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Abstract

Listeria monocytogenes is an important food-borne pathogen and is widely tested for in food, environmental and clinical samples.

Identification traditionally involved culture methods based on selective enrichment and plating followed by the characterization of

Listeria spp. based on colony morphology, sugar fermentation and haemolytic properties. These methods are the gold standard; but

they are lengthy and may not be suitable for testing of foods with short shelf lives. As a result more rapid tests were developed based

on antibodies (ELISA) or molecular techniques (PCR or DNA hybridization). While these tests possess equal sensitivity, they are

rapid and allow testing to be completed within 48 h. More recently, molecular methods were developed that target RNA rather than

DNA, such as RT-PCR, real time PCR or nucleic acid based sequence amplification (NASBA). These tests not only provide a mea-

sure of cell viability but they can also be used for quantitative analysis. In addition, a variety of tests are available for sub-species

characterization, which are particularly useful in epidemiological investigations. Early typing methods differentiated isolates based

on phenotypic markers, such as multilocus enzyme electrophoresis, phage typing and serotyping. These phenotypic typing methods

are being replaced by molecular tests, which reflect genetic relationships between isolates and are more accurate. These new methods

are currently mainly used in research but their considerable potential for routine testing in the future cannot be overlooked.

� 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The genus Listeria is placed in the Clostridium sub-

branch of Gram-positive bacteria based upon the low

G + C content of its genome. There are six species

currently recognized: Listeria monocytogenes, Listeria

innocua, Listeria ivanovii, Listeria seeligeri, Listeria

welshimeri and Listeria grayi. Only two species of

the genus are generally considered to be pathogenic,

L. monocytogenes in humans and L. ivanovii in other

mammals. However, there have been some reports of

L. seeligeri and L. ivanovii [1,2] causing illness in

humans. Pathogenic infection by L. monocytogenes

results in listeriosis and usually affects individuals
pre-disposed through an underlying disease affecting

the immune system, such as cancer or AIDS, and also

other susceptible individuals such as the elderly, preg-

nant women, newborn babies or fetuses. Symptoms of

the disease are flu-like, yet may result in severe com-

plications, such as meningitis, septicaemia, spontane-

ous abortion or listeriosis of the newborn [3]. The

number of cases of listeriosis average 40–44 per year
in Australia [4] and around 100 per year from 1993

to 1997 in the USA [5]. Although the incidence of lis-

teriosis seems small compared to other food-borne

diseases, the associated mortality is high at around

30% [3,6].

Although Murray [7] first suspected an oral route

for the bacterial infection observed in animals in

1924, it was not until 1981 that for the first time an
outbreak of listeriosis in Canada was linked to a con-

taminated food source [8]. Since the recognition of

L. monocytogenes as a food-borne pathogen, there have

been rapid advances in the development of suitable

methods for isolation and identification [4]. Initial at-

tempts to isolate Listeria from food based on clinical

procedures such as direct plating onto blood agar were

unsuccessful. Significant developments have occurred
not only in selective culture enrichment procedures
but also in the availability of many new and rapid

detection methods based on antibody and molecular

technologies. A major challenge for food testing has al-

ways been the interference of the tests by inhibitory

food components and hence novel methods, such as

immuno-capture, were developed to purify analytes
from inhibitory food components as well as to increase

sensitivity.

There has been a constant search for more rapid and

sensitive methods, particularly in the food industry,

where pressure from regulators to provide contaminant

free food and the need to release perishable product

onto the market prior to their expiry date are ever pres-

ent. Culture and immunoassay methods are widely used
because they are simple, inexpensive and allow a high

sample throughput. Antibody-based tests target L. mon-

ocytogenes-specific proteins and utilization of culture

tests using colorimetric or fluorescent substrates in

media to detect virulence factor activity have been intro-

duced to differentiate between pathogenic and non-path-

ogenic species. A comparison of the most widely used

tests based on several key features is provided in Table
8 and a comprehensive overview of isolation, identifica-

tion and typing methods for Listeria and

L. monocytogenes in foods and environmental samples

is provided in Fig. 1.

Many tests endorsed and regulated by government

agencies such as the Food and Drug Administration

(FDA) or US Department of Agriculture (USDA) in

the United States, or the Australian and New Zealand
Food Administration (ANZFA) in Australia, do not

differentiate between Listeria species. From the perspec-

tive of food hygiene the presence of a non-pathogenic

species such as L. innocua may indicate potential con-

tamination with L. monocytogenes. However, epidemio-

logical studies have revealed that only L. monocytogenes

and only strains belonging to serotypes 1/2a, 1/2b and

4b were implicated in 90% of outbreaks of listeriosis
[9]. It is unclear why only three of the 13 serotypes are

http://femsre.oxfordjournals.org/
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implicated in food-borne outbreaks whilst other sero-

types are also found as food contaminants. All serotypes

possess the same virulence factors and hence have the

same potential to cause disease. In light of these epide-

miological data many food diagnostic tests have been

developed to differentiate L. monocytogenes from the

other species in food.

Although the majority of tests used for food testing
are based on culture methods or antibodies, the trend

in the food industry is towards the use of molecular

methods. There are some disadvantages compared to

culture methods such as equipment and reagent costs

and the requirement of highly trained personnel.

There is no regulatory approval for the majority of

these tests, which prohibits their use in many food-

testing laboratories. Recently, however, some molecu-
lar techniques such as PCR and DNA hybridization

have become a feasible alternative to culture and sero-

logical techniques. The major advantage that molecu-

lar techniques offer over conventional methods is that

these are based on differences within the genome and

do not rely on the expression of certain antigenic fac-

tors or enzymes to facilitate identification. They are

extremely accurate, reliable and some can be per-
formed in the same time frame as immunoassay meth-

ods (Table 8). There is a wide range of molecular

methods available for the identification and character-
ization of Listeria. Based on the multitude of publica-

tions that have appeared over the last two decades on

molecular testing describing the adaptation of conven-

tional PCR methods to the food testing laboratory,

there is little doubt that many of these techniques will

be applied routinely in the near future. The available

technology in this area is both diverse and rapidly

changing and here we review the most important
developments for isolating and identifying Listeria

spp. and L. monocytogenes (Table 8 and Fig. 1).
2. Methods of isolation

Historically, it has been challenging to isolate Listeria

from food or other samples and this explains why it re-
mained unnoticed as a major food pathogen until re-

cently. In early studies it was noted that Listeria is

able to grow at low temperatures and this feature has

been used to isolate these bacteria from clinical samples

by incubation for prolonged periods at 4 �C on agar

plates until the formation of visible colonies. This meth-

od of isolation takes up to several weeks and usually

does not allow for the isolation of injured Listeria cells,
which will not survive and grow when stressed. These

two key issues, enrichment/isolation time and the recov-

ery of stressed Listeria cells must be addressed if methods

http://femsre.oxfordjournals.org/
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of enrichment and isolation are to provide meaningful

results that can be used to control Listeria contamina-

tion and food-borne outbreaks.

Tests considered for approval by regulatory agencies

must be able to detect one Listeria organism per 25g of

food. Generally, this sensitivity can only be achieved by
using enrichment methods in which the organism is al-

lowed to grow to a detectable level of �104 105 CFU

ml�1. Listeria cells are slow growing and can be rapidly

out-grown by competitors, and hence bacteriostatic

agents, such as acriflavin and nalidixic acid that specifi-

cally act to suppress competing microflora, have been

introduced into enrichment media or selective agar

[10]. These two agents are incorporated into all standard
methods used to isolate Listeria from food and environ-

mental samples.

In the food industry, such standard culture procedures

are used as reference methods for regulatory purposes

and for validation of new technology. These methods

are sensitive but often time consuming and may take

5–6 days before the result is available. Two of the most

widely-used culture reference methods for detection of
Listeria in all foods are the FDA bacteriological and ana-

lytical method (BAM) [11] and the International Organi-

zation of Standards (ISO) 11290 method. Both of these

methods require enrichment of a 25 g food sample in a

selective broth, designed to slow the growth of competing

organisms, prior to plating onto selective agar and bio-

chemical identification of typical colonies.

2.1. FDA BAM and ISO 11290 methods

For the FDA BAM the sample is enriched for 48 h at

30 �C in Listeria. Enrichment broth (LEB, FDA BAM

formulation) containing the selective agents acriflavin,

naladixic acid and the antifungal agent cycloheximide.

Enriched broth is then plated onto selective agar (Ox-

ford, PALCAM, MOX or LPM).
The ISO 11290 Method has a two-stage enrichment

process: the food sample is first enriched in half Fraser

broth for 24 h, then an aliquot is transferred to full

strength Fraser broth for further enrichment. Fraser

broth also contains the selective agents acriflavin and nal-

adixic acid as well as esculin, which allows detection of

b-DD-glucosidase activity by Listeria, causing a blackening
of the medium. Both the primary and secondary enriched
broth are plated on Oxford and PALCAM agars.

Although selective agents are necessary to inhibit

competitive organisms during enrichment, there have

been many reports of the harmful effects of selective

agents on stressed or injured Listeria cells [12,13]. The

FDA BAM and ISO 11290 Method address this prob-

lem in different ways. In the FDA BAM method selec-

tive agents are added to the basal medium after 4 h
incubation, allowing injured cells time to recover in a

favourable environment. In the ISO 11290 Method the
primary enrichment is in half Fraser broth, containing

only half the concentration of selective agents. The large

buffering capacity of both these enrichment media also

enhances cell growth and repair.

2.2. USDA and Association of Analytical Chemists

(AOAC/IDF) method 993.12 for the enrichment of

Listeria from particular foods or environmental samples

Other reference methods are widely used for particu-

lar food groups. For example the USDA protocol [14] is

often the method of choice for meat, eggs, poultry and

environmental samples. This two-stage enrichment

method uses a modification of University of Vermont
Medium (UVM) containing acriflavin and naladixic acid

for primary enrichment, followed by secondary enrich-

ment in Fraser broth and plating onto Modified Oxford

(MOX) agar containing the selective agents moxalactam

and colistin sulphate.

The AOAC/IDF method 993.12 [15] is often the

method of choice for dairy products and provides spe-

cific instructions for sample preparation of specific dairy
foods. This method also uses selective enrichment in a

broth containing acriflavin and naladixic acid for 48 h

followed by plating onto Oxford agar.
3. Identification of isolated cultures

Enrichment methods, which usually take about 30–
48 h, are followed by the identification of the enriched

microorganisms. When selecting a method for enrich-

ment and detection of Listeria in food or environmental

samples it is important to consider the extent to which

the method has been validated. While individual coun-

tries may have their own validation schemes, the AOAC

in Washington is perhaps the most widely recognized

authority. Reference to AOAC Official Methods will
provide a variety of methods for Listeria testing includ-

ing rapid methods, such as enzyme immunoassays and

gene based tests, which have undergone collaborative

validation by at least 10 laboratories. The AOAC Re-

search Institute provides independent validation of com-

mercial test kits by a single laboratory and performance

testing certification. The AOAC Research Institute data-

base (www.aoac.org) provides a useful reference for
commercially available test kits. However, it is not

exhaustive and not all commercial kits listed on this

database have undergone AOAC validation (Table 8).

3.1. Cultural and biochemical confirmation

Early identification methods centered on biochemical

and phenotypic markers, and these are still widely used
for identification. Most selective agars for isolation and

identification of Listeriae (Oxford, PALCAM, MOX)

http://www.aoac.org
http://femsre.oxfordjournals.org/
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rely on the esculinase reaction based on b-DD-glucosidase
activity to differentiate Listeria from other bacteria.

Typical Listeria colonies appear black with a black zone

in surrounding medium. These media also contain selec-

tive agents to inhibit the growth of most other organ-

isms. However, some other organisms will grow on
selective plates and some species, such as Enterococcus

and Bacillus spp., also utilize esculin and may have a

similar appearance. Further tests are required to identify

Listeria colonies conclusively, but suspect colonies on

selective agar must first be investigated for purity. Tra-

ditionally, suspect cultures were plated onto tryptose

soy agar and colonies were examined by oblique light-

ing, a technique in which Listeria colonies appear retic-
ulated with a distinct blue-green cast [10]. Currently,

suspect bacteria are usually classified as Listeria if they

display the following characteristics (Fig. 2): Gram-posi-

tive rods, aerobic and facultatively anaerobic, non-spore

forming, catalase-positive (although there are reports of

catalase negative Listeria), oxidase-negative, fermenta-

tive in sugars and producing acid without gas. Most
Listeria

motile

Endosp

Gram-positiv

aerobic/facultatively anaerobic

Gram-Stain

Gram-negative

Cocci

Sha

-                

L. monocytogenes L. innocua L, ivanov

Hemolysin + - +
Catalase + + +
Oxidase - - -

L-Rhamnose + +/- -
D-Mannitol - - -
D-Xylose - - +

:fo
noitatne

mreF

-Methyl-
Mannoside

+ + -

Fig. 2. A methodological system for the p
strains are motile at 28 �C and non-motile at 37 �C
[10]. Commercial identification kits are a widely-used

alternative to traditional biochemical testing, which is

time consuming and takes a week for differentiation of

species using sugar utilization tests. Test strips such as

API Listeria (bio-Merieux, Marcy-Etoile, France) and
Micro-IDe (Remel, USA) have been extensively vali-

dated and are now incorporated into standard method-

ology [11,14].

3.2. The Christie, Atkins, Munch–Petersen (CAMP) test

The CAMP test [16] can be used to differentiate be-

tween hemolytic Listeria species; L. monocytogenes,
L. ivanovii and L. seeligeri. This test is carried out by

streaking a b-hemolysin-producing Staphylococcus aur-

eus strain and Rhodococcus equi parallel to each other

on a blood agar plate. Suspect cultures are streaked at

right angles in between (but not touching) the two

streaks. Hemolysis by L. monocytogenes and to a lesser

degree L. seeligeri is enhanced in the vicinity of S. aureus
Corynebacterium

Bacillus
Clostridium

Acid-fast

ores Mycobacterium
Nocardia

e

Rods

pe

- +

            +

-

ii L. seeligeri L. welshimeri L. grayi

+ - -

+ + +

- - -

- +/- +/-

- - +

+ + -

- + +

henotypic identification of Listeriae.
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and hemolysis by L. ivanovii is enhanced in the vicinity

of the R. equi streak. However, the CAMP test was

examined for its applicability and it was shown that

sometimes it cannot correctly differentiate between

L. monocytogenes and L. ivanovii [17]. Therefore, a var-

iation of the original CAMP test using commercially
available b-lysin discs is recommended in the USDA

method [11,14]. The identification of non-hemolytic spe-

cies is based on differences in fermenting certain sugars

(Fig. 2). Whilst these biochemical identification markers

are useful, they are sometimes difficult to interpret be-

cause the colour reactions can be ambiguous.

3.3. Chromogenic substrates

A more recent development is the production and

commercial availability of chromogenic media. Rapid

identification of bacterial enzymes is provided by the

use of chromogenic substrates, which are incorporated

into plating media to allow direct identification of colo-

nies by their characteristic colour. Phosphatidylinositol-

specific phospholipase C (PIPL-C) is an enzyme that is
produced only by L. monocytogenes and L. ivanovii

[18,19] and activity of this enzyme is measured using

chromogenic media. Many chromogenic media are com-

mercially available and are gradually gaining acceptance

by regulatory authorities [11]. These media offer many

advantages over other tests. They are simple, cost effec-

tive, easy to interpret, allow a large sample throughput,

highly sensitive and specific, and can be performed in
the same time frame as ELISA methods (Table 8). A

commercially available chromogenic agar for the detec-
Table 1

Antibody-based commercial test kits for the detection of Listeria spp. in foo

Test Manufacturer Specificity

Assurance Listeria EIA BioControl Systems, Inc. Listeria spp.

Dynabeads anti-Listeria Dynal Inc. Listeria spp.

EiaFoss Listeria ELISA kit Foss Electric A/S Listeria spp.

ListeriaUnique� TECRA International Listeria spp.

Listeria-Teke Organon Teknika Corp. Listeria spp.

Listertest Lift Test VICAM Listeria spp.

Oxoid Listeria rapid test Oxoid Ltd. Listeria spp.

PATHATRIX Listeria species

Test System

Matrix MicroScience Ltd Listeria spp.

PATHATRIX System for

Listeria/Salmonella species

Matrix MicroScience Ltd Listeria, Sal

Reveal� Listeria Neogen Corporation Listeria spp.

TECRA Listeria Visual Immuno

Assay

TECRA International Listeria spp.

Transia Plate Listeria Diffchamb AB Listeria spp.

Transia Plate Listeria

Monocytogenes

Diffchamb AB L. monocvyt

VIDAS Listeria Assay bioMerieux Listeria spp.

Vidas LMO bioMerieux L. monocvyt

VIDAS Listeria Express bioMerieux Listeria spp.

VIP for Listeria BioControl Systems, Inc. Listeria spp.
tion of L. monocytogenes is the Rapid�L.mono� agar

(BioRad, Marnes de la Coquette, France) on which

PIPL-C-positive bacteria produce blue colonies. Differ-

entiation of L. monocytogenes from L. ivanovii is accom-

plished by the fermentation of xylose (Fig. 2). The

Rapid�L.mono test has been assessed extensively on a
wide range of different samples [20,21]. Other commer-

cially-available agar tests based on detection of PIPL-C

positive bacteria are the BCM� chromogenic agar test

(Biosynth International, Naperville, USA), the CHRO-

Magar� Listeria test (Mast Diagnostics, Reinfeld, Ger-

many), and ALOA (Biolife, Milan, Italy). However,

none of these tests differentiate between L. monocytoge-

nes and L. ivanovii [22–26]. Another bacterial enzyme
used for the identification of L. monocytogenes is alanyl

peptidase, which is produced by allListeria species except

L. monocytogenes. A simple colour reaction is used in

which the substrates DLDL-alanine-b-naphthylamide and

DD-alanine-p-nitroanilide are hydrolyzed [27], and is the

basis for the Monocytogenes ID Disc (Biolife, Milan,

Italy).

3.4. Antibody-based tests

Immunoassay methods based on antibodies specific

to Listeria have been applied in food testing for many

years and they are popular because of their simplicity,

sensitivity, accuracy and also because testing can be car-

ried out directly from enrichment media without tedious

sample preparation. Many of these immunoassays are
available as commercial kits and are approved by regu-

latory authorities [15], Tables 1 and 8.
ds and environmental samples

Sample types Reference

Variety of foods [41,42]

L. monocytogenes Variety of foods [28,29,43]

(except L. grayi) Poultry [44]

Food and environmental samples N/A

Variety of foods [45–48]

Environmental surfaces, food N/A

Food and environmental samples [49]

Variety of foods N/A

monella spp. Variety of foods N/A

N/A N/A

Food and environmental samples [24,47,50–52]

N/A N/A

ogenes N/A N/A

Food and environmental samples [51,53,54]

ogenes Food [54,55]

Food and environmental samples [56]

Food and environmental samples [42]

st on January 10, 2016
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Table 2

Molecular targets for DNA probes used for the identification of

Listeria spp. by DNA hybridization

Probe target Specificity Reference

Delayed type hypersensitivity (dth) L. monocytogenes [63,64]

rRNA genes L. monocytogenes [65–68]

L. ivanovii [69]

Listeria spp. [32,70–73]

Hemolysin (hly) L. monocytogenes [74–79]

Listeria spp. [79,80]

Invasion-associated protein (iap) L. monocytogenes [57,74,79–82]

Putative transcriptional

activator (prfA)

L. monocytogenes [83]

Internalin A (inlA) L. monocytogenes [76,79,84]

Internalin B (inlB) L. monocytogenes [79]

Internalin C (inlC) L. monocytogenes [85]

Internalin D (inlD) L. ivanovii

Internalin related protein (irpA) L. monocytogenes [86]

Phospholipase A and B

(plcA, plcB)

L. monocytogenes [79]

Clp ATpase (clpE) L. monocytogenes [79]

Metalloprotease (mpl) L. monocytogenes [87]

Actin-polymerising protein (actA) L. monocytogenes [74]

Flagellin (fla) L. monocytogenes [74]
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3.4.1. Enzyme-linked immunosorbent assay (ELISA)

ELISA methods that use an antibody immobilized to

a microtitre well for antigen capture in combination

with a secondary antibody coupled to an enzyme (or an-

other label) to detect the captured antigen, are the most

widely applied methods because they combine ease of
use with the generation of rapid test results. Further-

more, the ELISA methodology can be used with difficult

sample matrices which makes these tests particularly

well suited for food testing. A recent development is

the availability of �next day� Listeria tests for food and

environmental samples. These tests claim equal sensitiv-

ity to traditional culture methods and enable a result

within 30 h of sample receipt (Listeria Unique, TECRA
International, Frenchs Forest, Australia and VIDAS

Listeria Express, bioMerieux, Marcy Etoile, France)

(Tables 1 and 8).

3.4.2. Immuno-capture

Immuno-capture is an elegant technique that uses

magnetic beads (Dynal, Melbourne, Australia) or dip

sticks (Listeria Unique�, TECRA International,
Frenchs Forest, Australia) coated with specific antibod-

ies to separate Listeria from competing microflora and

inhibitory food components. Specific capture methods

such as these also concentrate the target organism and

increase the sensitivity of the test [28]. Capture tech-

niques can be linked with molecular methods to increase

the power of discrimination to a sub-species level [29–32].

Differentiation of L. monocytogenes from other Liste-
ria species based on antibodies specific to virulence fac-

tors that are expressed by L. monocytogenes has met

with variable success. Whilst there have been many re-

ports of monoclonal and polyclonal antibodies directed

against virulence factors [33], these have not, in most

cases, been effective for testing. This is primarily because

virulence factor expression in vitro was extremely vari-

able [34–40]. However, an exception is the VIDAS
LMO assay (bio-Merieux, Marcy-Etoile, France), which

successfully targets a stable virulence antigen as the ba-

sis for the L. monocytogenes specific enzyme-linked fluo-

rescent assay (EFLA).

3.5. Molecular tests

Identification of Listeria spp. and L. monocytogenes

using molecular methods is becoming increasingly pop-

ular because these techniques are extremely accurate,

sensitive and specific. Identification and differentiation

of L. monocytogenes from other Listeria species to a

sub-species level can be performed in the same time

frame as ELISA-based assays.

3.5.1. DNA hybridization

DNA hybridization is the simplest molecular method

used for the detection of Listeria and L. monocytogenes
in foods (Table 2). The presence of a target sequence is

detected using an oligonucleotide probe of complemen-

tary sequence to the target DNA sequence which con-

tains a label for detection. Radioactive isotopes

incorporated into an oligonucleotide sequence were pre-

viously used as labels for detection. More recently, bio-
tinylated probes, probes incorporating digoxygenin

(Boehringer–Mannheim), or fluorescent markers allow

detection of target sequences with equivalent sensitivi-

ties to radioactive probes, without the biohazards asso-

ciated with radioactivity. PCR combined with DNA

hybridization in a microtitre plate is a convenient and

highly sensitive and specific approach for detection of

Listeria in a high-throughput 96-well format [57].
DNA hybridization tests aim primarily for the differen-

tiation of L. monocytogenes from other Listeria species

by targeting probes to virulence factor genes (Table 2).

Commercially available DNA hybridization tests are

routinely used for the testing of foods and have been

extensively trialed for their sensitivity and accuracy

[58]. These tests are robust and reliable. Accuprobe

(Gen-Probe Inc., San Diego, USA) is a test based on
the hybridization of labeled DNA probes to virulence

factor mRNA, thereby ensuring that only viable cells

are detected [59–61]. Another commercially available

test is the GeneTrak DNA hybridization kit (Neogen

Corporation, Lansing MI). A commercial test that re-

cently has become available utilizes the vermicon identi-

fication technology (VIT�, Munich, Germany) and is

based on in situ hybridization of fluorescently labeled
oligonucleotide probes to intracellular target RNA. This

test has been used so far only for the identification of

L. monocytogenes in sewage and sludge samples [62].
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3.5.2. Polymerase chain reaction (PCR)

PCR [88] has had an immense impact on all molecu-

lar applications since its introduction. PCR is a tech-

nique whereby segments of DNA are amplified using a

heat stable DNA polymerase and two primers (short

DNA sequences specific to a particular gene) and the
amplified fragments are then detected, usually using

agarose gel electrophoresis. In contrast to DNA hybrid-

ization, where comparatively large amounts of target

DNA or RNA are required to perform the test, PCR

amplifies large amounts of DNA from minute amounts

of target DNA. PCR is now established as a reliable and

reproducible technique for identification of Listeria spp.

And, more importantly, for the differentiation of L. mon-

ocytogenes from other Listeria species using primers

targeting genes of virulence factors or RNA sub-unit

genes (Table 3). Detection using PCR is carried out after

selectively enriching samples for 24–48 h. It has been

shown that direct testing of samples without prior

enrichment gives unreliable results [77,89,90]. One major

obstacle for the use of PCR in food and environmental

samples directly after selective enrichment was that
broths and food components contain inhibitors of the

PCR which gave rise to false-negative results [91]. Sev-

eral approaches can be taken to remove inhibitory fac-

tors after selective enrichments, such as sample

treatments [92–96] or isolation procedures using mag-

netic beads, dip sticks or membranes to remove target

DNA from reaction-inhibiting sample matrices

[29–31,62,99–102].
Multiplex PCR, where multiple primer sets are used,

allows the simultaneous detection of more than one

pathogen in the same sample, such as Listeria and Sal-

monella [29,31] or L. monocytogenes and other Listeria

species [101,103–106]. This approach is most attractive
Table 3

Primer targets for Listeria spp. and L. monocytogenes-specific PCR

amplification

Target gene for oligo nucleotide primer Reference

16S RNA [67,69,72,106,109,123–125]

16S–23S RNA intergenic spacer region [30,126–128]

23S RNA [129,130]

Actin polymerizing protein (act A) [114,131,132]

Aminopeptidase [133]

Delayed type hypersensitivity factor (dth) [134,135]

Fibrin binding protein (fbp) [136]

Hemolysin (hly) [77,96–98,106,110,114,

137–152]

Phospholipase (plcA, plcB) [131]

Invasion-associated protein (iap) [38,71,96,105,106,112,

147,153–155]

Metalloprotease (mpl) [147,156]

L. monocytogenes antigen (lma) [148]

Internalin A and B (inlA, inlB, inlAB) [131,157–162]

Putative transcriptional regulator (prfA) [95,147,162]

Sigma B factor (sigB) [163]
for food analysis, where testing time, reagents and labor

costs are all reduced. Another adaptation of PCR that

also uses multiple primer sets is nested PCR; however,

these primer sets are used in sequential reactions and

are designed against the same target. It is used to in-

crease sensitivity and specificity and has been used for
the identification of L. monocytogenes in clinical samples

[57,107–110], environmental samples [78], and milk sam-

ples [97,111,112]. Commercially available PCR tests are

the BAX� PCR system (Qualicon, Wilmington, DE,

USA) and the Probelia� assay (Sanofi Diagnostic Pas-

teur, Marne la Coquette, France), which have been tri-

aled in the field on a variety of different sample types

[113–122].
ry 10, 2016
4. Identification methods used in epidemiology

Detection of Listeria in food, environmental and clin-

ical samples using biochemical and serological methods,

as well as some molecular methods, generally identifies

the contaminating Listeria to the species level. Only
L. monocytogenes is regarded as a human pathogen

and only three serotypes of L. monocytogenes are impli-

cated in major food-borne listeriosis outbreaks. There-

fore, epidemiological investigations must use

techniques that are capable of discerning closely related

L. monocytogenes strains in order to be able to confirm

sources of outbreaks, establish patterns of transmission,

and determine and monitor reservoirs of epidemic
strains. Epidemiological investigations are based on

the assumption that strains of the causal organism iso-

lated from different sources are clonally related, and

are similar or identical in their phenotypic and molecu-

lar characteristics. Therefore, these methods are based

on species-specific proteins or genes that are relatively

stable over time and are passed on from generation to

generation. In addition, typing systems must have the
capacity to correctly classify all epidemiologically re-

lated isolates from an outbreak according to clonal rela-

tionships (epidemiological concordance) [164]. Apart

from these sensitivity and specificity requirements of

the test, there are other considerations to take into ac-

count when choosing an appropriate test for use in epi-

demiology, such as the ease of use of the method and

interpretation of results, labour and material costs, sam-
ple throughput ability, the time taken to perform the

test, as well as the stability and reproducibility of the test

itself.

4.1. Phenotypic typing methods

Typing of L. monocytogenes strains is either based on

phenotypic markers, such as somatic O- and flagellar
H-factors for serological typing, phage receptors (phage

typing) or enzymes (multilocus enzyme electrophoresis),

http://femsre.oxfordjournals.org/


Table 5

Summary of published studies employing phage typing for the sub-

typing of L. monocytogenes strains

Origin of isolates No. of samples

tested

No. of phages

used

Reference

Clinical 823 20 [177]

N/A 142 11 [178]

Various 247 27 [174]

Clinical 186 27 [167]

Clinical 156 29 [171]

Clinical 475 28 [172]

Clinical 807 28 [179]

Sheep (clinical) 814 27 [180]

Various food 2470 28 [181]

Human, animal, food 3400 29 [169]

Dairy, food 511 16 [182]

Various >1000 21 [183]

Food 227 27 [184]

Clinical 50 26 [185]

Environmental 44 29 [186]

Environmental, food,

clinical

2679 35 [187]

Clinical 100 [188]

Various 80 33 [176]

Poultry 247 [189]

Clinical 395 33 [190]

Poultry 96 37 [173]
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or they are based on molecular variations within the

bacterial genome (molecular typing methods).

4.1.1. Serological typing

Serological typing is based on antibodies that specif-

ically react with somatic or ‘‘O’’ antigens and flagellar or
‘‘H’’ antigens (Table 4) of Listeria species. Listeria spp.

are grouped into serotypes according to which O or H

antigens are displayed. Serotypes are shared amongst

Listeria species and antibodies directed against these

antigens allow identification of the genus Listeria but

do not differentiate Listeria species. Although, serologi-

cal confirmation is not required for identification of

L. monocytogenes, even for regulatory purposes, serol-
ogy is often used to determine the prevalence of specific

serotypes in epidemiological studies and for tracking

environmental contamination [165,166]. A commercial

kit for serotyping of Listeria isolates is available from

Denka Seiken (Tokyo, Japan) and antisera can also be

obtained from Difco (Difco Laboratories/Becton Dick-

inson and Co., Sparks, MD, USA).

4.1.2. Phage typing

Phage typing is a well-established typing method that

has been intensively evaluated on a variety of samples

(Table 5). It has been particularly useful in establishing

that food is the primary vehicle for Listeria infections

[167–170]. The method is based on the specific interac-

tion of a particular bacteriophage with its Listeria host

strain, resulting in host cell lysis. In 1985, the use of a
set of defined bacteriophages (international set) with

their respective host strains to standardize phage typing

was proposed by Rocourt and colleagues [171]. A major
Table 4

Seeliger–Donker–Voet scheme for serological typing of the Listeria

group (adapted from [89])

Species Serovar

designation

O-antigen O-antigen

L. monocytogenes 1/2a I II (III) AB

1/2b I II (III) ABC

1/2c I II (III) BD

3a II (III) IV AB

3b II (III) IV (XII) (XIII) ABC

3c II (III) IV (XII) (XIII) BD

4a (III) (V) VII IX ABC

4ab (III) V VI VII IX X ABC

4b (III) V VI ABC

4c (III) V VII ABC

4d (III) (V) VI VIII ABC

4e (III) V VI (VIII) (IX) ABC

7 (III) XII XIII ABC

L. ivanovii 5 (III) (V) VI VIII X ABC

L. innocua 6a (III) V (VI) (VII) (IX)

XV

ABC

6b (III) (V) (VI) (VII) IX

X XI

ABC

L. grayi (III) XII XIV E

n January 10, 2016
disadvantage of the phage typing technique is that not

all L. monocytogenes strains are typable. In particular

L. monocytogenes serotype 1/2 strains have a low typa-

bility compared to other serotypes [172,173]. Since
L. monocytogenes 1/2 strains are common food contam-

inants and one of the serotypes responsible for listeriosis

outbreaks, this is a serious drawback in using phage-typ-

ing of L. monocytogenes isolates for epidemiological

studies. It has also been noted that the typability of

strains using the international set differs with geograph-

ical locations of isolates and this may contribute to the

deficiencies of the typing system [173,174].

4.1.3. Multilocus enzyme electrophoresis (MEE)

MEE is also a well established typing technique

(Table 6). It is based on the observation that variations

in amino acid sequences of enzymes result in a different

electrostatic charge of the protein, which in turn results

in a different electrophoretic mobility. These variations

in mobility are directly related to allelic variations of
genes coding for these enzymes. Based on their electro-

phoretic mobility, isolates can be sorted into electropho-

retic types. The procedure is simple and involves the

preparation of enzyme extracts by lysis of bacterial cells,

electrophoresis of the extracts using starch gels and the

specific staining of enzymes [175].

Phage typing and MEE in general have proven to be

reliable and convenient methods, which show good repro-
ducibility when used in several WHO inter-laboratory

studies [176]. These methods are easy to use, easy to

http://femsre.oxfordjournals.org/


Table 6

Summary of published studies employing multilocus enzyme typing for the identification of sub-types of L. monocytogenes

Origin of isolates No. of isolates No. of enzymes tested No. of electrophoretic types Reference

Clinical 175 16 45 [191]

Clinical/food 390 16 82 [192]

Clinical 84 8 14 [193]

Wild-type/clinical 115 8 [194]

Clinical/environmental 305 16 78 [195]

Environmental/food 82 21 11 [196]

Clinical/food/environmental 85 14 45 [197]

Clinical/other 80 8–23 14–25 [198]

Clinical/food 219 10 59 [199]

Meat/environmental/waste 133 22 21 [200]

Seafood/environmental/clinical 305 21 40 [201]

Clinical/poultry 122 21 17 [202]
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interpret, cost and labour efficient, and, most impor-

tantly, have been extensively tested in the field (Tables 5

and 6). These techniques were developed when many

molecular methods were not available. Variations in

the primary protein sequence are more accurately de-

tected using molecular methods. In general molecular

typing methods are superior to phenotypic typing meth-

ods both in terms of sensitivity and specificity. However,
since many molecular tests are still in their infancy and

inter-laboratory standardization of individual test

parameters are often lacking, there is also a lack of ana-

lytical data for comparative studies. Therefore, current

epidemiological investigations involve the use of several

methods based both on phenotypic and molecular tech-

niques to correctly classify implicated Listeria strains.

4.2. Molecular typing techniques

Molecular typing techniques are based on DNA

hybridization, PCR, restriction enzyme analysis or di-

rect sequencing of DNA. Direct sequencing of DNA is

the most accurate way of comparing genetic differences

or similarities. However, it is also the most expensive

and time consuming method, and currently cannot be
applied to high throughput testing. Hence, methods that

give a relatively accurate reflection of genetic variation

as well as a high sample throughput in a rapid timeframe

were developed. These methods are aimed at establish-

ing the degree of allelic variation of particular genes,

which then forms the basis of measuring genetic related-

ness of Listeria strains. Allelic variations can be mea-

sured as variations in the length of DNA fragments
that can be generated, either by restriction digests or

PCR, or as a change in conformation due to sequence

differences (conformational polymorphism).

In order to interpret data with greater accuracy, elec-

trophoretic techniques were developed to allow better

resolution of DNA fragments, such as pulse-field gel

electrophoresis (PFGE), which is primarily used in con-

junction with restriction enzyme (endonuclease) digests
of DNA. Denaturing gradient gel electrophoresis
(DGGE) or capillary electrophoresis (CE) are electro-

phoretic techniques that are used in conjunction with

single strand conformational polymorphism (SSCP)

analysis to detect single nucleotide variations. Many of

these molecular typing techniques continue to have

problems that prevent routine use. These are primarily

due to a lack of standardization of individual test

parameters which can result in incorrect typing and
poor inter-laboratory correlation of results [203]. Fur-

thermore, some of these tests require specialized equip-

ment, materials and reagents and testing is expensive

when performed on a large scale that is necessary for

most epidemiological investigations.

The most important molecular methods used for typ-

ing of L. monocytogenes are described in this review.

Some are well-established techniques such as ribotyping,
macrorestriction digests, PFGE, PCR-restriction frag-

ment length polymorphism (RFLP) or random ampli-

fied polymorphic DNA (RAPD), which are used

routinely. Other techniques such as SSCP or multilocus

sequence typing (MLST) are currently becoming estab-

lished as typing techniques for L. monocytogenes and

show great promise. However, they are not used rou-

tinely and not many field data exist for these methods.

4.2.1. Ribotyping

Ribotyping is based on variations in ribosomal genes

or proteins. This method was originally used to establish

phylogenetic relationships and is the basis for modern

systematics of prokaryotes. Relationships of organisms

are best evaluated by how closely DNA sequences for

a given gene match. The most useful gene for evaluation
of phylogenetic relationships is the gene coding for ribo-

somal RNA because ribosomal genes are present in all

organisms in multiple copies across the genome and

ribosome function has been presumed to be constant

over long evolutionary timescales. In general, ribotyping

of Listeria isolates involves the restriction enzyme diges-

tion of chromosomal DNA followed by DNA hybrid-

ization using an rRNA gene probe. Resulting banding
patterns are used to sort Listeria isolates into ribotypes

http://femsre.oxfordjournals.org/
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and establish the relatedness of isolates [65,194,204,205].

Ribotyping has been extensively used in epidemiological

studies [170,206–208] and automation has allowed the

adaptation of this method for routine analysis [209–

214]. Although the method is convenient, robust and

gives excellent reproducibility the power of discrimina-
tion for L. monocytogenes typing is reported to be less

than that of other molecular typing techniques

[195,215].

4.2.2. Restriction enzyme analysis (REA)

This technique involves the use of restriction enzymes

that recognize and cut particular sequences within DNA

molecules. The digestion of DNA produces a banding
pattern of fragments with varying sizes. Genetic related-

ness is determined by comparison of the number and

size of fragments which are separated and visualized

using gel electrophoresis. REA of chromosomal bacte-

rial DNA is referred to as macrorestriction analysis

and the performance of the technique is significantly en-

hanced by combination with PFGE. In this type of elec-

trophoresis, DNA molecules are subjected to periodic
changes in the direction and/or the intensity of the cur-

rent of the applied electrical field. DNA molecules can

be separated according to their size because smaller mol-

ecules respond better to changes in the electrical field

than larger molecules. Using conventional electrophore-

sis DNA molecules of up to 20 kb can be separated,

whereas DNA molecules of up to 12 Mb can be sepa-

rated and analyzed by PGFE [216]. The combination
Table 7

Summary of published studies using restriction enzyme analysis for the mol

Test Target

Macrorestriction Genomic DNA

Genomic DNA

Genomic DNA

Genomic DNA

Macrorestriction/PFGE Genomic DNA

Genomic DNA

Genomic DNA

Genomic DNA

Genomic DNA

Genomic DNA

Genomic DNA

Genomic DNA

Genomic DNA

Genomic DNA

Genomic DNA

PCR-REA (microrestriction) hly, iap, mpl, prfA

inlA, inlB

iap

hly, actA, inlA

N/A

hly, iap

actA, hly

actA, hly
of macrorestriction digest with PFGE is considered the

most effective typing method because it is simple, time

and cost efficient, and highly discriminative (Table 7).

With only minor adjustments this technique can be ap-

plied to almost any bacterium or strain. In comparative

studies with other typing methods it was found to be the
most discriminatory test, in particular for typing of

L. monocytogenes serotypes 1/2 and 4 [65,158,

203,214,217].

4.2.3. PCR-based typing methods

Two different PCR-based approaches can be used to

type strains. One approach (RAPD) utilizes random

primers to amplify DNA fragments randomly. The sec-
ond approach is to amplify specific target sequences and

analyze PCR products or their restriction enzyme di-

gests, by comparing lengths of DNA fragments (RFLP)

or conformational variations (SSCP) within these PCR

products. In the RAPD technique genomic DNA is

characterized based on the number and size of amplified

DNA fragments generated by using a single random or

universal primer in a PCR. Small changes in the geno-
mic DNA will result in different sizes and numbers of

amplified fragments. This technique has several advan-

tages over conventional PCR. The primers used are typ-

ically 8–10 bp long and of random sequence, but prior

knowledge of the target DNA sequence is not required.

The same primers can be used for many different species

of bacteria with only minor changes in the protocol. In

general at least three universal primers are used in
ecular typing of L. monocytogenes strains

Restriction

endonuclease

Reference

NciI [218]

EcoRI [219]

EcoRI, HaeIII, HhaI, CfoI [220]

HaeIII [202]

ApaI, SmaI, NotI [221]

ApaI, SmaI [213,215,222,225,227]

ApaI, SmaI, XhoI [223]

SmaI [224]

ApaI, AscI [226]

ApaI, NotI [171]

ApaI [158,234]

EcoRI [199]

ApaI, SmaI, AseI [228]

AscI, SmaI [211]

ApaI, AscI, SmaI [229]

Various [147]

AluI [157,158,161]

HindIII, RsaI [230]

HhaI, HpaII, SacI, ApoI, HinfI [235]

HindIII [231]

32 restriction enzymes [232]

SacI, ApoI, HinfI [233]

HhaI, HpaII [114]
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Table 8

Comparison of methods for food, environmental and clinical testing for Listeria spp.

Test Sensitivitya Level of identification Cost/test

(�Au$)

Labour Enrichment

time (h)

Timeb Commercially

available

Automation

available

Regulatory

approvals

Culture methods

(e.g., FDA-BAM)

6104 cells/mL Genus Listeria, biochemical

differentiation of species

6$1 High �48 3–4 days up to

7 days for species

Dehydrated or

prepared media

No Yes standard

methods

Chromogenic media 6104 cells/mL L. monocytogenes, no

differentiation of other species

$1–$2 Medium 24–30 1–2 days Yes No Some recently

approved

Immunoassay methods,

e.g., ELISA, EFLA

P105 cells/mL Genus Listeria. A few

differentiate L. monocytogenes

from Listeria sp.

$6 Low to medium 40–48 28e 1–2 h Yes Yes Yes many

approved

methods

Immuno-capture/ELISAc P105 cells/mL Genus Listeria. A few

differentiate L. monocytogenes

from Listeria spp.

$10 Medium 24–30 1–2 h Yes Yesc No

Immuno-capture/PCRd P105 cells/ mL Differentiation of all species,

sub-species specific

P$10 Medium 24–30 P2 h Yes No No

PCRd P 105 cells/mL Differentiation of all species,

sub-species specific

$ 10 Low 24–30 P2 h Yes Yes Yes some

approved

DNA hybridization P107 cells/mL Differentiation of all species,

sub-species specific

$10 Low 40–48 2–4 h Yes Yes Yes some

approved

a Sensitivity of the test per ml of enriched sample. All approved tests are required to detect 1 cell per 25 g food sample; hence, all tests require culture enrichment.
b Approximate time it takes to perform the test excluding enrichment times.
c Listeria Uniquee (TECRA International, Frenchs Forest, Australia).
d Sensitivity is 65 cfu in pure culture, does not apply for food testing.
e VIDAS Listeria Express (bioMerieux, Marcy-Etoile, France).
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separate reactions for finger-printing, and subsequent

banding patterns are compared for each primer. The

applicability of the technique for typing ofListeria species

and sub-typing of L. monocytogenes strains has been

documented in many studies from many different labora-

tories [205,236–241] and was also shown in an inter-
laboratory trial using three universal primers [242].

RAPD typing is an excellent tool for epidemiological

studies and has been extensively used to link L. monocyt-

ogenes strains isolated from listeriosis cases to foods that

were implicated in outbreaks [238,243–250]. RAPD has

been widely employed to type isolates from poultry plants

[206,251], smoke houses [252–255], dairy environments

[247], pork processing and slaughtering plants [158] and
to either exclude or include implicated food products.

The advantages of RAPD typing compared to other

molecular methods are the simplicity of the test, the speed

with whichListeria can be typed to a sub-species level and

the ability to screen large sample numbers.

In contrast to RAPD typing, PCR-RFLP involves

the PCR amplification of a particular target gene and

digestion of the PCR product with a restriction enzyme.
The restriction fragments are separated by electrophore-

sis and genetic relatedness is established by comparison

of the number and size of fragments. Target genes are

usually genes coding for ribosomal sub-units or viru-

lence factors (Table 7). Whilst this approach is popular

due to the fact that it allows a large sample throughput

in a short time frame combined with ease of use and

interpretation of results, the discriminatory power of
PCR-RFLP is not high [164] and therefore its use in epi-

demiological investigations is limited.

Conformational polymorphism analysis is based on

the assumption that a change in the nucleotide sequence

of a PCR product will result in a change in the confor-

mation of a single strand of that product. This confor-

mational change can be detected by gel-electrophoresis

because denatured DNA fragments of different sequence
will migrate at different rates. Early studies of SSCP

used non-denaturing polyacrylamide gels for analysis

[256] but more recently denaturing (DGGE) or temper-

ature gradient gel electrophoresis (TGGE) have been

employed more effectively to separate DNA fragments

that may differ in only a few nucleotides [257]. Electro-

phoresis is performed by introducing denaturing agents,

such as urea and formamide, into a polyacrylamide gel
(DGGE) or by applying a temperature gradient across

the gel (TGGE) which partially denatures double

stranded DNA. Differences in the nucleotide sequence

will lead to different melting behaviour of the DNA

and hence DNA fragments will migrate at a different

rate through the gel. L. monocytogenes strains isolated

from foods have been typed using this technique [153].

However, the most commonly applied gel electrophore-
sis in investigations using SSCP typing is capillary elec-

trophoresis (CE). SSCP-CE has the capacity to
differentiate DNA fragments, which differ by only one

nucleotide. Separation of analytes is carried out in silica

capillaries which are filled with a sieving matrix. DNA is

injected into the sieving matrix and separated according

to its size under high voltage. DNA fragments are de-

tected under UV light when they pass a detector at the
end of the capillary [258]. The process is fully automated

and lends itself to high throughput screening. It is a use-

ful and cost effective alternative to direct DNA sequenc-

ing, the only other method capable of detecting single

nucleotide polymorphisms. L. monocytogenes has been

typed using SSCP of the 16S rDNA [259] and the hem-

olysin (hly) and iap genes [260].

4.2.4. DNA sequencing

Direct sequencing of DNA is the most accurate method

of evaluating genetic relationships of organisms, how-

ever it is expensive and time consuming. The most

widely used sequencing method was first described by

Sanger [261] and is based on the controlled interruption

of DNA synthesis by incorporation of dideoxynucleo-

tides during extension of DNA strands. Early sequenc-
ing efforts were hampered by the amount of starting

material that was required for the reaction and so genes

were targeted that are present in large copy numbers

throughout the genome such as genes coding for

RNA. Since the introduction of PCR the amplification

of even minute amounts of target DNA is possible and

hence sequencing has become a more applicable tool.

The 16S RNA gene is the most extensively sequenced
RNA gene [150,130,235,259], but 23S, 5S sequences

and spacer regions have also been used for identification

and typing purposes [127,129,204]. 16S RNA genes con-

tain stretches of highly conserved regions but also re-

gions that are variable. Primers designed to target

conserved DNA sequences can be used to analyze a wide

variety of different organisms using PCR amplification

with subsequent sequencing of the PCR product [262],
whilst highly diverse regions can be used to sub-type

strains.

Sequencing of other genes has also been employed

and this is the basis for multilocus sequence typing

(MLST). House keeping genes or genes coding for viru-

lence factors such as flagellin, (fla), hly, actA, iap, inter-

nalins (inl), the metalloprotease (mpl), prfA and other

virulence-associated genes [263,264] are PCR amplified
to generate internal gene fragments of approximately

450bp, which are then sequenced. Variations within

the sequences of these genes are assigned alleles at these

loci [265]. The discriminatory power of this approach is

extremely high and accurate. MLST allows unambigu-

ous typing of any strain and comparisons can be made

based on sequence data which are easily accessible from

appropriate data bases. The method was developed for
typing of L. monocytogenes strains targeting several

house keeping genes [266–269] however it cannot be
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applied routinely and its application is limited to special-

ized laboratories.

Recently, the whole genome sequences of L. monocyt-

ogenes strain EGD and L. innocua were determined

through a collaborative effort [270]. Since then numer-

ous new L. monocytogenes genes and their functions
have been elucidated and there are ever increasing se-

quence data compiled in databases such as the database

of the National Centre for Biotechnology Information

(http://www.ncbi.nlm.nih.gov) that are available for

comparisons. The information that the complete se-

quence of the L. monocytogenes genome provides is

invaluable and the impact that such information has

had on all applications is huge. A commercial sequenc-
ing kit targeting bacterial 16S RNA genes is available

from Applied Biosystems (Foster City, CA, USA) [89].

Epidemiological surveys on an international level are

necessary to investigate the risks associated with L. mon-

ocytogenes contamination of foods and environmental

samples. Recently, the WHO has been testing a new ap-

proach for assessing the risks that are associated with

L. monocytogenes in ready-to-eat foods. These risk
assessments are used to provide an estimate of the like-

lihood of illness from L. monocytogenes in a given pop-

ulation and are based upon epidemiological

investigations from laboratories across the world [271].

Therefore, when comparing data from international

sources it is of utmost importance that epidemiological

tests are standardized and give good inter-laboratory re-

sults, which has not been achieved for most molecular
typing methods to date. However, the trend of epidemi-

ological testing is towards molecular methods and there-

fore measures must be taken to standardize these tests

[271] because many laboratories use different reaction

conditions (Tables 2 and 3) or restriction enzymes (Ta-

ble 7) as well as different test parameters.
0, 2016
5. Future directions for the detection and identification of

L. monocytogenes

The following section reviews novel methods for the

detection of Listeria spp. in food, environmental and

clinical samples. These methods are currently employed

by specialized research laboratories only; but, because

these methods offer significant advantages over conven-
tional techniques, they may be used routinely for food

pathogen testing in the future.

5.1. Tests targeting RNA

Testing of food or environmental samples for patho-

genic Listeria should only target living organisms since

only live Listeria cells can cause disease. The ability to
form colonies on solid agar is the gold standard by which

culture methods confirm the presence of live pathogens
and this is the standard against which all other Listeria

detection tests are compared. Tests that target DNA

such as PCR have been criticized because dead organ-

isms can give positive results due to the relatively high

stability of DNA molecules. The choice of RNA or

mRNA as a target for food pathogen testing has gath-
ered increasing favour since the presence of mRNA is

an indication of the living state of the cell [272,273].

mRNA is a labile molecule and readily degraded after

cell death by RNases and environmental factors such

as heat. Another advantage of testing for mRNA is that

multiple copies of the target gene are present, which in

turn enhances the sensitivity of the test. Instability of

mRNA molecules, although an advantage, can also be
a disadvantage because testing must be performed under

conditions that prevent degradation of the target. Other

disadvantages for using RNA-based technology are the

high cost of equipment and reagents, and personnel must

be highly trained to perform and evaluate the tests. Sen-

sitivity and specificity of RNA tests are reported to be

equivalent or better than standard PCR [274]. Many

RNA-based tests are performed in a 96-well format
which lends itself to high-throughput testing and auto-

mation, a factor that makes this technology attractive

for future routine applications in food testing and epide-

miological investigations.

5.1.1. Reverse transcription (RT)-PCR

RT-PCR involves a two-step reaction, with the first

step employing a reverse transcriptase enzyme to trans-
late mRNA into complementary DNA (cDNA). The

reaction is usually initiated by random oligonucleotide

primers. In the second step the cDNA is used as tem-

plate for amplification of specific sequences by PCR

using target specific oligonucleotide primers and a

DNA polymerase to facilitate the reaction. L. monocyt-

ogenes has been detected using this method in artificially

inoculated meat samples [275] by targeting mRNA tran-
scripts of the hly, prfA and iap genes, in waste samples

[276] by targeting the transcripts for rRNA genes, and

also for the detection of heat-injured L. monocytogenes

by targeting the hly transcript [277].

5.1.2. Real-time PCR

This technique is a modification of the RT-PCR

method. The reaction mix contains a fluorescent mar-
ker (SYBR Green) that binds specifically to double

stranded DNA. The increase of fluorescence after each

successive cycle allows the direct quantitation of target

DNA. This type of analysis requires specialized equip-

ment and materials which substantially increase the

cost of testing. This method has been used to identify

and quantify L. monocytogenes in foods and clinical

samples in several studies [74,154,278–281], and for
the simultaneous detection of Listeria and Salmonella

[151,152]. Establishing the actual number of contami-
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mental samples is an important factor when investigat-

ing outbreaks of listeriosis. Real-time PCR is

quantitative, which is a significant advantage over

other molecular methods, and so this technology is ex-

tremely attractive for food testing and epidemiological
investigations.
 by guest on January 10, 2016
http://fem

sre.oxfordjournals.org/
D

ow
nloaded from

 

5.1.3. Nucleic acid sequence-based amplification

(NASBA)

NASBA is an alternative to conventional PCR and is

based on the action of three enzymes. In the first step a

reverse transcriptase is used in combination with an oli-

gonucleotide primer to produce a cDNA-RNA hybrid
molecule. In the next step an RNase enzyme removes

the RNA from the hybrid molecule allowing the reverse

transcriptase to synthesise a double stranded cDNA

molecule. This cDNA is then used as a template for

the generation of RNA transcripts by a T7 polymerase.

In contrast to PCR, NASBA yields single stranded

RNA moleules which can be detected either by conven-

tional agarose electrophoresis or by using specific la-
beled oligonucleotide probes for hybridization assays

combined with colorimetric detection systems. Although

NASBA is a method that shows great potential for rou-

tine analysis of food and environmental testing

[273,282], there are some differences to conventional

PCR methods particularly concerning sample prepara-

tion, which complicate this technique. Nucleic acids

must be extracted prior to testing, because unlike
PCR, the reaction is carried out at a constant tempera-

ture of 41 �C, which is not high enough for bacterial ly-

sis and hence direct testing of enriched samples is not

possible. On the other hand, since the reaction is per-

formed at a constant temperature thermal cycling equip-

ment is not required. NASBA has been used for the

detection of L. monocytogenes in foods [283,284], and

has been found to be of equivalent sensitivity, yet better
specificity, than conventional culture and ELISA-based

methods [284].
5.2. DNA microarrays

DNA microarrays are an exiting new technology,

which is based on DNA or RNA hybridization. DNA

microarrays are used to investigate microbial evolution

and epidemiology and can serve as a diagnostic tool

for clinical, environmental or food testing. They are

essentially reverse dot-blots and are produced by spot-

ting DNA (usually 100–200 lm in size 200–500 lm
apart) onto a solid support matrix [285]. Microarrays

are commercially available from many different suppli-

ers (Applied Biosystems, Affymetrix, Qiagen and many

others) and can be custom made for specific purposes.

There are two main microarray formats, one is based
on sequence specific oligonucleotides and the other em-

ploys specific PCR products.

5.2.1. PCR-based microarrays

To generate PCR-based microarrays it is necessary to

amplify specific regions of interest using target-specific
primers. Such microarrays are usually constructed to

represent the whole bacterial genome and primers are

designed to cover open reading frames as well as inter-

genic regions. PCR products are purified prior to spot-

ting onto the support, usually coated glass slides or

membranes, which are then used for hybridization stud-

ies with target DNA. The target DNA from the sample

is generated from total bacterial RNA using random or
specific primers and RT-PCR. These PCR products are

subsequently labeled with a fluorochrome such as Cy3

or Cy5 for detection. For genomic investigations, geno-

mic DNA is labeled prior to DNA hybridization. DNA

fragments with complementary sequences will bind to

immobilized PCR products and are visualized via the la-

bel. The generation of PCR based microarrays is labour

and cost intensive and minute amounts of impurities in
the PCR products can lead to cross-hybridization and

ambiguous results.

5.2.2. Oligonucleotide-based microarrays

These arrays offer significant advantages over PCR-

based microarrays. Use of synthetic oligonucleotides

eliminates the need for RT-PCR amplification and prod-

uct purification steps, and hybridization can be per-
formed directly using total bacterial RNA, which is

labeled prior to hybridization. There are other advanta-

ges including reduced cross-contamination and cross-

hybridization [286].

Oligonucleotide microarrays based on the iap and hly

genes have been used simultaneously to detect and dis-

criminate between Listeria species [79]. In other studies,

PCR-based genomic microarrays were constructed and
used to sub-type L. monocytogenes strains [285,287].

Phylogenetic relationships of L. monocytogenes sero-

types 1/2a, 1/2b, 1/2c and 4b have been examined using

these methods [285,288,289] and portable systems for

field testing have also been described [290,291]. The

most attractive feature of this new technology is the

capability of simultaneous identification and typing of

Listeria strains in one test, a powerful feature that none
of the other tests offer. However, the disadvantages are

that high amounts of target DNA or RNA are required

to perform the test and high-throughput testing is cost

prohibitive.
6. Conclusion

Since food-borne transmission of Listeria was first

established in 1981 there has been an explosion in the
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development of new tests targeting Listeria, its reser-

voirs and sources of contamination. The main priority

for testing is the identification of reservoirs of Listeria

contamination in the food processing environment and

the early detection of contaminated foods to prevent

food-borne outbreaks and comply with regulatory
requirements. There is continuing pressure for more ra-

pid and sensitive methods, which results from the

requirement of government organizations to protect

the consumer, whilst the food industry is under pressure

to release foods onto the market before they spoil. Since

there is a �zero tolerance� for the presence of Listeria in

certain foods for human consumption in many coun-

tries, it is important to have rapid tests with high sensi-
tivity. These tests should also be amenable to high

sample throughput and be cost-effective. These criteria

are best fulfilled to date by ELISA-based tests such as

the ‘‘next day’’Listeria tests for food and environmental

samples (Listeria Unique, Tecra International, Frenchs

Forest, Australia and VIDAS Listeria express. bio-

Merieux, Marcy Etoile, France), or conventional PCR

tests and tests based on DNA hybridization (Table 1
and 8).

There have been substantial improvements in culture

methods, both in selectivity and ability to recover

stressed organisms. These methods are used to enrich

samples for testing and are routinely combined with

antibody-based tests or more recently molecular tests

based on Listeria-specific genes. Such culture and anti-

body-based tests are widely used in food industry labo-
ratories because of their convenience, speed,

automation, high sample throughput and cost effective-

ness (Table 8). Their reliability, robustness and repro-

ducibility, has been shown in numerous validation

studies. Whilst these methods are important for the rou-

tine testing of food and environmental samples, these

are not able to identify sub-types, which is a crucial

parameter in the study of out-breaks of listeriosis.
Application of culture and serological methods in

epidemiological studies is of limited value because of

their low discriminatory power. Methods of higher dis-

criminatory power, including molecular methods such

as PCR and DNA hybridization tests, have been devel-

oped to differentiate between strains and identify sub-

types of L. monocytogenes serotypes (Table 8). The first

typing methods were based on phenotypic markers such
as phage types and electrophoretic mobility of cytosolic

enzymes. More recently, there has been a trend towards

using molecular methods which also have significantly

enhanced discriminatory power, are robust, reliable

and give reproducible results. Standardization of meth-

ods is a key issue for routine application and can be

achieved by automation of testing such as automated

ribotyping, PCR and also real-time PCR. Given the high
accuracy and speed with which molecular testing can be

carried out, there is no doubt that most of these meth-
ods, if not already applied, will be adopted by regulatory

authorities and in food testing laboratories in the future.

There are exciting new developments in molecular tech-

nologies such as the microarray technology which have

great potential as the basis for future routine testing.
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