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Analyses of the relation between obesity and mortality typically
evaluate risk with respect to weight recorded at a single point in
time. As a consequence, there is generally no distinction made
between nonobese individuals who were never obese and non-
obese individuals who were formerly obese and lost weight. We
introduce additional data on an individual’s maximum attained
weight and investigate four models that represent different com-
binations of weight at survey and maximum weight. We use data
from the 1988–2010 National Health and Nutrition Examination
Survey, linked to death records through 2011, to estimate param-
eters of these models. We find that the most successful models use
data on maximum weight, and the worst-performing model uses
only data on weight at survey. We show that the disparity in pre-
dictive power between these models is related to exceptionally
high mortality among those who have lost weight, with the nor-
mal-weight category being particularly susceptible to distortions
arising from weight loss. These distortions make overweight and
obesity appear less harmful by obscuring the benefits of remain-
ing never obese. Because most previous studies are based on body
mass index at survey, it is likely that the effects of excess weight
on US mortality have been consistently underestimated.
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Most studies of the mortality risks of obesity are based on a
snapshot. Body mass index (BMI) is recorded once, at the

time of the survey, and individuals are followed forward from
that point (1–19). As a consequence, there is generally no dis-
tinction made between nonobese individuals who were never
obese and nonobese individuals who were obese in the past and
lost weight. This distinction would be important if individuals
who were formerly obese were at higher risk than never-obese
individuals. Evidence from the prior literature suggests that such
a pattern may exist for at least the following reasons.
First, the effects of obesity may not be felt instantaneously but

manifest themselves over time and cumulatively. When multiple
observations of BMI in the course of life are introduced into a
research design to study mortality, they each have predictive
value (20). Similarly, mortality has been shown to be a positive
function of the duration of obesity (20–22).
The second reason is that illness can cause weight loss through

loss of appetite or increased metabolic demands. This relation-
ship may explain why weight losers have been found to have high
mortality in a number of studies (20, 23–25). The role of obesity
in initiating disease may be obscured or erased altogether in
cross-sectional accounts of weight and height that fail to address
illness-associated weight loss (26). This type of bias, referred to
as confounding by illness or reverse causation, has frequently
been cited as a serious obstacle to obtaining unbiased estimates
of the association between obesity and mortality (27–37). In
contrast, evidence for the occurrence of such bias is said to be
weak and inconsistent by other researchers (38–40).
One common strategy for reducing bias from reverse causation

is to delay the beginning of analysis until several years after
baseline because the bias from reverse causation is thought to be
most severe in the early years after survey collection (28, 31). A
second strategy is to exclude people with certain chronic condi-
tions at baseline (28). The first approach has produced inconsistent

effects (41–43) and may be inadequate in light of evidence that
weight loss often begins many years before death (44). A limitation
of the second approach is that it fails to capture undiagnosed or
subclinical illnesses (44). Both strategies eliminate large propor-
tions of observations, thereby reducing power and the external
validity of results (45). Finally, both approaches risk eliminating
observations in which disease is a product of obesity itself, pro-
ducing a classic instance of “overadjustment bias” (46).
A recently developed approach that avoids these pitfalls is

to replace BMI at survey with one’s maximum historical BMI.
Because lifetime maximum BMI is unaffected by disease-
associated weight loss, no subjects and no years of exposure
need to be excluded to minimize the effects of reverse cau-
sality (47).
In this article, we formally investigate the performance of var-

ious models of the mortality risks of obesity. We use model se-
lection criteria to compare the conventional approach, based on
BMI at the time of survey, with alternative models that introduce a
central feature of weight history: an individual’s maximum weight.
These alternative models address reverse causality and represent
enduring effects of past obesity status. We attempt to understand
why some models perform better than others by examining age-
standardized death rates and by investigating how disease profiles
and mortality rates vary across combinations of maximum and
survey weight.

Methods
We examined the association between excess weight and mortality using
data from the 1988–1994 and 1999–2010 waves of the National Health and
Nutrition Examination Survey (NHANES) (48, 49), linked to death certifi-
cate records from the National Death Index through 2011 (50). NHANES is a
nationally representative survey of the civilian noninstitutionalized pop-
ulation of the United States. The survey was carried out periodically until
1999, at which time it became a continuous survey released in 2-y intervals.
In addition to an interview component, examinations and laboratory testing
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were carried out by trained technicians at mobile examination units. Ex-
tensive documentation of NHANES survey and examination procedures is
available from the National Center for Health Statistics (51).

A key independent variable in our analysis, lifetime maximum BMI (max
BMI) was constructed on the basis of a question in NHANES that asks re-
spondents to recall their maximum lifetime weight, excluding weight during
pregnancy for women. We combined maximum weight with height mea-
sured at survey to construct max BMI. We also calculated BMI at the time of
survey (BMI at survey) using data on measured height and weight. Social and
demographic variables and smoking status were determined by interview.

We categorizedBMI at survey andmaxBMI using the standardBMI categories
developed by the World Health Organization and the National Heart, Lung,
and Blood Institute (52, 53). These BMI categories are less than 18.5 kg/m2

(underweight), 18.5–24.9 kg/m2 (normal weight), 25.0–29.9 kg/m2 (overweight),
and 30.0 kg/m2 or more (obesity). The latter category was further dis-
aggregated into 30.0–34.9 kg/m2 (obese class I) and 35.0 kg/m2 and above
(obese class II).

We restricted the sample to adults aged 50–74 at the time of survey. Older
adults were excluded to reduce measurement error in the maximum BMI
variable and to reduce the risk for survivor bias, whereby the most suscep-
tible obese individuals are selected out of the sample because of premature
mortality. Follow-up was censored at age 85 y. Individuals were considered
outliers and excluded if their max BMI was in the top 2.5 percentile of the
distribution, corresponding to a value of 48.4 kg/m2 or above, or the pro-
portional difference between their self-reported and measured current BMI
placed them in the top 2.5 percentile of reporting error. Use of alternative
thresholds for defining outliers produced similar results. Because there were
so few individuals whose maximum weight was in the underweight range
(5 cases), these observations were not included in the analysis. In the small
number of instances in which BMI category at survey exceeded max BMI (208
cases), we used the survey value in place of the maximum value. Among
these cases, the median difference in the two values was 1.6 BMI units.

We also excluded ever-smokers, defined as having smoked more than 100
cigarettes in one’s lifetime. Smoking is a complex exposure with multiple
dimensions of duration and intensity and is difficult to measure precisely in
self-reported data, as comparisons of self-reports with serum cotinine levels
make clear (54). A modest amount of measurement error in smoking,
combined with the observed inverse association between smoking and BMI,
produces a spurious negative relation between obesity and mortality (55).
After applying the above exclusion criteria, our final analytic sample con-
sisted of 6,276 subjects, among whom 875 died during a median follow-up
of 8.0 y.

Cox proportional hazards models with age as the underlying timescale
were used to estimate hazard ratios for mortality (56, 57). All models were
adjusted for sex, race/ethnicity (non-Hispanic white, non-Hispanic black,
Hispanic, other), and educational attainment (less than high school, high
school or equivalent, some college or greater).

We estimated the parameters of four models. Model 1 (survey BMI only)
uses data only on weight at survey and is the model that most commonly
appears in the literature. The reference category in this model included
people who were normal weight at survey. Model 2 (maximum BMI only) is
similar to model 1 but substituted maximum values for survey values. The

reference category in this model consisted of people who were normal
weight at their maximum, regardless of whether they remained normal
weight at the time of survey or entered the underweight category.

Models 3 and 4 extend the first two models by combining data on weight
at survey andmaximumweight.Model 3 (survey BMI extended) differentiates
between those in a particular surveyed weight class who had never been in a
higher weight class and those in that survey weight class who had formerly
been in a higher class. Model 4 (maximum BMI extended) differentiates
between those who had reached a particular maximum weight class and
remained there and those who had moved to a lower class by the time of
survey. The reference category in models 3 and 4 consisted of people who
were of normal weight at survey and maximum.

The most complex model that could be estimated using BMI at survey and
maximum BMI would investigate all combinations of the two variables.
However, this model involves estimating more parameters than is realistic,
given the sample size. By grouping weight losers as we have done, we reduce
the number of parameters to be estimated to eight, in contrast to the
15 parameters that would be required in the complete model.

We used the Akaike information criterion (AIC) and the Bayesian in-
formation criterion (BIC) to compare the performance of the fourmodels (58).
They both capture the trade-off between model complexity and goodness of
fit by introducing a penalty term for the number of parameters in the
model, with the penalty term being larger in BIC than in AIC.

Hazard ratios generated from Cox models do not allow for comparison of
mortality levels across different specifications of the BMI variable. To fill in
this gap, we calculated age-standardized death rates. Age-standardization
was carried out using 5-y age groups in the interval from 50 to 84 y. The
standard population was drawn from US 2000 Census data.

We confirmed the proportional hazards assumption by testing the slope of
Schoenfeld residuals by BMI category. This study did not require approval

Table 1. BMI at time of survey and atmaximumamongUS never-smoking adults aged 50–74 y, n(%)

BMI at survey

BMI at maximum

TotalUnderweight Normal weight Overweight Obese class I Obese class II

Underweight 5 37 3 1 0 46
(8.0%) (87.7%) (1.5%) (2.7%) (0.0%) (100%)

Normal weight 817 588 61 20 1,486
(61.5%) (33.9%) (3.3%) (1.3%) (100%)

Overweight 1,559 732 97 2,388
(70.2%) (26.2%) (3.6%) (100%)

Obese class I 1,063 425 1,488
(73.5%) (26.5%) (100%)

Obese class II 873 873
(100.0%) (100%)

Total 5 854 2,150 1,857 1,415 6,281
(0.1%) (17.9%) (35.7%) (26.3%) (20.0%) (100%)

Underweight, less than 18.5 kg/m2; normal weight, 18.5–24.9 kg/m2; overweight, 25.0–29.9 kg/m2; obese class
I, 30.0–34.9 kg/m2; obese class II, 35.0 kg/m2 and above. Percentage distributions are weighted.

Table 2. Hazard ratios for mortality from all causes according to
BMI at maximum compared to values estimated using BMI at survey

BMI category

Model 1: Survey BMI Model 2: Maximum BMI

Estimate 95% CI P Value Estimate 95% CI P Value

Underweight 1.70 0.65–4.48 0.277
Normal weight 1.00 1.00
Overweight 1.10 0.87–1.40 0.407 1.19 0.81–1.75 0.362
Obese class I 1.47 1.12–1.95 0.007 1.65 1.14–2.38 0.008
Obese class II 1.72 1.25–2.36 0.001 2.49 1.70–3.64 0.000

CI, confidence interval; underweight, less than 18.5 kg/m2; normal weight,
18.5–24.9 kg/m2; overweight, 25.0–29.9 kg/m2; obese class I, 30.0–34.9 kg/m2;
obese class II, 35.0 kg/m2 and above. Cox models adjusting for sex, race/
ethnicity, and educational attainment were used to estimate the hazard
ratios. In model 2, there is no estimate for the underweight category be-
cause of insufficient data. Estimates are weighted and account for complex
survey design.
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from an ethics committee, as we relied on anonymized secondary data.
Analyses were carried out using STATA Version 13 (StataCorp). All estimates
were adjusted for the complex survey design of the NHANES, with the ex-
ception of AIC and BIC, which were adjusted for sampling weights, but not
clustering and stratification. The SVY routine was used to estimate variances.

Results
Table 1 shows a cross-classification of individuals according to
BMI at survey and maximum lifetime BMI. Summing observa-
tions on the diagonal shows that 69% of individuals in the sample
were in their maximum BMI class at survey, whereas 31% had
previously occupied a higher BMI class. This large volume of
downward flows creates a significant opportunity for weight
losers to affect the characteristics and survival of people in any
particular survey class. The opportunity is especially salient
among those of normal weight at survey, where 39% of indi-
viduals in the sample had migrated into it from higher classes.
Table 2 presents hazard ratios for the first two models. Model

1, which replicates the approach used most widely in the litera-
ture, is based on BMI at the time of survey only. Model 2 is
similar but uses maximum values instead of survey values. In
both models, each higher BMI category above the normal-weight
category carried with it successively higher mortality. However,
the degree of excess mortality associated with a particular BMI
category was higher when that category referred to maximum
weight rather than survey weight.
Tables 3 and 4 present hazard ratios from models 3 and 4.

Relative to the reference category in model 3, all other cate-
gories showed hazard ratios greater than 1.00. Among those who
were in their maximum weight category at survey, hazard ratios
rose steadily from 1.12 among the overweight to 2.18 among
those in obese class II. Among those who had been in a higher
weight category before the survey, hazard ratios were sub-
stantially higher than for those who had remained in their
highest category at survey. In other words, weight losers had
exceptionally high mortality in model 3. Those in a particular
weight class at survey can be thought of as consisting of two
subgroups: those who were at their maximum weight at the time
of survey and a group with much higher mortality who had
previously occupied a higher weight class.
Model 4 is similar to model 3, except that weight losers are

grouped according to their maximum weight achieved rather
than their weight at survey. Tables 3 and 4 show that mortality
rose with the highest weight achieved and that those who lost
weight after achieving a particular BMI category actually had
higher mortality than those who remained at that maximum. If
mortality rates were a simple function of time spent in various
weight classes, one would expect those losing weight to have a
mortality level between those of the classes they occupied.

Instead, weight losers had even higher mortality than those who
remained in the higher weight class they previously occupied.
This pattern underscores the possibility that reverse causal pro-
cesses are at work.
Which of these four models is to be preferred? Results of

estimating the AIC and BIC values for the four models are
presented in Fig. 1. Lower values on each of these criteria in-
dicate a superior model. Results of applying the two criteria were
similar. For both criteria, the best performing models introduced
information on max BMI. The extended max BMI model was
preferred using the AIC criterion, whereas max BMI alone was
preferred by BIC, consistent with the fact that BIC imposes a
stricter penalty on model complexity. Using either criterion,
maximum-only was superior to the survey-only model and max-
imum-extended was superior to the survey-extended model. The
worst-performing model on both criteria was model 1, in which
only BMI at survey was used.
Confining analytic attention to survey BMI alone thus sacri-

fices important information provided by an individual’s maxi-
mum BMI. The poor performance of the survey-only model is
especially salient because models using only BMI at survey
dominate the set of findings in the literature on the relation
between BMI and mortality.
Differences in hazard ratios between the models in Table 2 are

a product of differences in both numerators and denominators.

Table 3. Hazard ratios for mortality for the survey-extended
model (model 3)

Survey BMI
category

Survey matches maximum
Formerly in higher

category

Estimate 95% CI P Value Estimate 95% CI P Value

Underweight 2.12 0.82–5.49 0.119
Normal weight 1.00 1.58 1.00–2.48 0.051
Overweight 1.12 0.76–1.64 0.571 2.02 1.32–3.10 0.001
Obese class I 1.61 1.10–2.37 0.015 2.79 1.80–4.33 0.000
Obese class II 2.18 1.46–3.25 0.000

Underweight, less than 18.5 kg/m2; normal weight, 18.5–24.9 kg/m2; over-
weight, 25.0–29.9 kg/m2; obese class I, 30.0–34.9 kg/m2; obese class II, 35.0 kg/m2

and above. Cox models adjusting for sex, race/ethnicity, and educational attain-
ment were used to estimate the hazard ratios. Estimates are weighted and
account for complex survey design.

Table 4. Hazard ratios for mortality for the maximum extended
model (model 4)

Max BMI
category

Survey matches maximum Currently in lower category

Estimate 95% CI P Value Estimate 95% CI P Value

Normal weight 1.00 1.57 0.52–4.77 0.424
Overweight 1.12 0.76–1.64 0.572 1.49 0.92–2.41 0.107
Obese class I 1.62 1.10–2.38 0.015 1.81 1.16–2.82 0.009
Obese class II 2.19 1.46–3.27 0.000 3.18 2.09–4.83 0.000

Underweight, less than 18.5 kg/m2; normal weight, 18.5–24.9 kg/m2; over-
weight, 25.0–29.9 kg/m2; obese class I, 30.0–34.9 kg/m2; obese class II, 35.0 kg/m2

and above. Cox models adjusting for sex, race/ethnicity, and educational attain-
ment were used to estimate the hazard ratios. Estimates are weighted and
account for complex survey design.

Fig. 1. AIC and BIC values for models predicting the association between BMI
and mortality. On both criteria, a lower value denotes a better-performing
model. BIC imposes a stronger penalty on model complexity than AIC.
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To cast light on these differences, Table 5 shows age-standard-
ized death rates according to both survey BMI and maximum
BMI. Values in a particular category of BMI were within 13% of
each other, with the exception of those in the normal-weight
category. People of normal weight at survey had an age-stan-
dardized death rate of 8.11/1,000, whereas individuals who were
normal weight at their maximum (including both those who were
normal weight and those who were underweight at survey) had a
death rate of 6.37/1,000. So the death rate was 27% higher using
survey weight than using maximum weight. As shown in Table 1,
individuals in the sample who were normal weight at survey had
the largest inflow of weight losers as a proportion of the total
category, at 39%. This influx of high-mortality individuals raised
the death rate of the normal-weight category well above what it
would have been if the category contained only individuals whose
BMI was never above normal weight.
To illustrate this point, Fig. 2 shows the death rates of indi-

viduals who were normal weight at survey according to their
maximum weight category. Individuals who were normal weight
at max and survey had a death rate of 6.25/1,000 compared with
10.81 and 14.62 among normal-weight individuals who were
formerly overweight or obese. Those who transitioned to normal
weight from overweight and obese have thus raised the death
rate in this category from 6.25/1,000 to 8.11/1,000. This influx
into the reference category is the major reason why hazard ratios
in Table 2 are much lower when survey BMI is used instead of
maximum BMI.
Apart from the normal-weight category, Table 5 shows that

the largest distortion from weight loss in any remaining category
occurred in the obese class II category. When assessed at survey,
this category had lost high-mortality individuals to lower cate-
gories but gained none from higher categories. The result was a
death rate for obese class II that was 13% lower using survey
weight than maximum weight. The combination of increased
mortality in the normal-weight category and reduced mortality in
the obese II category produces a much lower hazard ratio for
obese II when survey weight is used.
Tables 3 and 4 show that those who achieved a particular

maximum BMI category and then lost weight to enter a lower
category carried with them mortality even higher than that in the
max BMI category that they have left. This pattern suggests that
the weight losers may have been selected for high levels of illness.
Fig. 3 investigates this relationship. It shows the prevalence of

reported diabetes for individuals who have achieved various
maximum BMI classes according to whether they remained there
or moved to a lower BMI category. Among those currently oc-
cupying their maximum weight class, 2.3% of normal-weight
individuals were diagnosed with diabetes, a figure that rose
monotonically to 22.6% among those in obese class II. Addi-
tionally, those who achieved a particular maximum BMI class
above normal but subsequently migrated to a lower class had
higher diabetes prevalence than those who remained in
that class.

Fig. 4 shows a similar relationship with respect to cardiovas-
cular disease (CVD). The prevalence of CVD rose systematically
from 2.4% among those who were normal weight at max and
survey to 10.3% among those currently in the obese class II
category. As in the case of diabetes, those who achieved a par-
ticular maximum BMI above normal and moved to lower clas-
ses had higher CVD prevalence than those who remained in
that class.
The high prevalence of both diabetes and CVD among people

moving to lower BMI classes demonstrates that weight loss is
often associated with illness, helping to confirm the centrality of
reverse causality as a source of bias when survey weight alone is
used. The movement into the normal-weight category from
above is a particular threat to unbiased estimates of hazard ra-
tios: 33.9% of individuals in the sample who were normal weight
at survey were formerly overweight (Table 1), and this group had
three times the prevalence of diabetes and CVD relative to those
who were in the normal-weight category at both max and survey.
The morbidity patterns are entirely consistent with the mor-

tality patterns shown in model 4 of Table 4. Disease prevalence
and mortality both rise with increases in maximum BMI and rise
even further for those who reach a particular maximum BMI
category and then lose weight. These patterns strongly suggest
that obesity raises the risk of diabetes and CVD and that, once

Table 5. Age-standardized mortality rates per 1,000 person-years by BMI at survey and BMI at max

BMI category
Mortality rate, BMI at survey

(95% CI)
Mortality rate, BMI at max

(95% CI)
Mortality rate ratio

(survey/max)

Underweight 13.53 (1.95–25.11)
Normal weight 8.11 (6.30–9.93) 6.37 (4.33–8.42) 1.27
Overweight 9.30 (7.71–10.88) 8.27 (6.44–10.10) 1.12
Obese class I 14.16 (11.11–17.21) 12.76 (10.05–15.47) 1.11
Obese class II 15.01 (11.73–18.30) 17.22 (13.92–20.53) 0.87

Underweight, less than 18.5 kg/m2; normal weight, 18.5–24.9 kg/m2; overweight, 25.0–29.9 kg/m2; obese class I, 30.0–34.9 kg/m2; obese
class II kg/m2 35.0 kg/m2 above. Mortality rates were age-standardized to the US 2000 Census using 5-y age groups between 50 and 84 y.
For maximum BMI, there is no estimate for the underweight because of insufficient data in this category (n = 5). Estimates are weighted
and account for complex survey design.

Fig. 2. Age-standardized mortality rates for individuals who were normal
weight at survey, stratified by maximum BMI. Normal weight, 18.5–24.9 kg/m2;
overweight, 25.0–29.9 kg/m2; obese, 30 kg/m2 and above (obese classes I and II,
pooled). Mortality rates were age-standardized to the US 2000 Census, using
5-y age groups between 50 and 84 y. Estimates are weighted and account for
complex survey design.
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acquired, these diseases often precipitate weight loss (36).
Ironically, that weight loss helps to obscure the role of adiposity
in initiating the disease process when survey weight alone is used
in the analysis. Only by using weight histories can this pattern of
erasure be identified and corrected.

Discussion
We investigated four models predicting mortality that used dif-
ferent combinations of maximum BMI and BMI at survey. Using
either the AIC or BIC criterion for model selection, we find that
the worst-fitting model used only weight at survey. Unfortunately,
such a model is used in the large majority of studies of the relation
between obesity and mortality (1–19).
The survey-only model fits so poorly because it obscures

the distinction between those who never exceeded a particular
weight category and those who have moved into that category
from a higher weight. The weight losers have exceptionally high
mortality: they do not simply carry with them the higher mor-
tality levels of higher BMI classes but are negatively selected out
of those classes. The normal-weight category is most affected by
the influx of individuals from higher weights. This category had a
27% higher death rate when it was based on survey weight than
when it was based on maximum weight. This category forms the
denominator of all relative risks, and its high death rate when
survey BMI is used understates the hazard ratios that are ob-
served when a more comprehensive indicator of BMI is used.
Confining analytic attention to survey BMI alone sacrifices

important information provided by an individual’s maximum BMI.
Such information is incorporated in the remaining three models.
Using the BIC criterion, the best-fitting model used only cate-
gories of maximum BMI. When AIC is used, the maximum-
extended model, in which weight losers are grouped according to
their maximum weight, performs slightly better than the maxi-
mum-only model. In both cases, knowledge of one’s maximum
BMI is the central element in successfully predicting mortality.
We noted earlier that weight histories contain valuable in-

formation about mortality risks for at least two reasons. One is
that obesity at a particular age may predispose to illness, re-
gardless of weight at higher ages. The second is that weight loss is
often associated with illness. These two mechanisms would lead
to different patterns of association between weight change and
mortality. The first would imply that weight losers would have death

rates between those associated with the different weight classes they
have occupied. The second would imply that weight losers have even
higher mortality than the higher weight class they first occupied; they
would be negatively selected out of that class. Our results suggest
that the latter mechanism, commonly referred to as reverse causa-
tion, is dominant. Our analysis of diabetes and CVD provides ad-
ditional confirmation of the importance of reverse causation: weight
losers had a higher prevalence of diabetes and CVD than those
remaining in the higher weight class.
These patterns highlight the importance of reverse causality as

a bias in estimates of the mortality effects of obesity when those
estimates are based on single snapshots of BMI.
A limitation of this study is that lifetime maximum weight was

self-reported. However, studies that have assessed the validity of
self-reported past weight indicate it is highly correlated with
measured weight (59–62). These studies focused on weight recal-
led at a particular age or time in the past. Self-reported maximum
weight may be subject to less error because the question does not
require remembering to a specific age or period in time but simply
one feature of a weight trajectory. A future direction for research
is to replicate the findings presented here in datasets in which
maximum weight can be constructed from contemporaneous data
on measured weight over the life course. Efforts should also be
made to validate a recall-based measure of maximum weight by
introducing the question into surveys with longitudinal designs.
The introduction of historical data in the analysis of smoking

occurred more than a half century ago, when studies began
to distinguish among current-, former-, and never-smokers. Be-
havioral histories clearly matter for mortality, and in the case of
obesity, they are especially valuable because of the bias that can
result when current status alone is used.
Our results suggest the burden of overweight and obesity on

mortality is likely substantially larger than commonly appreci-
ated. If correct, this may have serious implications for the future
of life expectancy in the United States. Although the prevalence
of obesity may level off or even decline, the history of rapidly
rising obesity in the last 3 decades cannot be readily erased (63).
Successive birth cohorts embody heavier and heavier obesity
histories, regardless of current levels. Those histories are likely to
exert upward pressure on US mortality levels for many years
to come.

Fig. 3. Prevalence of reported diabetes for individuals at their maximum BMI at
the time of survey versus individuals below their maximum BMI at time of survey.

Fig. 4. Prevalence of reported CVD for individuals at their maximum BMI at the
time of survey versus individuals below their maximum BMI at time of survey.
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