, and brain (Acheson
and Keusch, 1996). This results in formation of tiny
clots and other damage in capillary beds within the
kidney (Acheson and Keusch, 1996). Various STEC
strains are known to produce different toxins (Bettel-
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Table 1. Serotypes or serogroups of Shiga toxin-producing Escherichia coli (STEC) isolated from beef cattle1

Health category and related isolates

Caused hemolytic uremic syndrome2

O2:H5, O2:H6, O2:H7, O2:H29, O5:H−,3 O6:H−, O8:H2, O8:H19, O8:H21, O20:H19, O22:H8, O25:H2, O26:H11, O26:H−, O26:HUT4 (Kijima-Ta-
naka et al., 2005), O45:H2, O49:H−, O55:H−, O84:H−, O86:H− (Zweifel et al., 2005), O91:H10, O91:H21, O91:H−, O98:H−, O103:H2, O103:H−,
O105:H18, O105ac:H18,5 O111:H8, O111:H−, O112ac:H19,5 O113:H21, O118:H16, O118:H−, O119:H2, O119:H6, O121:H19, O125:H−, O128:H2
(Bollinger et al., 2005), O128ab:H2,6 O145:H25, O145:H28, O145:H−, O146:H21, O153:H25, O154:H−, O157:H7, O157:H−, O161:H−, O163:H19,
O165:H25, O165:H−, O171:H−, O172:H−, O174:H2,7 O174:H21, O174:H−, O177:H−, OR:H4,7 OR:H25, OR:H−, OUT:H2,8 OUT:H11, OUT:H25
(Sheng et al., 2005), and OUT:H−

Caused other illnesses9

O1:H2 (Bollinger et al., 2005), O1:H20, O2:H27 (Zweifel et al., 2005), O8:H−, O8:HUT, O15:H−, O20:H7, O22:H16, O22:H−, O26:H2, O26:H21
(Kijima-Tanaka et al., 2005), O26:H32, O28:H−, O39:H8, O45:H−, O70:H11, O74:H−, O75:H8, O76:H7, O77:H18, O82:H8, O84:H2, O88:H− (Kij-
ima-Tanaka et al., 2005), O91:H14, O91:HUT, O103:H25, O104:H7, O112:H21, O113:H4, O113:H7, O113:H−, O117:H7, O117:H19, O119:H−,
O126:H20, O128ab:H8, O128:H12, O128:HUT, O132:H−, O141:H−, O146:H28, O146:H−, O150:H−, O156:H25, O163:H−, O171:H2, OR:H19,
OR:HUT, OUT:H1, OUT:H4, OUT:H7, OUT:H8, OUT:H10, OUT:H14 (Zweifel et al., 2005), OUT:H16, OUT:H18, OUT:H19, OUT:H21,
OUT:H28, OUT:H33, OUT:H41, and OUT:HUT

Did not cause illnesses
O1:H18, O1:H45 (Kijima-Tanaka et al., 2005), O2 (Shaw et al., 2004; Renter et al., 2005), O2:H4, O2:H8, O2:H21 (Zweifel et al., 2005), O2:H25,
O2:H26, O2:H45 (Zweifel et al., 2005), O2:H−, O3:H7, O3:H12, O4:H4, O5 (Renter et al., 2005), O5:H7, O5:H27, O6 (Renter et al., 2005),
O6:H10, O6:H34, O6:H49, O7 (Renter et al., 2005), O7:H10, O8 (Shaw et al., 2004; Renter et al., 2005), O8:H5, O8:H8, O8:H16, O8:H20 (Zweifel
et al., 2005), O8:H25, O10, O11:H14, O11:H−, O15 (Shaw et al., 2004; Renter et al., 2005), O15:H16 (Zweifel et al., 2005), O15:H21, O15:HUT
(Kijima-Tanaka et al., 2005), O16:H2, O16:H21, O20 (Shaw et al., 2004), O20:H16, O20:H41, O20:H44, O20:HUT, O22 (Renter et al., 2005),
O22:H7, O22:H25, O22:HUT, O23:H15, O25, O25:H19, O25:H21, O25:HUT, O26, O28ac:H4,5 O28:H8, O28ac:H21, O28ac:H−, O29 (Renter et al.,
2005), O32:H7, O37:H10, O38 (Renter et al., 2005), O38:HUT, O39 (Renter et al., 2005), O39:H49, O39:H−, O40:H21, O42:H25, O43:H2,
O44:H15, O45:H8, O46:H11 (Kijima-Tanaka et al., 2005), O46:H38, O46:HUT (Kijima-Tanaka et al., 2005), O51:H−, O54:H2, O55:H2, O68:H−,
O69 (Renter et al., 2005), O70:H8, O74 (Renter et al., 2005), O74:H19, O74:H28, O74:H42, O74:H52, O74:HUT, O75, O75:H1, O76:H2,
O76:H21, O77:H39, O79:H19, O79:H−, O79:HUT, O81:H31, O82:H40, O83:H7, O84 (Shaw et al., 2004; Renter et al., 2005), O84:H8, O86,
O86:H2 (Bollinger et al., 2006), O86:H19 (Bollinger et al., 2005), O87, O87:H8, O87:H16, O87:H31, O88 (Renter et al., 2005), O88:H21,
O88:HUT, O90:H24, O91 (Shaw et al., 2004; Renter et al., 2005), O91:H8, O91:H49, O93:H19, O96 (Renter et al., 2005), O96:H19, O98 (Renter
et al., 2005), O101:H40, O102:H21, O103, O103:H11 (Kijima-Tanaka et al., 2005), O103:H14, O105:H8, O105:H−, O106 (Renter et al., 2005),
O106:H42, O108 (Renter et al., 2005), O108:H2, O108:H7, O109, O109:H16, O109:H−, O110:H2, O110:H40, O111, O111:H11, O111:H16,
O111:H21 (Zweifel et al., 2005), O112:H2, O112:H7, O113 (Shaw et al., 2004; Renter et al., 2005), O113:H11, O113:H19, O113:H27, O114:H−,
O115 (Renter et al., 2005), O116 (Renter et al., 2005), O116:H11 (Zweifel et al., 2005), O116:H21, O116:H28, O116:H−, O116:HUT, O117 (Renter
et al., 2005), O117:H16 (Zweifel et al., 2005), O117:H21, O119:H16, O119:H17, O119:H18, O119:H25, O119:H40, O119:HUT, O120, O121
(Renter et al., 2005), O121:H7, O123:H2, O123:H8, O123:H38, O124:H19, O125:H2, O125:H16 (Bollinger et al., 2006), O125:H19 (Bollinger et
al., 2005; 2006), O125:H27 (Bollinger et al., 2005), O125:H28 (Bollinger et al., 2005), O125:H47, O125:HUT (Bollinger et al., 2005), O126
(Renter et al., 2005), O126:H7, O126:H28, O127:H2 (Bollinger et al., 2006), O127:H19 (Bollinger et al., 2006), O127:H28 (Bollinger et al., 2005),
O128ab (Shaw et al., 2004), O128:H16 (Bollinger et al., 2006), O128:H20 (Bollinger et al., 2005), O128ab:H21, O130 (Renter et al., 2005),
O130:H11, O130:H38, O130:H43, O132 (Renter et al., 2005), O132:H2, O132:H18, O136 (Renter et al., 2005), O136:H1, O136:H2 (Zweifel et al.,
2005), O136:H12, O136:H16, O136:H− (Zweifel et al., 2005), O136:HUT (Bollinger et al., 2006), O138:H−, O140:H32, O141 (Renter et al., 2005),
O141:H7, O141:H8, O142 (Renter et al., 2005), O143:H2, O145 (Renter et al., 2005), O146 (Renter et al., 2005), O146:H1, O148:H8 (Zweifel et
al., 2005), O149:H19, O149:HUT, O150 (Renter et al., 2005), O150:H8, O152:H7, O152:H−, O153 (Renter et al., 2005), O153:H8, O153:H19,
O153:H21, O153:HR,10 O153:HUT, O156:H1, O156:H4, O156:HUT, O157, O157:H2, O157:H8, O157:H12, O157:H19, O157:H25, O157:H27,
O157:H38, O157:H43, O157:H45, O157:HUT, O158:H28 (Bollinger et al., 2005), O158:HUT (Bollinger et al., 2005), O159 (Renter et al., 2005),
O159:H12, O159:H28, O159:HUT, O160:H10, O160:H21, O160:H38, O160:H−, O161:H2, O161:H19, O161:HUT, O162 (Shaw et al., 2004),
O162:H7, O162:H27, O163 (Renter et al., 2005), O165:H8, O166:H2 (Bollinger et al., 2005), O166:H6 (Bollinger et al., 2006), O166:H20 (Bol-
linger et al., 2005), O168 (Shaw et al., 2004), O168:H8, O171 (Renter et al., 2005), O171:H38, O172 (Renter et al., 2005), O172:H16, O172:H21,
O174:H8, O174:H40, O174:H43, O174:HUT, O175:H8, O178:H19, O182:H21 (Zweifel et al., 2005), O211:H7, OR (Renter et al., 2005), OR:H8,
OR:H10, OR:H12, OR:H18, OR:H27, OR:H31, OR:H32, OR:H34, OR:H39, OX311 (Renter et al., 2005), OX712 (Renter et al., 2005), OX7:H16,
OX1312 (Renter et al., 2005), OX1812 (Renter et al., 2005), OX2512 (Renter et al., 2005), E2981:H−,13 E11362:H11,13 E11362:H21, E11362:H−,
E4087413 (Shaw et al., 2004), E5407113 (Shaw et al., 2004), E54071:H19, OUT (Shaw et al., 2004), OUT:H5, OUT:H20 (Bollinger et al., 2005),
OUT:H24, OUT:H27, OUT:H29, OUT:H30, OUT:H32, OUT:H34, OUT:H37, OUT:H38, OUT:H40, OUT:H42, OUT:H49, and OUT:HR.

1Unless otherwise indicated, the STEC serotypes or serogroups and their origin are listed in Hussein and Bollinger (2005a).
2The STEC serotypes were isolated from humans suffering from hemolytic uremic syndrome (WHO, 1998; Blanco et al., 2003; Bettelheim,

2006).
3A nonmotile isolate.
4An untypeable H antigen.
5Within each of the O28, O105, and O112 serogroups, certain antigenic relationships are represented by ‘a,’ a common factor and ‘c,’ a

specific factor (Lior, 1994).
6Within the O128 serogroup, certain antigenic relationships are represented by ‘a,’ a common factor and ‘b,’ a specific factor (Lior, 1994).
7A rough O antigen.
8An untypeable O antigen.
9 The STEC serotypes were isolated from humans suffering from a wide range of illnesses such as mild diarrhea, bloody diarrhea,

abdominal pain, ulcerative colitis, hemorrhagic colitis, and thrombotic thrombocytopenic purpura (WHO, 1998; Blanco et al., 2003; Bettelheim,
2006).

10A rough H antigen.
11The O174 antigen was formerly designated as OX3.
12OX7, OX13, OX18, and OX25 are provisional designations for new O serogroups.
13E2981, E11362, E40874, and E54071 are new provisional serogroups.
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Table 2. Serotypes or serogroups of Shiga toxin-producing Escherichia coli (STEC) isolated from beef products1

Health category and related isolates

Caused hemolytic uremic syndrome2

O2:H29, O4:H−,3 O5:H−, O8:H19, O14:H−, O20:H19, O22:H5, O22:H8, O23:H−, O26:H11, O45:H2, O50:H7, O84:H−, O91:H21, O91:H−,
O103:H2, O103:H21, O104:H−, O105:H18, O111:H−, O113:H21, O117:H4, O121:H19, O125:H−, O128:H2, O128ab:H2,4 O128:H7,
O137:H41, O145:H−, O146:H21, O153:H25, O157:H7, O157:H−, O163:H19, O165:H25, O165:H−, O172:H−, O174:H2, O174:H21, OR:H−,5

OUT:H2,6 OUT:H11, and OUT:H−

Caused other illnesses7

O1:H20, O6:H31, O8:H9, O8:H−, O8:HUT,8 O15:H27, O15:H−, O17:H18, O22:H16, O22:H−, O60:H19, O62:H−, O74:H−, O75:H8, O82:H8,
O91:H14, O110:H−, O113:H4, O113:H−, O117:H7, O146:H28, O171:H2, OR:H2, OR:H7, OR:H21, OUT:H4, OUT:H7, OUT:H8, OUT:H12,
OUT:H16, OUT:H18, OUT:H19, OUT:H21, OUT:H28, OUT:H47, and OUT:HUT

Did not cause illnesses
O1, O2, O3, O4:H21, O6, O6:H10, O6:H34, O7:H16, O7:H−, O8, O8:H16, O8:H30, O10, O15, O18ac,9 O20, O20:H12, O21, O22:H4,
O22:H54, O22:HUT, O23:H15, O25, O25:H21, O26, O27:H21, O28:H4, O30:H−, O38:H30, O39, O39:H49, O43:H38 (Li et al., 2005), O45,
O46:H8, O46:H38, O46:H−, O54:H2, O55, O55:H9, O56:H56, O57:H−, O59, O62:H8, O65:H48, O68, O70, O73:H16, O73:H31, O73:H−,
O74, O74:H37, O74:H39, O75, O79:H−, O81, O81:H26, O84, O86 (Hazarika et al., 2004), O87, O87:H16, O88, O88:H21, O88:H25,
O88:H49, O91, O98 (Hazarika et al., 2004), O100:H−, O103, O104, O104:H12, O106, O107:H7, O109, O110, O110:HUT, O111, O111:H7,
O111:H16, O112:H2, O113, O113:H19, O116:H21, O116:H−, O117, O117:H8, O119, O121, O123, O125ab:H−,4 O128, O128:H27,
O128:H35, O131, O132, O136, O138:H−, O139, O139:H19, O142, O142:H38, O144:H2, O145, O148:H8, O149:H10, O149:H45, O150:H8,
O151:H8, O151:H12, O153, O153:H8, O157, O159:H7, O160, O162, O162:H7, O163, O165, O166:H−, O168, O168:H8, O171, O171:H25,
O172, O172:H16, O174,10 O174:H8, OR, OR:H14, OR:H23, OR:H31, OR:H42, OR:H47, OR:H48, OX6,11 OX25,11 OC70:H49,11

OC86:H49,11 OUT, OUT:H5, OUT:H6, OUT:H9, and OUT:H23

1Unless otherwise indicated, the STEC serotypes or serogroups and their origin are listed in Hussein and Bollinger (2005b).
2The STEC serotypes were isolated from humans suffering from hemolytic uremic syndrome (WHO, 1998; Blanco et al., 2003; Bettelheim,

2006).
3A nonmotile isolate.
4Within each of the O125 and O128 serogroups, certain antigenic relationships are represented by “a,” a common factor and “b,” a specific

factor (Lior, 1994).
5A rough O antigen.
6An untypeable O antigen.
7The STEC serotypes were isolated from humans suffering from a wide range of illnesses such as mild diarrhea, bloody diarrhea, abdominal

pain, ulcerative colitis, hemorrhagic colitis, and thrombotic thrombocytopenic purpura (WHO, 1998; Blanco et al., 2003; Bettelheim, 2006).
8An untypeable H antigen.
9Within the O18 serogroup, certain antigenic relationships are represented by “a,” a common factor and “c,” a specific factor (Lior, 1994).
10The O174 antigen was formerly designated as OX3.
11OX6, OX25, OC70, and OC86 are provisional designations for new O serogroups.

heim, 2003; Blanco et al., 2003), and the ability of a
specific strain to cause human illnesses depends on its
toxin production (Karmali et al., 1985; Jacewicz et al.,
2000). Human illnesses, however, have been caused by
STEC strains producing Stx1, Stx2, or both toxins (Lior,
1994; Willshaw et al., 1997; Bonnet et al., 1998).

Pathogenic STEC strains not only produce Shiga tox-
ins but also can produce other virulence factors that
may increase the severity of human illnesses (Paton
and Paton, 2000). These factors include intimin and
enterohemolysin, which are responsible for the inti-
mate attachment to the intestinal surface and entero-
cyte damage, respectively (Saunders et al., 1999; Don-
nenberg, 2002). These virulence factors (i.e., intimin
and enterohemolysin) are encoded by the E. coli at-
taching and effacing (eae) and enterohemolysin (ehxA)
genes, respectively). These genes are found in virtually
all E. coli O157 strains (Neill, 1997) and appear to be
more common in pathogenic nonO157 STEC strains
(Beutin et al., 1994). Because some STEC strains lack-
ing ehxA and eae were shown to cause human illnesses
(Neill, 1997), these genes do not appear to be absolutely
required for pathogenicity. Thus, it was suggested that
each STEC strain should be considered a potential
EHEC (Bürk et al., 2002). However, many STEC strains
still lack association with human illnesses.

Among the STEC strains that have been isolated from
humans with illnesses, a subset of EHEC strains has
been found (Levine, 1987) to carry common sets of viru-
lence genes that encode factors for attachment to the
host cells, elaboration of effector molecules, and produc-
tions of either or both toxins (Stx1 and Stx2). The sets of
the virulence genes are found in the locus of enterocyte
attachment pathogenicity island, lambdoid bactero-
phages, and a large virulence associated plasmid (New-
land et al., 1985; McDaniel et al., 1995; Schmidt et
al., 1997). Population genetic analysis revealed EHEC
strains to compose 2 divergent lineages, termed EHEC
1 and EHEC 2, that are only distantly related but ap-
parently experience similar pathways of virulence gene
acquisition (Whittam et al., 1993; McGraw et al., 1999;
Reid et al., 2000). The EHEC 1 lineage is comprised
solely of a geographically disseminated cluster of
strains with related genotypes bearing O157:H7 and
O157:H− serotypes, whereas the EHEC 2 lineage is sero-
typically and genotypically more diverse. New evidence
indicated that the E. coli O157:H7 lineage of EHEC is a
geographically disseminated complex of highly related
genotypes that share common ancestry (Kim et al.,
2001). Additionally, the DNA sequence analysis of rep-
resentative polyphyletic markers showed that genome
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diversity accrued through random drift and bacterio-
phage-mediated event (Kim et al., 2001).

Evaluation of published reports on STEC shedding
by beef cattle in the past 25 yr (Table 1) revealed the
isolation of strains belonging to 121 O serogroups, 4
new E serogroups, and 373 serotypes. Of these STEC
serotypes, 65 were isolated from HUS patients and an
additional 62 are known to cause human illnesses such
as mild or bloody diarrhea, abdominal cramps, and HC
(WHO, 1998; Blanco et al., 2003; Bettelheim, 2006).
Evaluation of published reports during the same period
on STEC contamination of beef (Table 2) revealed isola-
tion of strains belonging to 98 O serogroups, 2 new
provisional O serogroups, and 162 serotypes. Of these,
43 were isolated from HUS patients and an additional
36 are known to cause other human illnesses (WHO,
1998; Blanco et al., 2003; Bettelheim, 2006).

CONCLUSIONS

Shiga toxin-producing E. coli are known to cause hu-
man illnesses ranging from mild diarrhea to the life-
threatening HUS. Because a large number of human
illness outbreaks were traced to beef consumption, the
roles of beef cattle and their edible products in human
infection were evaluated. Worldwide testing of beef cat-
tle and their products revealed high prevalence rates
for E. coli O157 and other nonO157 serotypes known
for their high virulence. Thus, beef cattle are considered
reservoirs for these foodborne pathogens. These find-
ings emphasized the critical need for long-term strate-
gies to assure beef safety. Current and future strategies
should include educational programs to bring aware-
ness of the STEC problem to beef farmers, ranchers,
processors, and consumers. Developing and implement-
ing pre- and postharvest control measures to effectively
decrease carriage of these pathogens by beef cattle and
to eliminate contamination of their products during pro-
cessing are essential steps toward sustaining a competi-
tive beef industry.
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Bernárdez, M. P. Alonso, A. Coira, A. Rodriguez, J. Rey, J. M.
Alonso, and M. A. Usera. 2003. Verotoxin-producing Escherichia
coli in Spain: Prevalence, serotypes, and virulence genes of
O157:H7 and non-O157 VTEC in ruminants, raw beef products,
and humans. Exp. Biol. Med. 228:345–351.

Bollinger, L. M. 2004. Effects of season and animal factors on preva-
lence of Shiga toxin-producing Escherichia coli in beef cattle.
MS Thesis Univ. Nevada, Reno.

Bollinger, L. M., H. S. Hussein, M. R. Hall, and E. R. Atwill. 2006.
Isolation, characterization, and potential pathogenicity of Shiga
toxin-producing Escherichia coli from beef cattle in California
during winter and spring. Abstract # Z-014 in Abstracts of the
106th Gen. Meet. Am. Soc. Microbiol (CD Edition). Am. Soc.
Microbiol., Washington, DC.

Bollinger, L. M., H. S. Hussein, T. Sakuma, M. R. Hall, and E. R.
Atwill. 2005. Isolation and characterization of Shiga toxin-pro-
ducing Escherichia coli from beef cattle. Abstract # Z-024 in
Abstracts of the 105th Gen. Meet. Am. Soc. Microbiol (CD Edi-
tion). Am. Soc. Microbiol., Washington, DC.

Bonnet, R., B. Souweine, G. Gauthier, C. Rich, V. Livrelli, J. Sirot,
B. Joly, and C. Forestier. 1998. Non-O157:H7 Stx2-producing
Escherichia coli strains associated with sporadic cases of hemo-
lytic-uremic syndrome in adults. J. Clin. Microbiol. 36:1777–
1780.

Bürk, C., I. G. B. Braumiller, H. Becker, and E. Märtlbauer. 2002.
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