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INTRODUCTION 

Predictive Microbiology may be considered as the
application of research concerned with the quantita-
tive microbial ecology of foods. The subject is based
on the premise that the responses of populations of
microorganisms to environmental factors are repro-
ducible and that, by characterizing environments in
terms of these factors which affect microbial growth
and survival, it is possible from past observations to

predict the responses of microorganisms in new, simi-
lar environments.

This concept of predictive microbiology is new in its 
application but has a long history. Early works like 
those of Esty and Meyer (1922) had used mathemat-
ics to determine the survival of microorganisms. Baird 
Parker and Kilsby (1987) point out that models for 
the thermal destruction of microorganisms were well 
established in the literature and industry. Modeling of 
microbial growth was also being done in the field of in-
dustrial microbiology (Monod, 1949). However, it has 
been recognized that food microbiology should build 
its own repository of models without copying those 
used in industrial microbiology, as their objectives are
different (Baranyi and Roberts, 1994).

This realization and two related factors contributed 
to the newly found application of this concept as an 
organized field of study (McMeekin et al., 1993). The 
first factor was the increased incidence of major 
foodborne disease outbreaks during the 1980's, 
which resulted in an acute awareness and demand for 
food safety. The second was the realization as noted 
by Roberts and Jarvis (1983) that traditional micro-
bial end product challenge testing was an expensive 
and largely negative science and a more systematic 
and co-operative approach to assure the safety of

foods was needed.
The conflicting demands of consumers for 'fresher' 

and more 'natural' or less processed foods on the one 
hand and for safe foods free from potential risks on
the other also provided the impetus for the develop-
ment of this field. At the same time the ready access
to computing power hastened the process, as well
(Buchanan, 1991a).

 The development of predictive microbiology re-
ceived a huge boost when the Ministry of Agriculture,
Fisheries and Food (MAFF) in the United Kingdom re-
viewed possible topics for new research programs 
and decided in 1988, to fund a nationally coordinated 

program of research on the growth and survival of 
bacterial pathogens in food systems. It was envisaged 
that the research would develop new modeling exper-
tise and generate a computerized Predictive Micro-
biological DataBase (Gould, 1989).

Interest in Europe was also being developed 
through the FLAIR (Food Linked Agricultural and 
Industrial Research) program with about 30 laborato-
ries in 10 EU countries collaborating to examine the 

growth responses of spoilage and pathogenic organ-
isms in a wide range of natural products.

In the United States, predictive microbiology re-
search was centered at the Microbial Food Safety 
Research Unit of the USDA, which described the ef-
fect of five variables (temperature, NaCI concentra-
tion, pH, nitrite concentration and gaseous 
atmosphere) on the growth of various pathogens. 

These laboratories were involved in describing 

growth, death and survival responses of foodborne 
pathogens as affected by temperature, pH, levels of 
organic acid, salts, nitrite and concentrations of pre-
servatives and gaseous atmosphere. The target or-

ganisms included were Aeromonas hydrophila, 
Bacillus cereus, Campylobacter spp., Clostridum
botulinum, Escherichia coli, Listeria monocytogenes, 
Salmonella spp, Shigella, spp, Staphylococcus aureus
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and Yersinia enterocolitica. The cost involved in fund-
ing such huge collaborative studies was justified 
when compared with the enormous cost of food poi-
soning outbreaks.

GENERAL FORM

 The various needs and strategies for developing

predictive models for food microbiology have been 
summarized by Ross and McMeekin (2000). The pri-
mary variable of interest may be the growth rate, 
death rate or time for some event to happen or some 
condition to be reached, or the probability that the 
event will happen within some pre-determined time. 

 The general form of the linear mathematical model 
is (McMeekin et al., 1993):

Y = a + ƒÀx1+ƒÁX2+ ƒÃ

Where Y is the observed response, Xi and X2 are 
the known or set independent variables.a , p, y are
the parameters whose values are determined by the
data and are fitted by least square principles so as to
minimize the differences between the observed val-
ues of the response variable and those predicted by
the fitted equation. The stochastic term ( E ) indicates 
the extent to which the predicted response deviates 
from the observed response.

CLASSIFICATION OF MODELS

Models can be classified based on the micro-
biological event studied into kinetic and probability
models (Roberts, 1989), on the modeling approach 
used into empirical and mechanistic models (Roels
and Kossen, 1978) and by the independent variables
(considered for modeling) into primary, secondary
and tertiary models (Whiting and Buchanan, 1993).

Kinetic and probability models
 Kinetic models are concerned with the rates of re-

sponse (growth or death). Examples include the
Gompertz and square root models which describe the
rates of response, like lag time, specific growth rate 
and maximum population density (McMeekin, et al.,
1993; Whiting and Buchanan, 1994) or inactivation/ 
survival models that describe destruction or survival 
over time (Huang and Juneja, 2001;. Xiong et al.,
1999).

Probability models, originally used for predicting
the likelihood that organisms grow and produce toxins
within a given period of time (Hauschild, 1982;
Stumbo et al., 1983), have been more recently ex-
tended to define the absolute limits for growth of

microorganisms in specified environments, for exam-

ple, in the presence of a number of stresses which in-
dividually would not be growth limiting, but collectively 

prevent growth. Investigators like Baker et al. (1990) 
and Meng and Genigeorgis (1993) systematically es-
timated the effect of interactions of arange of factors 
on the probability of the germination and outgrowth of 

 Clostridium botulinum. Lund et al. (1985) used an-
other probabilistic approach while studying the sur-
vival, growth and toxin formation of a mixed inoculum
of approximately equal number of spores of two
strains each of C. botulinum type A, proteolytic type B.
and type E. Probability models indicate only the prob-
ability of growth or toxin production and do not indi-
cate the speed at which they occur (Roberts, 1989). 
Nevertheless they were the first attempts in predicting
the risk associated with foods. (Skinner and Larkin,
1994). 

Empirical and mechanistic models 
 Empirical models usually take the form of first- or

second- degree polynomials and are essentially prag-
matic, describing the data in a convenient mathemati-
cal relationship (curve fitting). An example is the

quadratic response surface used by Gibson et al.
(1988). Mechanistic or deterministic models are built
up from theoretical bases and allow interpretation of
the response in terms of known phenomena and proc-
esses. Attempts, like those of McMeekin et al.
(1993), to find a fundamental basis for the square
root model are important steps towards more mecha-
nistic approaches. Draper (1988) considers the me-
chanistic models to be more preferable than the
empirical ones, as they usually contain fewer parame-
ters, fit the data better and extrapolate more sensibly.

Levels of Models
(i) Primary models

These models measure the response of the micro-
organism with time to a single set of conditions. The 
response can either be direct/indirect measures of 
microbial population density or products of microbial
metabolism. These primary models include growth
models (Buchanan et al., 1989; Gibson et al., 1987),
the growth decline model (Whiting and Cygnarowicz

 1992), D-values of thermal inactivation (Rodriguez et 
al., 1988, Abraham et al., 1990), inactivation/ survival 
models (Kamau et al., 1990; Whiting, 1992), growth 
rate values (McMeekin et al., 1987) and even subjec-
tive estimations of lag time or times to turbidity/ toxin 
formation (Baker et al., 1990; Dodds, 1989).

(ii) Secondary models 
These models indicate how parameters of primary
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models change with respect to one or more environ-
mental factors (e.g., atmosphere, pH, temperature 
and salt level). Response surface (Buchanan and 
Phillips, 1990; Juneja and Eblen, 1999), Arrhenius

(Broughall et al., 1983) , and Belehradek (Ratkowsky 
et al., 1991) are some examples of this type of mod-
els. Secondary models may be further categorized as
direct or indirect. A model that describes the effect of
an environmental variable on a primary model pa-
rameter would be a direct secondary model. For ex-
ample, a response surface equation for the parame-
ters of the Gompertz function would be a direct
model. Alternately, a secondary model that relates an
environmental variable to a value derived from one or
more parameters of a primary model would be an indi-
rect model. Thus a response surface equation that re-
lates environmental variables to values for lag phase
duration or generation times that were derived from a
Gompertz or logistic would be an indirect secondary
model.

(iii) Tertiary models
These are applications of one or more secondary 

models to generate systems for providing predictions
to people not familiar with the modeling technique.
These are in the form of user-friendly applications
software (Buchanan 1991b and 1993) and expert
systems (Adair et al., 1992; Jones, 1992). This level
would include algorithms to calculate changing condi-
tions (e.g., transient temperature after 5 days of stor-
age), compare microbial behavior under different
conditions (two salt levels), or graph the growth of
several microorganisms simultaneously 

Models developed from the combined use of
Gompertz function and response surface analysis are
well suited for the development of user-friendly appli-
cations programs and these have been used with
commercially available software (Lotus 1-2-3,
Trademark of the Lotus Development Corp.) to de-
velop the Pathogen Modeling Program by the USDA
(Buchanan, 1991b). The latest version is available
freely on the internet (http://www.arserrc.gov/mfs/ 

pathogen.htm).
Another example has been the Food MicroModel,

the result of a research project financed by MAFF. In
1994, MAFF granted a licence to Food Micromodel
Ltd. jointly owned by the Leatherhead Food Research
Association and the software house STD Ltd. to de-
velop and market Food MicroModel software for the

personal computer.

VALIDATION OF MODELS

There might be significant differences between

predictions derived in the broth system and actual ob-
servations in food because of various reasons. There
might be growth-inhibitory or heat-protective factors
like organic acids, humectants, etc., which are not ac-
counted for by the model, nevertheless influence the
microbial behaviour. The growth condition history of
the inoculum or the natural food microflora can affect
the subsequent lag phase of the population or the in-
trinsic heat resistance of cells. Moreover, every step
in the model construction process introduces some
error and hence model predictions never perfectly
match observations. To assess the reliability of mod-
els before they are used to aid decisions, a process
termed 'validation' is undertaken.

 Validation can be carried out on the basis of the
same data as the model was set up with, to determine
if the model can describe the experimental data suffi-
ciently. This is internal validation, also termed 'curve
fitting'. External validation typically involves the com-

parison of model predictions with analogous observa-
tions of inoculated-pack experiments (experiments
done with actual food products) not used to develop
the model or with values reported in the literature.
Internal validation provides an estimate of the "good-
ness of fit" and shows where additional data are
needed. Methods for comparing how well competing
models describe the data used to generate them, or
for determining whether a fitted model is statistically
acceptable relative to the measuring error inherent in
the data, have been used in the predictive microbiol-
ogy literature (Adair et al., 1989; Zwietering et al.,
1990 and 1994).

It is also required to test the predictions against mi-
crobial behavior in various foods. Models cannot be 
used with confidence until this validation is done.
Growth rates and generation times predicted by the
model have been compared to those observed for the 
same organism in foods (Buchanan et al., 1993; 
Gibson et al., 1988; McClure et al. 1993; Sutherland et 
al., 1994; Wijtzes et al., 1993). Graphical methods in-
volve plotting the logarithm of the observed values 

 the predicted values and visually
comparing whether these fall above or below the line
of identity/ equivalence have been used (Bhaduri et
al., 1994; Wijtzes et al., 1993). The distance between 
a point and the line of equivalence is a measure of the 
inaccuracy of that particular prediction. Statistical 
measures like Root Mean-Square Error (RMSE) and 
regression coefficient, or coefficient of determination 
(r2) values were used by Duh and Schaffner (1993) 
to assess the reliability of predictive equations devel-
oped based on measurements in brain heart infusion 
broth to give values comparable to those in the litera-
ture based on measurements in food. These terms
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have been described and used to mathematically
compare data derived from literature (Giffel and
Zwietering, 1999). McClure et al. (1993) compared
their models on the basis of the sum of the squares of
the differences of the natural logarithm of observed
and predicted values.

APPLICATIONS OF PREDICTIVE 
MICROBIOLOGY AND MICROBIAL 

MODELS 

Predictive microbiology would encourage a more in-
tegrated approach to food hygiene and safety and will
have an impact on all stages of food production, from
raw material acquisition to retailing and handling in
homes (Gould, 1989). The field also provides a basis
for comparison of data from diverse sources on the

growth of microorganisms in foods. It will provide a ra-
tional basis for the drafting of guidelines, criteria and
standards pertaining to the microbiological status of
food (Genigeorgis, 1981).

 Whiting and Buchanan (1994) have listed the vari-
ous applications of microbial models. Microbial mod-
els are valuable tools for predicting the growth or
survival of microorganisms in foods held under normal
or abusive storage conditions. They also aid in the de-
velopment of hazard analysis critical control point

(HACCP) programs by showing what conditions per-
mit growth or survival and thereby identify critical con-
trol points. Changes in a food's composition or a new
formulation can quickly be evaluated for the pathogen

growth or survival potential (Farber, 1986). Tertiary
models are valuable educational tools to explain food
microbiology principles to non-technical people like
food handlers and workers (McMeekin and 011ey,
1986; Walker and Jones, 1992). Models can be used
to promote efficiency, by designing testing programs 
and targeting critical areas for research (Gould,
1989). A good review covering the applications of the
subject to the dairy industry is presented by Griffiths
(1994).

Models with their multiple uses are fast evolving
from a subject of research and development into tech-
niques used by the food industry and regulatory agen-
cies in providing food processors, food inspectors
and consumers greater confidence in food safety as-

pects.

LIMITATIONS IN THE MODELING
TECHNIQUE

Great caution is required in the use of microbial
models as it is questionable that models derived in an
experimental system can reliably predict the growth of

the modeled organism in foods. Although there is am-

ple evidence that supports the underlying assumption
that a model broth very well mimics a food system

(Gibson et al., 1988; Ross and McMeekin, 1991;
Wijtzes et al., 1993), exceptions to this assumption
are also not unknown (Genigeorgis et al., 1971;
Gibson et al., 1987; Raevuori and Genigeorgis, 1975).

Another challenge to the mathematical description
of microbial behavior in food is that of microbial inter-
actions which are known to occur in foods but which
are seldom taken into account. This is particularly true
of fermented foods, which involve lactic acid bacteria
capable of producing potent bacteriocins thereby af-
fecting the growth of other bacteria. It has been sug-

gested that these be included in model development
(Ross and McMeekin, 1994) and although recent
work has addressed these aspects (Jagannath et al,

 2001a and 2001b), there is a need to include many
more bacteriocins and lactic acid bacteria in the
study.
 Several workers have also pointed out that models

derived in static conditions may not be applicable to
fluctuating conditions (i.e., those in which environ-
mental conditions like temperature, pH, gaseous at-
mosphere and water activity change) during the life of
the product (Gibbs and Williams, 1990; Gibson, 1985;
Mackey and Kerridge, 1988).

 Previous incubation conditions of the test organ-
isms can affect the subsequent rate of growth of or-

ganisms (Walker et al., 1990; Fu et al., 1991;
Buchanan and Klawitter, 1991). Katsui et al. (1981)
have also reported such a history effect on the heat
resistance of Escherichia coli cells. Fu et al. (1991)
termed this, a "temperature history effect" and subse-

quently other environmental conditions like pH have
also been investigated under such history effect.

Hedges (1991) opined that many of the papers in
the predictive microbiology literature do not represent
real contribution to science because of the empirical
nature of many of the models published and that such 
contributions do not help to elucidate the underlying 

processes, but merely describe a set of observations. 
Cole (1991) in reply highlighted the salient uses of 

predictive models and the power that these models 
provide for the food microbiologist in decision-making 
thereby justifying their use. 

Most modeling uses a mixture of strains of microor-

ganisms and the growth or survival predicted by the 
model reflects the fastest growing or hardiest strain in 
the mixture, respectively. Studies have shown that the 

growth conditions related to the inocula, like phase of 
growth (Baranyi et al., 1993), temperature (Gay et al., 
1996) and medium used have a significant impact on 
the subsequent response of the organism.
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Significant strides have been made in developing
effective models for assessing the effect and interac-
tions of several important variables on the behavior of
microorganisms, but few studies have been con-
ducted to study the effect of type and concentration of
organic acid on microbial growth (Hsia and Siebert,
1999), the activities of commonly used antimicrobials
such as phosphates, sorbates and bacteriocins or the 
effect of humectants other than sodium chloride.
Models employing changing conditions ofgrowth 

phase and storage are also limited.

PROSPECTS FOR PREDICTIVE 
MICROBIOLOGY

It has been suggested that models be developed
which take into consideration possible interactions
among microbial flora present in the product (Griffiths
1994; Ross and McMeekin, 1994). This is especially 
true of dairy products where lactic starters are used. 
Antagonistic effects like bacteriocins produced by 
lactic acid bacteria, preservatives and synergistic ef-
fects among organisms have a profound influence on 
microbial growth and these require consideration in 
future model development. 

Mathematical modeling of fungal growth has not re-
ceived the degree of interest similar to that which the 
modeling of bacterial growth has and there is also a 
need for concerted effort from scientists, food manu-
facturers and processors to overcome the hurdles
faced in modeling fungal growth in foods (Gibson and
Hocking, 1997). Spoilage organisms have also not re-
ceived much attention for development of comprehen-
sive models (Whiting, 1997). Other microbial 
situations that need microbial modeling are growth in
heterogeneous foods, on surfaces or boundaries, in
microenvironments and biofilms (Whiting, 1997).
Models predicting spore inactivation will also be of im-
mense use to food industries where thermal process-
ing is a crucial step in ensuring the safety and shelf 
life of processed foods. Construction of such a data-
base from published papers and from experiments 

performed under defined conditions have been re-
cently attempted (Jagannath, A., Nakamura, I., and 
Tsuchido, T. A-25 Page 85, Abstract presented at the 
Annual meeting of the Society of Antibacterial and 
Antifungal Agents, Tokyo 30-31 May 2002; Nakamura 
et al., 2000). 

The recent foodborne disease outbreaks have high-
lighted the need for collaborative efforts between the 

government and the food industry to fund, develop 
and validate various predictive models for Japanese 
foods. These data can be included in a large data-
base and made available for public health

assessments and also as research tools.
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