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Abstract

Escherichia coli O157 and other enterohemorrhagic E. coli 
(EHEC) are food- and waterborne zoonotic pathogens that 
cause diarrhea, hemorrhagic colitis, and hemolytic uremic 
syndrome in humans but little or no discernible disease in 
their animal reservoirs. Like other zoonotic infections, EHEC 
are illustrative of the One Health concept as they embody the 
complex ecology of agricultural animals, wildlife, and the 
environment in zoonotic transmission of EHEC O157. But 
compared to the detailed epidemiological and clinical infor-
mation available for EHEC infection in humans, there is an 
incomplete understanding of the ecology of EHEC infection 
in animals and the persistence of EHEC bacteria in the envi-
ronment. Signifi cant aspects of the microbiology, epidemiol-
ogy, and host-pathogen interactions of EHEC in animals 
remain undefi ned. This review highlights the nature of EHEC 
infection in humans, provides a One Health perspective on 
what is known about EHEC in animal and environmental 
reservoirs, and proposes interventions targeted at pathways 
of transmission to optimize effective prevention and control 
measures. 
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Introduction

E scherichia coli O157:H7, the prototype and most viru-
lent enterohemorrhagic E. coli (EHEC1), was isolated 
in 1982 from outbreaks of hemorrhagic colitis associ-

ated with eating undercooked meat in fast-food restaurants 
(Riley et al. 1983). EHEC O157 was also isolated from spo-
radic cases of hemorrhagic colitis (Uyeyama et al. 1982). 

1Abbreviations used in this article: EHEC, enterohemorrhagic Escherichia 
coli; HUS, hemolytic uremic syndrome; STEC, Shiga toxin–producing E. 
coli; Stx, Shiga toxin

The recognition of toxin production by EHEC O157 led to 
the discovery of its causative role in the development of a 
previously idiopathic condition known as hemolytic uremic 
syndrome (HUS1), a clinical pathological triad consisting of 
microangiopathic hemolytic anemia, thrombocytopenia, and 
acute renal failure (Johnson et al. 1983; Karmali et al. 1985; 
O’Brien et al. 1983). 

Although EHEC O157 is the most common serotype 
isolated from humans in the United States, over 100 other 
serotypes, characterized collectively as non-O157 EHEC, are 
recognized by the World Health Organization as zoonotic 
emerging pathogens (WHO 1998). Non-O157 EHEC have 
pathogenic and outbreak potential and are associated with diar-
rhea, hemorrhagic colitis, and HUS in humans (Brooks et al. 
2005; Hedican et al. 2009). Genomic comparison of EHEC 
O157 and three clinically important non-O157 EHEC (O26, 
O111, and O103) revealed that all share very similar viru-
lence gene sets, providing insight into EHEC parallel evolu-
tion (Ogura et al. 2009). 

Almost 3 decades after its discovery, EHEC O157 con-
tinues to make the headlines as the culprit of major disease 
outbreaks worldwide. Moreover, recent molecular analy-
ses suggest that certain EHEC O157 strains are apparently 
more virulent than others (Besser et al. 2007; Kulasekara 
et al. 2009; Laing et al. 2009; Manning et al. 2008). These 
fi ndings underscore the need to be vigilant for these patho-
gens and to apply One Health approaches to minimize the 
potential for zoonotic transmission and disease outbreaks. 

EHEC in Humans

Virulence Factors, Pathogenesis, and 
Pathophysiology 

Shiga toxin (Stx1)–producing E. coli (STEC1) strains carry 
stx genes and produce Stx but are not necessarily associated 
with disease, although some may be capable of causing 
hemorrhagic enteritis and HUS. EHEC may produce two 
immunologically distinct toxins, Stx1 or Stx2, alone or in 
combination. Stx can inhibit protein synthesis (Ogasawara et al. 
1988), and O157:H7 strains that produce Stx2 may be asso-
ciated with an increased risk of systemic complications 
(Donohue-Rolfe et al. 2000). 

stx genes are encoded in bacteriophages and may have 
different variants based on their genetic sequence (Friedrich 
et al. 2002). Upon induction, Stx-encoding bacteriophages 
increase toxin production and play a role in horizontal transfer 
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of stx genes by infecting other bacteria, as demonstrated 
in in vivo and in vitro experiments (Acheson et al. 1998; 
Herold et al. 2004; Wagner et al. 2001). The pathogenesis of 
EHEC infection has been investigated in mice, rats, New 
Zealand white rabbits, Dutch belted rabbits, ferrets, dogs, 
pigs, baboons, and macaques (Brando et al. 2008; Eaton et al. 
2008; García et al. 2006, 2008; Gunzer et al. 2002; Pai et al. 
1986; Raife et al. 2004; Richardson et al. 1992; Ritchie 
et al. 2003; Siegler et al. 2003; Sjogren et al. 1994; Suzaki 
et al. 2002; Wadolkowski et al. 1990; Woods et al. 2002; 
Zotta et al. 2008). 

The current model of pathogenesis indicates that Stx, 
produced by EHEC during colonization of the intestinal 
tract, gains entry to the host through epithelial cells and acts 
on submucosal immune cells that release cyto kines; these 
in turn induce infl ammation and increase the expression of 
the Stx receptor globotriaosylceramide (Gb3) (O’Loughlin 
and Robins-Browne 2001). Stx then targets the endothe-
lium of organs in which the Gb3 receptor is expressed 
(e.g., the intestine, kidneys, and brain; Boyd and Lingwood 
1989). Because the Gb3 receptor is a glycosphingolipid, 
variations in the lipid moieties of its structure may infl uence 
Stx binding (Kiarash et al. 1994). Stx-mediated endothelial 
injury activates coagulation, and inhibition of fi brinolysis 
leads to accumulation of fi brin and thrombosis (Tarr et al. 
2005). The combination of Stx and O157 lipopolysaccharide 
(LPS) induces platelet-leukocyte aggregates and tissue fac-
tor release and thus contributes to a prothrombotic state 
(Stahl et al. 2009). The pathogenic roles of Stx and LPS have 
been studied in New Zealand white rabbits, mice, and ba-
boons (Barrett et al. 1989; Clayton et al. 2005; Ikeda et al. 
2004; Karpman et al. 1997; Keepers et al. 2006; Palermo et al. 
2000). 

Another important virulence factor of EHEC is an 
outer membrane protein called intimin, which is encoded 
by the eae gene in the locus of enterocyte effacement 
(LEE) (Jerse and Kaper 1991; Jerse et al. 1990; Yu and 
Kaper 1992). During EHEC infection, intimin assists in 
colonization and induces the characteristic intimate at-
tachment to intestinal epithelial cells and effacement of 
microvilli (attaching and effacing lesions) by binding to its 
own receptor (the translocated intimin receptor or Tir), 
also produced by EHEC and transferred to the host’s intes-
tinal epithelial cells by a type 3 secretion system encoded 
in LEE (Kenny et al. 1997; Paton et al. 1998). Expression 
of EHEC LEE genes is regulated by quorum sensing and is 
induced by the host’s adrenergic hormones (Sperandio et al. 
2003). 

Some LEE-negative non-O157 EHEC strains may also 
produce a novel and highly potent subtilase cytotoxin 
(SubAB) that, when injected intraperitoneally in mice, results 
in microvascular thrombosis and necrosis in various organs 
including the brain, kidneys, and liver (Paton et al. 2004). 
However, the role of SubAB in human EHEC disease remains 
to be elucidated. Interestingly, the SubAB receptor is gener-
ated by metabolic incorporation of an exogenous glycan de-
rived from food (Byres et al. 2008). 

Clinical and Pathologic Manifestations 
of EHEC Infections in Humans

Human EHEC infection may be asymptomatic or include diar-
rhea, hemorrhagic colitis, and HUS, a leading cause of acute 
renal failure in children that is potentially fatal. The clinical pro-
gression of E. coli O157:H7 infection in children has been well 
characterized and includes an incubation period of approxi-
mately 3 days, followed by diarrhea that may become bloody, 
and HUS in about 15% of the patients (Tarr et al. 2005). 

Approximately 5% of HUS patients do not shed the caus-
ative EHEC at the time of microbiological analysis, but do 
excrete stx-negative derivatives of EHEC that lost stx during 
infection (Bielaszewska et al. 2007). The term “incomplete 
HUS” refers to a clinical presentation in which patients ex-
hibit some but not all of the clinical pathological abnormalities 
associated with HUS—for example, anemia without azotemia, 
with or without thrombocytopenia (López et al. 1995; Ray 
and Liu 2001). 

Studies assessing the long-term renal prognosis of pa-
tients with HUS have found microalbuminuria and mild 
decreases in glomerular fi ltration rate 5 years after HUS re-
covery; however, the clinical relevance of these fi ndings has 
not been determined (Garg et al. 2008). 

During infection and HUS, severe colonic pathology 
may manifest with ischemic changes and pseudomembrane 
formation resembling Clostridium diffi cile colitis (Kendrick 
et al. 2007; Richardson et al. 1988). Pathological renal effects 
in HUS include vascular lesions characteristic of thrombotic 
microangiopathy (TMA), which typically leads to thrombotic 
occlusion of small renal arteries and arterioles, while endothe-
lial damage in the glomeruli causes formation of microthrombi 
in the glomerular capillaries (Benz and Amann 2009). Cen-
tral nervous system involvement can be a major complica-
tion of HUS and may manifest clinically as seizures, coma, 
and/or dysregulated breathing (Theobald et al. 2001). 

Recent Epidemiologic Trends

A recent study involving 2000–2006 data from the Food-
borne Diseases Active Surveillance Network reported that death 
occurred in 0.6% of all patients with O157:H7 infection and 
in 4.6% of those with HUS and that the highest proportion of 
HUS cases (15.3%) occurred among children less than 5 years 
old (Gould et al. 2009b). Patients aged 60 years or older had 
the highest rate of death due to O157:H7 infection—33% in 
patients with HUS and only 1.9% in those without HUS (Gould 
et al. 2009b). 

In 2006 there were a total of 1,270 foodborne disease 
outbreaks in the United States that resulted in 27,634 cases 
and 11 deaths, 10 of which were attributed to bacterial etiolo-
gies and 6 to O157:H7 (Ayers et al. 2009). During 2007 there 
were 4,847 reported cases of STEC infection in humans and 
292 cases of postdiarrheal HUS; most of the latter were 
associated with O157:H7 infection and occurred among 
children aged 1 to 4 years (Hall-Baker et al. 2009). 
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Transmission

EHEC infections may be sporadic, in small clusters, or man-
ifest as larger outbreaks. Transmission is via the fecal-oral 
route and frequently occurs through ingestion of contam-
inated food or water; direct contact with infected animals, 
humans, or objects; or, rarely, inhalation (Figure 1) (Crump 
et al. 2002; Grant et al. 2008; Swerdlow et al. 1992; Varma 
et al. 2003). 

Outbreaks of EHEC infection may result from contami-
nation originating in restaurants, home kitchens, farms, pet-
ting zoos, nursing homes, day care centers, recreational 
pools/lakes, and schools (Davies et al. 2005; Keene et al. 
1994; Michino et al. 1999; Ryan et al. 1986; Shukla et al. 
1995; Spika et al. 1986). Irrigation water can also contami-
nate produce (Solomon et al. 2002). EHEC O157 survival 
and replication in a soil protozoan (Acanthamoeba 
polyphaga) suggests a potential environmental reservoir for 
transmission (Barker et al. 1999). The infective dose in hu-
mans has been estimated at 4 to 24 organisms, similar to that 
of Shigella spp. (Strachan et al. 2001). 

Infected individuals are highly contagious and may 
be considered a public health hazard (Ahn et al. 2009). 
Approximately 20% of the E. coli O157:H7 cases diagnosed 
during an outbreak are the result of secondary transmis-
sion; rates of such transmission are particularly high in 
outbreaks that affect children with a median age of less 
than 6 years and those in nurseries (Snedeker et al. 
2009). 

Reservoir Hosts of EHEC

A reservoir host is “an organism in which a parasite that is 
pathogenic for some other species lives and multiplies with-
out damaging its host.”2 The reservoir of EHEC O157 gen-
erally includes ruminant animals, particularly cattle, since 
they periodically or seasonally ubiquitously shed EHEC 
O157 at prevalences ranging from single digits to near 100%, 
yet suffer no apparent illness from colonization and shed-
ding. But there may be other important reservoirs of EHEC 
O157. 

As we discuss below, colonization of cattle is transient 
and varies strongly by season, yet specifi c strain types may 
stably exist on single farms over at least several years, rais-
ing the question of the possible existence of other, more 
stable reservoirs. 

Prevalence and Shedding of EHEC O157 and 
Non-O157 in Domestic Ruminants

Detected fecal prevalence of EHEC O157 in cattle ranges 
widely, depending on the age group, the season, and the iso-
lation technology (Hussein 2007; Renter and Sargeant 2002). 
One study evaluating previously published reports in beef 

2Defi nition from the National Library of Medicine Medline Plus Medical 
Dictionary (www.nlm.nih.gov/medlineplus/mplusdictionary.html), accessed 
May 5, 2010. 

Figure 1 Concept map illustrating the relationships between the proven and postulated factors involved in enterohemorrhagic Escherichia 
coli (EHEC) transmission. Integrating and understanding the interplay of these factors involving humans, animals, and the environment will 
facilitate One Health approaches to prevent and control zoonotic transmission of EHEC.
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cattle found that prevalence was 0.3–19.7% in feedlots and 
0.7–27.3% on pasture, whereas the prevalence of non-O157 
was 4.6–55.9% and 4.7–44.8%, respectively (Hussein 2007). 
Another study evaluating published reports on fecal testing 
of dairy cattle also showed wide ranges of prevalence rates 
for O157 (0.2–48.8%) and non-O157 (0.4–74%) (Hussein and 
Sakuma 2005). 

Specifi c strain types of EHEC O157 can exist stably on a 
particular farm for up to several years (Besser et al. 1997; 
Carlson et al. 2009; Cobbaut et al. 2008; LeJeune et al. 2004a; 
Rahn et al. 1997; Renter et al. 2003). Research has not deter-
mined whether persistence of these strain types is due to rare 
long-term carriage by ruminants, to persistence in environ-
mental reservoirs, or to the existence of other, as yet unidenti-
fi ed animal reservoirs that are more persistently infected than 
ruminants. 

Most studies in North America as well as in many other 
regions of the world have seen a strong seasonal pattern of 
shedding, with prevalence peaking in summer and early 
autumn (Fernández et al. 2009; Hancock et al. 2001; Milnes 
et al. 2009; Rhoades et al. 2009). An exception to this 
seasonal pattern was observed in Scotland, where a late au-
tumn peak shedding coincided with the movement of animals 
off summer pastures and into winter housing (Synge et al. 
2003). 

Another strong pattern is relatively higher-prevalence shed-
ding in subadult cattle, aged 2 months (weaning) to 2 years 
(fi rst calving), compared to either younger or older animals 
(Cobbold and Desmarchelier 2000; Hancock et al. 2001; Renter 
et al. 2004). This age group typically includes most feedlot 
cattle that are slaughtered for high-quality beef.

The biological basis for either seasonal or age-related 
peak shedding by cattle is unknown. Hypotheses include sea-
sonal exposures of cattle to EHEC O157 due to the pathogen’s 
environmental replication to infectious doses (Hancock et al. 
1998b); seasonal variation in day length affecting hormone 
levels, with effects on the intestinal environment (Edrington 
et al. 2008); and seasonal presence of increased numbers of 
young, high shedders (Cobbold and Desmarchelier 2000; 
Hancock et al. 2001; Renter et al. 2004). 

Microbiology of EHEC O157 Infection of Cattle

Both cattle and sheep are well-characterized hosts of EHEC 
O157 but, while both have been repeatedly linked to human 
infection, cattle have received much more research attention. 
Numerous epidemiologic studies over the past 20 years have 
described the bovine EHEC O157 reservoir (for reviews, 
Hancock et al. 2001; LeJeune and Wetzel 2007; Renter and 
Sargeant 2002; Sargeant et al. 2007). 

Diverse analytical methods have detected differences in 
the strain compositions of EHEC O157 populations in cattle 
compared to clinical isolates. Such methods include octamer-
based genomic scans (Kim et al. 1999), whole genome PCR 
scanning (Ohnishi et al. 2002), stx-Q alleles (LeJeune et al. 
2004b), a tir polymorphism (Bono et al. 2007), and the inte-

gration sites of Stx-encoding bacteriophages (Besser et al. 
2007). The latter demonstrates considerably larger diversity 
among the bovine isolates as well. 

Given the presumed biology of this zoonotic agent in 
cattle and other animal populations, these differences sug-
gest that the reservoir(s), which probably account for most 
of the total population of EHEC O157 at any given time, 
have a large group of diverse strain types that differ in their 
infectivity or virulence for humans, thereby accounting for 
the (lower) diversity among clinical isolates. This variability 
is the expected result of a “source-sink” population structure,3 
with human clinical infection (where secondary infections 
are unusual and transient) representing a sink (Sokurenko 
et al. 2006). An alternative view is that this model refl ects the 
pattern of an “accidental pathogen,” in which a subset of the 
diverse reservoir population acquires the particular combi-
nation of virulence factors necessary to produce human in-
fection and/or disease (Rendón et al. 2007). 

EHEC O157 can be isolated from all levels of the bovine 
gastrointestinal tract at necropsy, but uniquely specifi cally 
colonizes the most distal few centimeters of the intestine, 
the rectoanal junction (RAJ) (Naylor et al. 2003). The spe-
cifi c colonization of this site is evident in (1) the higher sen-
sitivity of culture using swabs taken at the RAJ (Rice et al. 
2003), (2) the ability to visualize surface microcolonies of 
EHEC O157 adherent to the epithelium at the RAJ, with 
attaching and effacing lesions (Naylor et al. 2005), and (3) 
the greatly increased ratio of EHEC O157 to total E. coli at 
the RAJ compared to other levels of the bovine gastrointes-
tinal tract (Naylor et al. 2005). This unique colonization site 
is consistent with the suggestion that fl y transmission may 
be important in the dissemination of EHEC O157 among an-
imals (Ahmad et al. 2007), since the resulting 1000X higher 
concentration of the agent on the surface compared to the 
interior of the feces produced by infected cattle (Naylor et al. 
2003) would greatly increase its availability to fl y vectors. 

An important feature of bovine infection/colonization 
with E. coli in general, that is also probably true for EHEC 
O157 specifi cally, is the role of cattle in amplifying these bac-
teria. Experimental infection of cattle with EHEC O157 typi-
cally entails administration of single oral doses (109–1010 
CFU) of the bacterium and results in an initial period of rela-
tively very high fecal shedding (e.g., more than 105 CFU/g in 
the fi rst few days after challenge) that often accounts for most 
of the animals’ EHEC O157 fecal shedding during the exper-
imental infection (Cray and Moon 1995). When corrected for 
the fecal volume, it is clear that a very high degree of amplifi -
cation of the challenge dose of EHEC O157 has occurred. 
This high shedding level is not maintained but soon drops to 
that of a natural infection (<104 CFU/g). 

The initial high rate of shedding is not unique to EHEC 
O157 but rather may be a common feature of any or even 
most E. coli strains, since oral doses of other E. coli strains 

3Evolutionary “source-sink” model refers to the evolution of bacterial 
pathogens associated with continuous switching between permanent 
(source) and transient (sink) habitats (Sokurenko et al. 2006).
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similarly result in predominant shedding of the inoculated 
strain within 24 hours after the challenge dose (Daniels et al. 
2009). Therefore, cattle (and perhaps other herbivores), which 
typically have lower total E. coli fecal density than other 
species, may have a unique ability to temporarily amplify 
ingested E. coli strains. 

The amount of research on cattle as EHEC reservoirs is 
logical and appropriate considering their implication as the 
most frequent animal source of human infection, but the lack 
of data for other animal reservoirs could limit the ability to 
develop methods to reduce human exposure to EHEC O157. 
For example, it is possible that human infection is due primar-
ily to the effi cient ability of cattle to amplify EHEC O157 af-
ter exposure to other animal or environmental reservoirs. The 
seasonal variation in fecal shedding of EHEC O157 by cattle 
is consistent with this possibility, and these factors together 
suggest that efforts to identify other reservoirs of EHEC O157 
external to cattle can contribute to the development of more 
effective measures to contain the spread of EHEC infection. 

EHEC O157 in Nonruminant Animals 
on Cattle Farms 

Investigations of the prevalence of EHEC O157 in nonrumi-
nants on cattle farms are typically part of larger epidemio-
logic studies focusing on cattle or food sources. 

Evaluation of the data from these investigations should 
account for their use of various diagnostic techniques for 
isolation and/or detection of EHEC. One study involved the 
isolation of EHEC O157 from horses (1.1%), dogs (3.1%), 
pooled bird feces (0.5%), pooled fl ies (3.3%), but not from 
rodents (N = 300) or other wildlife species (N = 34) sampled 
on dairy farms (Hancock et al. 1998a). Another report identi-
fi ed horses and dogs, based on isolation of EHEC O157 with 
identical genotypes, as potential reservoirs of human O157:H7 
infections (Trevena et al. 1996). In this study, an O157:H7 
strain (phage type 4) was isolated from the stool of a 1-year-
old child with bloody diarrhea after he visited a small farm 
with goats, a pony, a heifer and a calf, and two dogs. Twelve 
days after the boy’s illness a similar O157 strain (phage type 
4) was isolated from the pony’s feces and subsequently from 
the dog’s feces. Other investigations have provided evidence 
that dogs with diarrhea can excrete STEC (Sancak et al. 2004) 
and have reported the detection of STEC strains including 
O157 and non-O157 in 16.6%, 14.6%, 3.2%, and 7.1% of 
isolates from cows, calves, farm dogs, and humans, respec-
tively, in dairy farms in Trinidad (Roopnarine et al. 2007). 

Swine also are potential reservoirs of O157:H7, suscep-
tible to both direct (contact) and indirect (aerosol) transmission 
(Cornick and Vukhac 2008). Feral swine that shared range-
land with livestock gained access to adjacent crop fi elds and 
were identifi ed as vectors of O157:H7 in the 2006 outbreak 
linked to consumption of fresh spinach (Jay et al. 2007). 
This outbreak highlighted the complex ecology of agricul-
tural animals and wildlife and zoonotic transmission of 
EHEC O157. 

STEC have also been isolated from rabbits (Blanco et al. 
1996; Kim et al. 1997; Pohl et al. 1993), which are considered 
both vectors and reservoir hosts of EHEC (Bailey et al. 2002; 
García and Fox 2003; Leclercq and Mahillon 2003; Pritchard 
et al. 2001; Scaife et al. 2006). Although a study of fecal samples 
from domestic rabbits in the Netherlands did not detect EHEC 
O157 in any of the samples (Assies et al. 2007), in the United 
Kingdom wild rabbits were implicated as vectors in an outbreak 
that included cases of hemorrhagic diarrhea and one case of 
HUS in visitors to a petting zoo (Pritchard et al. 2001). In this 
outbreak, the rabbits appeared to have carried the pathogen 
from a farm with cattle shedding EHEC O157 to the adjacent 
petting zoo by consumption of contaminated pasture (Pritchard 
et al. 2001). Recent studies have found that Dutch belted rabbits 
are natural and experimental animal models of EHEC infection 
and Stx-induced disease including enteric and renal lesions 
(García and Fox 2003; García et al. 2002, 2006, 2008). 

EHEC O157 has been isolated from the colon contents 
of 40% of rats (Rattus norvegicus) trapped in a cattle fatten-
ing barn (Cizek et al. 1999). Another study noted that STEC 
isolates from a rat and a bird (Sturnus vulgaris) were identi-
cal in serotype, virulence profi le, and pulsed fi eld gel elec-
trophoresis (PFGE) type to cattle isolates from the farms 
where the rat and the bird were sampled (Nielsen et al. 2004). 
The reported frequency of rodent sightings in the pen or 
alley areas was one of the factors signifi cantly associated 
with the presence of EHEC O157 in feedlot-cattle water 
tanks (Sargeant et al. 2004). 

EHEC O157 in Wildlife

Numerous reports cite the shedding of EHEC O157 among 
wild ruminants, particularly deer: 16.2% of 43 deer (species 
not reported; Asakura et al. 1998), 0.2% of 1608 white-tailed 
deer (Odocoileus virginianus) (Renter et al. 2001), 1.8% of 108 
white-tailed deer (Rice et al. 1995), 9.4% of 32 deer (species 
not reported; Keene et al. 1997), 11.1% of 9 deer (species 
not reported; Cody et al. 1999), 2.4% of 212 white-tailed deer 
(Sargeant et al. 1999), 1.5% of 206 red deer (Cervus elaphus) 
(García-Sánchez et al. 2007), 0.6% of 469 white-tailed deer 
(Fischer et al. 2001), and 30% of 10 deer (species not reported; 
Chapman et al. 1997). However, others have failed to fi nd 
EHEC O157 in wild ruminants: deer sharing pastures with 
EHEC O157–positive cattle and sheep were negative (Branham 
et al. 2005), and an examination of 1387 reindeer fecal samples 
and 421 reindeer meat samples did not reveal EHEC O157 
isolates (Lahti et al. 2001).

Studies of EHEC O157 shedding in wild animals are few 
and of very limited geographic scope. Adesiyun (1999) ex-
amined fecal samples from 271 animals in the wild, 175 wild 
animals in captivity, and 373 animals in zoos, all in Trinidad, 
and did not fi nd any that were shedding EHEC O157. Beutin 
and colleagues (2007) examined 219 meat samples from vari-
ous species, including wildlife, in Germany and failed to 
identify any contaminated with EHEC O157, although they 
identifi ed other serotypes of STEC and, interestingly, found 
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that the stx gene content of STEC isolates differed signifi -
cantly among species. Harrison and colleagues (2006) sampled 
25 carcasses, including an unspecifi ed number of Roosevelt 
elk (Cervus elaphus roosevelti), and failed to identify any con-
taminated with EHEC O157. Wahlström and colleagues (2003) 
sampled 791 wild animals, including geese, deer, hares, 
moose, wild boar, and gulls, shot by hunters in Sweden and 
identifi ed a single wild boar (Sus scrofa) shedding EHEC O157. 
Jijón and colleagues (2007) tested 71 fecal samples from 
diverse species at an Ohio wildlife rehabilitation center but 
did not isolate EHEC O157. And Miller and colleagues (2009) 
cultured feces from 240 sea otters (Enhydra lutris) in Cali-
fornia and failed to fi nd any shedding EHEC O157. 

A limited number of experimental studies have evaluated 
the ability of wildlife species to carry EHEC O157. For 
example, Fischer and colleagues (2001) demonstrated that 
white-tailed deer orally inoculated with 108 CFU EHEC 
O157 shed the agent for several weeks and could transmit it 
horizontally to other deer. Gray and colleagues (2007) exposed 
tadpole and metamorph bullfrogs (Rana catesbeiana) to EHEC 
O157 and demonstrated persistence of the agent in over half 
of the metamorphs for at least 2 weeks. However, the meta-
morphs were housed in stagnant water, and it seems likely 
that the persistence of EHEC O157 was in the stagnant water 
environment as well as in the frogs. 

EHEC O157 in Birds

Research groups have reported human EHEC infections as-
sociated with birds shedding EHEC O157, birds shedding 
the pathogen unrelated to human disease, and the suscepti-
bility of birds to experimental colonization with EHEC O157. 
Ejidokun and colleagues (2006) reported on two sibling chil-
dren infected with EHEC O157 where a PFGE matching 
strain was subsequently isolated from rooks’ feces collected 
from feed troughs; other environmental and fecal (cattle and 
rabbits) samples from the farm were all culture negative. 
Hancock and colleagues (1998a) sampled pooled bird feces 
on dairy cattle farms and found 1 of 200 positive for EHEC 
O157. Dipineto and colleagues (2006) examined four Italian 
layer farms for EHEC O157 shedding by hens and found that 
two were positive on three different sampling dates, whereas 
there was no shedding on the other two farms. Cumulatively, 
3.6% of 720 hens were EHEC O157 positive. Szalanski and 
colleagues (2004) reported identifi cation of EHEC O157, 
based on detection of rfbO157 and fl iCH7 genes by polymerase 
chain reaction (PCR), from more than 10% of 174 turkey 
fecal samples from both brooder and fi nisher birds on two 
farms. Best and colleagues (2003) challenged specifi c patho-
gen–free chicks with 105 CFU EHEC O157 and reported 
fecal amplifi cation (108 CFU/g within 24 hours) and persis-
tent fecal shedding (107 CFU/g at 92 days post challenge). 
Wallace and colleagues (1997) cultured bird feces from ur-
ban landfi lls and intertidal sediments and reported EHEC 
O157 prevalences of 0.9% and 2.9% respectively, with three 
positive samples from landfi lls and ten from intertidal areas. 

In contrast, Makino and colleagues (2000) did not isolate 
EHEC O157 from cultures of 50 fecal specimens from seagulls, 
although they identifi ed two STEC of other serotypes.

EHEC O157 in Flies and Other Insects

Various species of fl ies can transmit EHEC O157. Kobayashi 
and colleagues (1999) studied contamination of fl ies in an 
investigation of a nursery-associated EHEC O157 outbreak 
and reported detection of the agent in fl y intestines, excre-
tion by contaminated fl ies for a 3-day period, and retention 
of viable pathogens in the fl ies’ crops for 4 days. They 
further noted EHEC O157 adherent to the mouthparts of 
culture-positive fl ies, suggesting a biological rather than just 
a mechanical association. 

Not surprisingly, various species of fl ies on farms show 
contamination with EHEC O157. Hancock and colleagues 
(1998a) isolated the bacterium from 2 of 60 pooled fl y sam-
ples from feedlots and dairy farms. Heuvelink and colleagues 
(1998) also isolated EHEC O157 from stable fl ies (Stomoxys 
calcitrans) on Dutch dairy farms. Iwasa and colleagues 
(1999) reported fi ve fl ies positive for cultures of 310 col-
lected from four farms. Szalansky and colleagues (2004) 
determined that 0.4–1.3% of pools of fl ies of two different 
species (Musca domestica and Hydrotaea aenescens) on a tur-
key farm were PCR positive for EHEC O157 markers, and 
Keen and colleagues (2006) demonstrated a 5.2% EHEC 
O157 carriage rate in fl ies sampled at agricultural fairs. 

An example of the important role of fl ies in dissemina-
tion of EHEC O157 is their ability to transmit contamina-
tion from one spinach plant to another (Talley et al. 2009). 
Janisiewicz and colleagues (1999) similarly noted that fruit 
fl ies (Drosophila melanogaster) could spread EHEC O157 
contamination to fresh-cut apple tissue. Ahmad and colleagues 
(2007) showed that eight cattle exposed to contaminated fl ies 
became colonized with and shed EHEC O157, whereas eight 
other cattle not exposed to the fl ies remained culture negative. 

The relatively frequent detection of EHEC O157 in fl ies, 
the apparent biological association with fl ies noted by 
Kobayashi and colleagues (1999), and the predilection of 
EHEC O157 for the RAJ colonization site, which results in 
enriched fecal surface contamination, are all consistent with 
the possible coevolution of this bacterium to use cattle hosts 
and fl y vectors for transmission. 

While fl ies are a common insect vector for EHEC O157, 
a Chinese study isolated the bacterium from the intestine of 
4 of 113 dung beetles (Catharsius molossus) and found that 
its PFGE pattern and virulence genes were identical to those 
in ten strains isolated from humans with diarrhea in the same 
geographic region (Xu et al. 2003). 

EHEC O157 in the Environment

EHEC O157 has the capability for replication and prolonged 
survival in environmental niches. Keen and colleagues 
(2006) tested 689 environmental samples from a total of 20 
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fairgrounds 10 months or more after the end of the fair, and 
demonstrated the persistence of EHEC O157 in four beef 
cattle barns on three fairgrounds. Similarly, others have re-
ported prolonged survival on fairground premises—42 weeks 
(Ohio; Bopp et al. 2003), 5 months (North Carolina; Durso et al. 
2007), 46 days (Texas; Durso et al. 2005)—and on spinach 
leaves (14+ days; Mitra et al. 2009), where the bacterium 
showed better survival than on the surrounding soil.

Similarly consistent with long-term environmental persis-
tence are observations that specifi c strains of EHEC O157 may 
be associated with individual farm premises for periods of at 
least several years, despite seasonal variation that may make 
the agent undetectable for several months each year. It is clearly 
impossible to rule out long-term low-level animal colonization 
as the mechanism by which this strain persistence occurs, but 
the sensitivity of current diagnostic techniques and the year-
long stability of both dietary factors and body temperatures 
suggest that the persistence from year to year may in fact be in 
the environment rather than in colonized cattle. 

For humans, contaminated drinking water and recreational 
waters are associated with EHEC O157 infection. Among 
animals, cattle water troughs contaminated with EHEC O157 
are associated with increased EHEC O157 fecal prevalence 
in cattle (Hancock et al. 2001). Renter and colleagues (2003) 
identifi ed the agent in 0.2% of water sources for pastured 
cattle, and Sanderson and colleagues (2005) isolated it from 
25% of water sources for feedlot cattle. Sargeant and colleagues 
(2004) isolated EHEC O157 from 13% of cattle water sources 
and reported that positive troughs were also associated with 
increased water opacity, use of fl y traps on the farm (a likely 
indicator of high fl y density), and frequency of rodent sight-
ings on the premises. 

LeJeune and colleagues (2001) showed that model water 
troughs contaminated with EHEC O157 via feces from in-
fected cattle remained contaminated for more than 180 days 
despite continuous water turnover at 2 volumes per day. Chlo-
rination of input water resulted in only a small decrement of 
EHEC O157 contamination. The infectiousness of the EHEC 
O157 persistent in the water was demonstrated by the infec-
tion of naïve calves allowed to drink from the troughs 8 months 
later. Thus, water troughs are one possible environmental res-
ervoir that enables EHEC O157 to persist from year to year 
despite the annual wintertime dearth of colonized cattle. 

Logically, if the presence of colonized cattle depends on 
the availability of environmental reservoirs (water, soil, in-
sect, or other locus) of EHEC O157, perhaps cattle should be 
considered an amplifying vehicle rather than or in addition 
to their status as a reservoir. If so, further efforts to identify 
and characterize environmental reservoirs of EHEC O157 
may lead to novel control measures. 

One Health Approaches to Diagnosis, 
Treatment, Prevention, and Control

Current recommendations for EHEC diagnosis in humans 
by clinical laboratories, if followed, could allow for earlier 

diagnosis and better responses to infection (Gould et al. 
2009a). In order to detect O157:H7 as well as non-O157 
EHEC strains, stools should be cultured on selective and 
differential agar such as sorbitol-MacConkey (SMAC) agar 
and simultaneously assayed with a test that detects Shiga 
toxins or the genes that encode them (Gould et al. 2009a). 
Typical O157:H7 strains do not ferment sorbitol and ap-
pear as colorless colonies on SMAC agar whereas most 
non-O157 strains ferment sorbitol and appear as pink colo-
nies on SMAC agar. 

No specifi c treatments are available for HUS in hu-
mans. Supportive therapy includes intravenous fl uids and 
volume expansion (Ake et al. 2005), but antibiotic use is 
contraindicated in suspected or confi rmed cases of O157:H7 
infection because of the possibility of increased risk of 
HUS by induction of Stx-encoding bacteriophages (Ahn 
et al. 2009; Zhang et al. 2000). Intervention strategies in 
humans consist of vaccines, Gb3 receptor analogues, and 
monoclonal antibodies against Stx (Bitzan 2009; Orth et al. 
2008; Tzipori et al. 2004). Prevention of EHEC O157 in-
fection is the best approach to avoid HUS; recommenda-
tions to minimize zoonotic risks associated with animals in 
public settings are available from the National Association 
of State Public Health Veterinarians (Ahn et al. 2009; NASPHV 
et al. 2009). Hand washing is the most important step for 
reducing the risk of EHEC O157 and non-O157 transmis-
sion (NASPHV et al. 2009; Weese 2010, in this issue, 
makes the same point about methicillin-resistant Staphylo-
coccus aureus). 

The investigation of the 2006 nationwide outbreak of 
EHEC O157 in humans, linked to consumption of bagged 
spinach, demonstrated that the strain was isolated from feral 
swine, domestic cattle, surface water, sediment, and soil. It 
thus clearly illustrated the relevance of the One Health concept 
(Jay et al. 2007), a strategy to better understand and address 
the contemporary health issues created by the convergence 
of human, animal, and environmental domains (King et al. 
2008). 

We propose a combination of interventions for EHEC pre-
vention and control that can address the pathways detailed in 
Figure 1. For example, control of zoonotic EHEC on farms 
should primarily target the main source of the organism, the 
animal reservoir (Fairbrother and Nadeau 2006); methods are 
available to reduce the risk of EHEC disease in humans at the 
level of the farm, transport, processing unit, distributor, and 
retailer/preparer/consumer (Khanna et al. 2008). Preslaughter 
interventions to reduce the shedding of EHEC O157 in the 
feces of weaned domestic ruminants consist of probiotics, 
vaccination, antimicrobials, sodium chlorate, bacteriophages, 
and other feed additives (Sargeant et al. 2007). Vaccine strate-
gies can decrease the level of EHEC O157 shedding for the 
purpose of reducing zoonotic risk (Potter et al. 2004). 

A coordinated multidisciplinary effort toward under-
standing and integrating the epidemiology, pathogenesis, and 
pathophysiology of EHEC will facilitate the development of 
novel strategies to prevent, control, and treat zoonotic EHEC 
infection and disease. 
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Conclusions

EHEC O157 is an important food- and waterborne pathogen 
of humans that colonizes and is shed in the feces of many 
animal species. Non-O157 EHEC strains encompass many 
serotypes that are also prevalent in the animal reservoir. 
Human infections result from diverse exposures including 
contaminated foods of animal (especially bovine) origin, direct 
contact with shedding or contaminated animals, direct con-
tact with environmental (water) contaminants, and ingestion 
of other foods (especially produce) contaminated with EHEC 
O157. Cattle (and probably other animal species) fi t all defi -
nitions of a reservoir host, but the instability of cattle coloni-
zation coupled with the evidence of stable environmental 
contamination of EHEC O157 suggest that this zoonotic 
disease is not associated with simple transmission from a 
reservoir host, but instead is involved with a complex en-
vironmental-host ecology that directly affects the likelihood 
of EHEC O157 zoonotic transmission. 
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