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Abstract: Listeria monocytogenes can adhere to different types of food contact surfaces 

within a food processing environment. Therefore, environmental sampling devices should 

be capable of detecting unacceptable contamination. In this study, a sponge-stick,  

foam spatula and an environmental swab were evaluated on their ability to detect low 

concentrations of L. monocytogenes on different types of food contact surfaces. A cocktail of 

four L. monocytogenes serotypes was inoculated with a concentration of 100 CFU/250 cm2 

onto stainless steel (SS), high density polyethylene (HDPE) and rubber surfaces in a  

250 cm2 area. Immediately after inoculation and after 1 h exposure, the surfaces were 

swabbed with the different swabbing devices. The results of the study show only minor 

differences in the ability of the swabbing devices to detect L. monocytogenes. All devices 

were capable to detect the contamination immediately after inoculation. However, when the 

surfaces were allowed to air-dry for 1 h, L. monocytogenes was undetected in 11.1% of the 

samples (n = 27) with the sponge stick, in 7.4% of the samples (n = 27) with the foam 

spatula and in 3.7% of the samples (n = 27) with the environmental swab, especially on SS 

surfaces. The detection ability of the different devices for L. monocytogenes can be 

concluded to be rather high on different types of food contact surfaces. 
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1. Introduction 

A number of studies have been devoted to show the ability of Listeria monocytogenes to attach to 

food contact surfaces consisting of stainless steel, high-density polyethylene (HDPE) or rubber [1–4]. 

This dangerous foodborne pathogen is the causative agent of listeriosis, a severe disease with 

hospitalization and mortality rates ranging from 16% to 21% [5–9]. Human infection usually occurs 

via contaminated raw and processed ready-to-eat (RTE) foods such as cheese, smoked fish,  

meat products and deli-salads [9–11]. However, the ability of this bacterium to survive and grow under 

anaerobic conditions as well refrigerator temperatures, and its high tolerance to salt, allows it to thrive 

in food processing environments [11,12]. Especially in meat, dairy and seafood processing plants is  

L. monocytogenes commonly isolated from the food processing environment where it can exist in 

biofilms [9,10,13–15]. These biofilms can occur on food handling or food processing surfaces  

(e.g., cutting boards, slicing blades, conveyer belts and stainless steel equipment) or in food processing 

or storage areas (e.g., drains, ventilation, floors, refrigerators) [9,13,16]. The presence of biofilms in 

food manufacturing and processing facilities can lead to contamination of food products placed on 

these contaminated surfaces or handled in contaminated areas [9,17]. Moreover, it was suggested that  

L. monocytogenes strains sequestered within biofilms associated with uneven food contact surfaces 

may be the most important factor for product contamination [14]. The environment in which foods are 

prepared or handled can thus have a significant impact on the microbiological safety of food products. 

To prevent unacceptable contamination of RTE food products, environmental sampling on a routine 

basis is recommended in the frame of the EC Regulation 2073/2005 defining microbiological criteria 

for foods [18]. Such environmental sampling aims at detection and elimination of persistent strains  

and is mostly performed with contact plates, traditional swabs and pre-moistened sponges or wipes 

according to ISO 18593 [19,20]. However, this ISO document does not give guidance specific to  

L. monocytogenes detection. Moreover, an ineffective sampling technique or device may result in the 

non-detection of L. monocytogenes when it is present [21]. This will prevent the implementation of 

corrective actions and will give a false sense of security. Recently, several studies have been performed 

to evaluate different sampling procedures for L. monocytogenes [12,19,22–24]. These procedures involved 

mini-rollers, swabs, sponges, tissues, petrifilm and RODAC plates. From these procedures, swabbing is a 

widely used sampling method for detection of L. monocytogenes [25,26]. However, studies which compare 

the efficacy of several environmental swab or sponge types to detect low numbers of L. monocytogenes  

on different types of food contact surfaces, are rare. Therefore, the objective of this study is to compare 

several environmental swabbing devices (foam spatula, environmental swab and sponge stick) in their 

ability to detect low concentrations of L. monocytogenes on different types of food contact surfaces. 



Int. J. Environ. Res. Public Health 2014, 11 806 

 

 

2. Experimental Section 

2.1. Preparation of Test Surfaces 

Three types of surfaces common to the food processing environment were used as model surfaces for 

testing. Scratch-free stainless steel (SS, grade 316), neoprene rubber and high density polyethylene  

(HDPE, type 300) plates were ordered from Baudoin (Mol, Belgium) and cut into coupons of  

16 × 16 cm. Prior to inoculation, the surfaces were cleaned and disinfected. The stainless steel plates  

were autoclaved at 121 °C for 15 min. The rubber and HDPE plates were rinsed with boiling water  

for 5 min and disinfected with 70% ethanol (Merck, Darmstadt, Germany) to accomplish sterile 

starting conditions. 

2.2. Preparation of Inoculum 

Four strains of L. monocytogenes were used to contaminate the test surfaces: L. monocytogenes 

serotypes 1/2a (LFMFP 511, clinical isolate), 1/2b (LFMFP 417, food isolate), 1 (LFMFP 482,  

food isolate) and 4b (LFMFP 423, food isolate). These strains were taken from the reference stock 

stored at −80 °C and were cultured in Tryptone Soy Broth (TSB, Oxoid, Basingstoke, UK), 

supplemented with 0.6% yeast extract (YE, Oxoid) for 24 h at 37 °C. A stock culture was kept at 4 °C 

on TSA supplemented with 0.6% YE. Working cultures of L. monocytogenes were prepared by loop 

inoculation of each serotype in 10 mL of fresh TSBYE and incubation for 24 ± 2 h at 37 °C. After this 

period, 100 µL of each culture was transferred to 10 mL of fresh TSBYE and incubated at 37 °C for  

24 ± 2 h. These culture conditions were found to yield approximately 108–109 cfu·mL−1. Each serotype 

was pooled into a L. monocytogenes cocktail in equal concentrations to be used in this study.  

The cocktail was serially diluted in Buffered Peptone Water (BPW, Oxoid) for a concentration of  

ca 102 cfu·mL−1. Culture purity was checked on Tryptone Soy Agar (TSA, Oxoid), supplemented with 

0.6% YE. The strains were confirmed on Agar Listeria Ottavani & Agosti (ALOA; Biolife, Milan, Italy). 

2.3. Application of the Inoculum on the Test Surfaces 

The prepared inoculum was spotted in 10 drops of 100 µL on each test surface and uniformly 

spread with a sterile, disposable “hockey stick” shape spatula to obtain an inoculum level of ca 102  

L. monocytogenes CFU/250 cm2. To verify the number of cells inoculated on the surfaces,  

a plate count was conducted on TSAYE. 

2.4. Sampling Devices and Sampling Procedure 

The tested swabbing devices were: (1) a sponge-stick pre-moistened with Buffered Peptone Water 

Broth (3MTM Sponge-Stick, 3M, Diegem, Belgium); (2) a pre-moistened environmental swab  

(3MTM Enviro Swab, 3M, Diegem, Belgium) and (3) a Copan foam spatula (Novolab, Geraardsbergen, 

Belgium) pre-moistened with 10 mL BPW. For each surface type and each swab type, 9 inoculated 

coupons were either sampled immediately after inoculation, while they were still wet, or after they had 

been allowed to air-dry for 1 h. 
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2.4.1. 3MTM Sponge-Stick 

An envelope containing a pre-moistened sponge stick was opened and the stick was aseptically 

removed. Swabbing was performed using an overlapping “S” pattern to cover the entire surface with 

horizontal strokes. Next, the swab was rotated and the same area was swabbed again using vertical 

“S”-strokes followed by swabbing using diagonal “S”-strokes. The tip of the device was used to wipe 

the perimeter of the sampling area (Figure 1). The sponge-stick was placed into the bag and the stick 

was bending to break off, allowing the sponge to drop in to the bag. The sponge was enriched with  

225 mL of half fraser broth (Biomérieux, Brussels, Belgium) and subsequently incubated for 24 ± 2 h 

at 30 °C. An aliquot of 0.1 mL was spread on ALOA agar and incubated for 24 ± 2 h at 37 °C. 

Figure 1. This figure shows the technique of swabbing with an overlapping “S” pattern. 

The tip of the swab/sponge can be used to wipe the perimeter of the sampling area, 

resulting in an optimal use of the swab/sponge surface. 

 

2.4.2. Copan Foam Spatula 

The foam spatula was pre-moistened with 10 mL BPW before sampling. Swabbing was performed 

in the same way as for the sponge-stick (Figure 1). The foam spatula was placed into a sterile sampling 

bag (Novolab, Geraardsbergen, Belgium) and the stick was bending to break off, allowing the foam to 

drop in the bag. The foam was enriched with 225 mL of half fraser broth and subsequently incubated 

for 24 ± 2 h at 30 °C. An aliquot of 0.1 mL was spread on ALOA agar and incubated for 24 ± 2 h at 37 °C. 

2.4.3. 3MTM Enviro Swab 

The design of the 3M® Enviroswab enabled the use of a rolling motion during swabbing,  

which maximizes the swab contact with the surface. Swabbing was performed using an overlapping 

“S” pattern to cover the entire surface with horizontal, vertical and diagonal “S”-strokes. The tip of the 

device was used to wipe the perimeter of the sampling area. The swab was placed back in its tube, 

enriched with 20 mL half Fraser broth and subsequently incubated for 24 ± 2 h at 30 °C. An aliquot of 

0.1 mL was spread on ALOA agar and incubated for 24 ± 2 h at 37 °C. 

2.5. Data Analysis 

All swab experiments utilized triplicate coupons and were replicated three times. Data were 

analyzed using SPSS Statistics (version 20, IBM, Armonk, NY, USA). The Pearson’s  

chi-squared test (χ2) was used to determine significant differences between the used swabs.  

A significance level of p = 0.05 is used. 
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3. Results and Discussion 

The main purpose of environmental sampling for L. monocytogenes is to detect and eliminate 

persistent strains of this pathogen in the food processing environment. Studies of Autio et al. [27]  

and Dimitrijevíc et al. [14] have been demonstrating that the prevalence of L. monocytogenes  

in the environment of cold-smoked trout processing plants ranges from 6.06%–30%.  

Moreover, Kovačević et al. [28] showed a correlation between the presence of L. monocytogenes in 

RTE food products and the presence of L. monocytogenes in the environment of these food processing 

industries. Tompkin [16] also indicated recontamination as primary source of L. monocytogenes in 

many commercially prepared RTE foods. Therefore environmental monitoring is necessary to prevent 

product contamination and to reduce the likelihood of human infection. Moreover, end product testing 

becomes of little value for assessing and verifying control because contamination prevalences of food 

products are low [16]. 

Although no ideal sampling method exists, the Food Safety and Inspection Service of the USDA 

recommends sponges as the environmental sampling technique [29]. However, many different types 

are available on the market today. Moore et al. [30] concluded from their study that careful selection of 

swabbing materials can increase the sensitivity of traditional microbiological analysis.  

Therefore, we evaluated swabbing devices composed out of different materials on three types of 

surfaces common to the food processing area. Because the food processing environment is frequently 

contaminated with low numbers of L. monocytogenes, the swabbing devices were tested on their 

ability to detect low numbers of this pathogenic bacterium. As Gómez et al. [19] determined in their 

study that scratched surfaces do not necessarily allow a higher buildup of microorganisms than intact 

surfaces, it was decided to leave the test surfaces intact for the analyses. 

Table 1 summarizes the results of the different swabbing devices in their ability to detect low 

concentrations of L. monocytogenes on the different food contact surfaces. In general, the sponge-stick 

was able to detect L. monocytogenes on stainless steel, HDPE and rubber compounds in respectively 

83%, 100% and 100% of the samples (n = 18), independent of the time of sampling. The detection of 

L. monocytogenes with the foam spatula from stainless steel, HDPE and rubber compounds was 

possible in respectively 94%, 94% and 100% of the samples (n = 18). With the environmental swab, 

detection was possible on all tested HDPE and rubber surfaces, although detection on stainless steel 

was possible in 94% of the samples (n = 18). 

3.1. Influence of Time of Sampling 

If time of sampling is taken into account, a significant difference (p = 0.013) can be observed 

between the two sampling times. At time zero (T0), the time of swabbing immediately after 

inoculation, the effectiveness of each swabbing device was affirmed as shown by the positive results 

for each repetition. Each swabbing device could detect L. monocytogenes independently of the type  

of food contact surface. However, when the surfaces were allowed to air-dry for 1 h (T1),  

minor differences can be observed between the different devices and the different surfaces. As can be 

seen in Table 1, the sponge-stick failed three out of 27 times (11.1%) in detection of L. monocytogenes, 
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while the foam spatula failed two out of 27 times (7.4%) and the environmental swab failed one out of  

27 times (3.7%). 

Table 1. Results of the different swabbing devices when used for swabbing on stainless 

steel (SS), high density poly-ethylene (HDPE) and rubber. T0 is the sampling time 

immediately after inoculation, whilst the surface was still wet. T1 is the sampling time 

when the surface had been allowed to air-dry for 1 h at room temperature. “+” is used when 

the swabbing device could detect L. monocytogenes. “−” is used when the swabbing device 

could not detect L. monocytogenes. 

 3MTM Sponge-Stick Copan Foam Spatula 3MTM Enviro Swab 

 T0 T1 T0 T1 T0 T1 

SS 

+ + + + + + 
+ + + + + + 
+ + + − + + 
+ + + + + + 
+ − + + + + 
+ − + + + + 
+ + + + + + 
+ − + + + − 
+ + + + + + 

HDPE 

+ + + − + + 
+ + + + + + 
+ + + + + + 
+ + + + + + 
+ + + + + + 
+ + + + + + 
+ + + + + + 
+ + + + + + 
+ + + + + + 

Rubber 

+ + + + + + 
+ + + + + + 
+ + + + + + 
+ + + + + + 
+ + + + + + 
+ + + + + + 
+ + + + + + 
+ + + + + + 
+ + + + + + 

3.2. Influence of State of the Surface 

The effect of the state of the surface (wet or dry) on the detection of the pathogen is also 

remarkable. It has been previously observed that wet surfaces yield a better recovery than dry surfaces, 

which can be due to loss of viability of the micro-organisms by drying [12,31]. Another possibility is 

that L. monocytogenes is better attached to the surface after drying. Several studies show the ability of 
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L. monocytogenes to attach quickly (<20 min) to different food contact materials [32,33].  

Therefore, the influence of time of sampling is associated with the state of the surface and may explain 

the difference between T0 and T1. 

3.3. Influence of Surface Type 

The surface type has a small significant effect (p = 0.026) on the ability to detect low concentrations 

of L. monocytogenes. If the different surfaces are compared, three out of 27 times (11.1%)  

L. monocytogenes could not be detected on stainless steel surfaces, as can be seen in Table 1, while on 

rubber compounds no detection problems could be observed. The structure of the surface material may 

explain these differences between the test surfaces [4,26]. Although Rodriguez et al. [3] could not  

find a significant effect of surface roughness and stainless steel finish on the attachment ability of  

L. monocytogenes. Gómez et al. [19] also demonstrated that surface structure did not influence  

the recovery of L. monocytogenes. However, the surface material may influence the viability of  

L. monocytogenes cells. Silva et al. [4] showed a decreased viability on stainless steel surfaces in 

comparison with polypropylene surfaces, which may explain the difference in our results between 

stainless steel and HDPE, but also between stainless steel and rubber. 

3.4. Influence of Swabbing Device 

In our study, no significant difference (p = 0.595) could be observed between the different 

swabbing devices. It has been previously reported that accurate detection of microbial contaminants 

initially relies on the ability of the swabbing device to remove micro-organisms from the surface, 

followed by their effective release from the swab bud [31]. These abilities are influenced by the 

materials from which the swabbing device is made up [12]. However, based on these findings, it can 

be suggested that the different swabbing devices in this study have equal detection abilities although 

they are composed out of different materials. The degree of pressure applied on the swabbing device 

influences the recovery of bacteria as well [12]. However, this is difficult to quantify but can explain 

why negative results are obtained even when the same test is repeated multiple times. Because of  

these drawbacks in recovery of L. monocytogenes from surfaces as well the low repeatability of 

recovery experiments using the traditional swabbing technique, this study focused on detection of  

L. monocytogenes instead on quantitative recovery of this bacterium. Moreover, it is recommended to 

test for presence or absence of L. monocytogenes on the surface in food processing environments [25]. 

If positive results are obtained for a certain sampling point, the problem can be corrected and followed 

up to ensure consumer protection [16]. 

In summary, swabbing is influenced by the time of sampling, state of the surface and surface type. 

As previous mentioned, L. monocytogenes can adhere quickly to different types of surfaces.  

This attachment can be influenced by the type of surface [32,33], but other extrinsic factors such as 

attachment period and the broth used for inoculation may influence the degree of attachment as  

well [34,35]. However, loss of viability due to a limited amount of nutrients is likely to happen after 

longer periods of drying. Therefore, it is assumed that a stronger attachment of bacteria on stainless 

steel is responsible for the failures in detection after the 1h air-drying in this study. During or 

immediately after food processing there will be food components present which in most cases favor the 
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attachment of L. monocytogenes. Takahashi et al. [35] have been performing experiments to evaluate 

the influence of attached food components on the survival of L. monocytogenes on stainless steel.  

In case of food soils of minced tuna, cabbage and ground pork better survival of L. monocytogenes is 

observed at day 0 (sampled after 2 h of visual drying). Therefore, even better attachment could have 

been obtained when another type of broth had been used. When the cells get better attached, it will  

be indeed more difficult to pick-up these cells, which may influence the performance of the swabs. 

However, in this case study, sampling was performed in a short time frame, limiting the effect of a 

stronger attachment of the cells. However, it should be taken into account when sampling in the food 

processing environment. 

The control of L. monocytogenes in the food processing environment does not only rely on the 

appropriate sampling device, but also on an appropriate sampling plan. The French agency for food, 

environmental and occupational healt safety (Anses) and the European Union Reference Laboratory 

for Listeria monocytogenes (EURL Lm) have recently published some guidelines on sampling the food 

processing area and equipment for the detection of L. monocytogenes [25]. They advise that the total 

sampled area during a sampling campaign should be as large as possible to increase the probability to 

detect L. monocytogenes. Therefore, they recommend that the area to be sampled is at least 1,000 cm2 

(e.g., 50 × 20 cm). In this study the sampling devices were tested on 250 cm2, which is smaller than the 

recommended sampling area size. However, the surface area size in this study is at least twice as big 

than the surfaces used in many other studies [19,22–24,34]. Due to the limited size of most swab 

devices, sponge sticks and environmental swabs may be well suited for sampling areas that are not 

easily accessible and which are at least 100 cm2, the minimum area recommended in ISO 18593 [20]. 

When bigger sampling areas (>1,000 cm2), as preferred, are intended to be taken up in the environmental 

sampling plan, it is recommended to use sponges or cloths [23]. However, swabs with head diameters 

of 0.5 cm such as cotton swabs, rayon swabs and alginate swabs are not suitable to swab the 

recommended sampling areas and should not be used for these purposes in environmental sampling 

plans, even if it is to sample hard to reach areas. It is also recommended to sample the environment 

during processing (with a least 2 h of production) of foods or at the end of the production run  

(but before cleaning and disinfection), because cells remaining in harbourage sites (biofilms) will be 

more accessible to sampling once dislodged during processing because equipment vibrates and/or 

because foods and liquids come in contact with harbourage sites. Thus increasing the probability of 

detecting a persistent strain [25]. 

4. Conclusions 

The different swabbing devices used in this study are able to detect low concentrations of  

L. monocytogenes on stainless steel, high-density polyethylene and rubber. Remarkable differences 

were observed between the two sampling times due to the state of the surface. Only minor differences 

could be detected between the different surfaces, which can be explained by the structure of the 

surface. No significant differences were observed between the different swabbing devices.  

Therefore according these results, the swabbing devices are suitable to be used as sampling device for 

detection of L. monocytogenes in food processing environments. However, detection can never be 

100% guaranteed, therefore an appropriate sampling plan is necessary as well. 
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