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Phospholipids in foods: prooxidants
or antioxidants?
Leqi Cuia and Eric A Deckera,b*

Abstract

Lipid oxidation is one of the major causes of quality deterioration in natural and processed foods and thus a large economic
concern in the food industry. Phospholipids, especially lecithins, are already widely used as natural emulsifiers and have been
gaining increasing interest as natural antioxidants to control lipid oxidation. This review summarizes the fatty acid composition
and content of phospholipids naturally occurring in several foods. The role of phospholipids as substrates for lipid oxidation
is discussed, with a focus on meats and dairy products. Prooxidant and antioxidant mechanisms of phospholipids are also
discussed to get a better understanding of the possible opportunities for using phospholipids as food antioxidants.
© 2015 Society of Chemical Industry
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INTRODUCTION
Lipids, as one of the major macronutrients required for human
growth and maintenance, are important constituents in foods.
They provide unique properties of texture, appearance, flavor and
caloric density to foods.1 However, lipids at the same time are
prone to oxidation, which negatively impacts not only quality
and nutritive values of foods but also consumer health. Thus lipid
oxidation is a great concern to both food manufacturers and the
general public.

A variety of factors influence lipid oxidation susceptibility. These
include water activity, transition metal type and concentration,
singlet oxygen, fatty acid composition, presence of antioxidants
and environmental conditions such as light, temperature and
oxygen concentration.2 Some of these factors are considered to
be prooxidant, which is defined as causing or accelerating lipid
oxidation. Prooxidants act by promoting lipid hydroperoxide
formation (e.g. singlet oxygen), free radical formation (e.g. irra-
diation) or hydroperoxide decomposition (e.g. transition metals).
In contrast, compounds that can slow down lipid oxidation are
known as antioxidants. Antioxidants are classified into primary
and secondary antioxidants according to their chemical mecha-
nisms. Broadly speaking, primary antioxidants scavenge the free
radicals that promote oxidation, while secondary antioxidants
retard lipid oxidation by decreasing other prooxidative factors
(e.g. metal chelation) or regenerating primary antioxidants.3

The use of antioxidants in foods has been an effective way
to inhibit lipid oxidation, because a variety of other methods
have shown their limitations. For example, reducing polyunsat-
urated fatty acid (PUFA) concentrations, partial hydrogenation
or exclusion of oxygen from products can be utilized to increase
oxidative stability of food products. However, nutritionists do not
recommend replacing PUFAs with saturated fatty acids, because
dietary PUFAs are linked to many health benefits.4 Partial hydro-
genation would also not be an ideal method to decrease lipid
oxidation because it converts PUFAs to trans fatty acids, which are
more atherogenic than saturated fats because they both increase

low-density lipoprotein (the bad lipoprotein) and decrease
high-density lipoprotein (the good lipoprotein). Excluding oxygen
can be effective, but these techniques must produce very low oxy-
gen concentrations and are not practical for many types of foods.5

For all these reasons, the use of antioxidants is widely accepted
as a reliable technique to control lipid oxidation in a wide variety
of food products. However, primary and secondary antioxidants
are not the perfect solution either. One problem is that the most
powerful and economical antioxidants are synthetic, e.g. buty-
lated hydroxytoluene (BHT), tert-butylhydroquinone (TBHQ) and
ethylenediaminetetraacetic acid (EDTA), whose use is contrary
to current consumer preference for cleaner and simpler labels.
Thus searching for novel natural antioxidants or increasing the
antioxidant activity of currently available natural antioxidants is of
great importance.

Phospholipids are an essential part of biological membranes and
thus are present in all living species from which foods are derived.
The concentration and composition of phospholipids endogenous
to foods can vary greatly in foods from animal or plant sources
and are dependent on the origin of the food and how it is pro-
cessed. For example, phospholipids from cold water marine ani-
mals will be highly unsaturated and high in omega-3 fatty acids
compared with warm, fresh water species.6 Phospholipid concen-
trations can also be increased during processing operations such
as the drying of milk or whey.7 In addition, phospholipids possess-
ing desirable functional properties such as emulsification, crystal-
lization inhibition, non-stick releasing agent, wetting agent and
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anti-spattering agent, commonly referred to as lecithin, are often
added to foods.8

Phospholipids are sometimes used as antioxidants in foods.
Several mechanisms of how phospholipids could influence lipid
oxidation have been proposed. In general, phospholipids could
bind prooxidative metals,9 produce antioxidative compounds
through Maillard reactions during lipid oxidation,10 alter the loca-
tion of other antioxidants11 and regenerate primary antioxidants
such as tocopherols.12 However, phospholipids could also serve
as oxidation substrates themselves. Owing to their high degree
of unsaturation, negative charge that attracts prooxidant metals
and large surface area when they exist as dispersions, they can
be an important substrate for oxidation in foods containing con-
siderable amounts of biological membranes, such as meats.13 In
addition, there were also times when phospholipids showed no
antioxidant activity or even acted as prooxidants.14,15 One possible
prooxidant mechanism of phospholipids in bulk oil could be their
formation of association colloids such as reverse micelles which
can increase metal–lipid interactions.16

To best understand the many facets of how phospholipids influ-
ence lipid oxidation in food products, a comprehensive review is
needed. In this review, the source and composition of phospho-
lipids in foods will be summarized. The impact of phospholipids
in different food systems on lipid oxidation and the different anti-
and prooxidant mechanisms will be discussed.

PHOSPHOLIPID PROPERTIES AND SOURCES
Properties

Structures
Phospholipids consist of a glycerol backbone and a phosphate
head group, which is typically found at the sn-3 position (Fig. 1).
The simplest phospholipid is phosphatidic acid (PA) and others
are named after the group attached to the phosphate group.
For example, if the group attached to the phosphate group is
choline, this phospholipid is called phosphatidylcholine (PC).
Other substitution groups on the phosphate group include
ethanolamine, serine and inositol, thus the phospholipids are
named phosphatidylethanolamine (PE), phosphatidylserine (PS)
and phosphatidylinositol (PI) respectively. Lysophospholipids refer
to phospholipids whose fatty acid chain has been removed from
either the sn-1 or sn-2 position. In addition, there is another type of
lipids, sphingolipids, which are sometimes considered to be phos-
pholipids because they could contain a phosphatidylcholine or
phosphatidylethanolamine group in the molecules. For example,
sphingomyelin contains a phosphatidylethanolamine group.17

The fatty acid composition of phospholipids varies depending
on their origin (Table 1). Moreover, it is worth noting that dietary
lipids can influence phospholipid fatty acid composition.18 – 20 In
general, saturated fatty acids are more often found at the sn-1
position, while unsaturated fatty acids tend to be esterified at the
sn-2 position. A proper ratio of saturated to unsaturated fatty acids
of phospholipids is important to living cells, since the saturation
degree will determine the physical state (e.g. fluidity) of the cell
membrane.

Molecular charge
pKa is the negative logarithm of the acid dissociation constant Ka.
The value of pKa is the pH at which the molecule is exactly half
dissociated. This indicates how acidic a given hydrogen atom in a

molecule is at a given pH. For example, if the pH of the environ-
ment is above the pKa, the molecule exists more as the dissociated
form, which is the case where a chelating molecule is charged and
thus is able to bind metals. The pKa values vary among major phos-
pholipids (Table 2). The different measurement methods (e.g. indi-
rect calorimetric and turbidity measurements, surface potential
measurement by radioactive electrode, transmembrane potential
by potential dynamic and proton binding by acid acid–base titra-
tion) and physical systems (e.g. dispersions, monolayers, bilayer
membranes and vesicles) used contribute to the different pKa val-
ues that are often reported. For example, pKa values ranging from
2.1 to 4 for the carboxyl group of PS were reported.21 – 23 Similarly,
the pKa values of PC range from 0.8 to 4.5.24 – 26

Sources
All foods that originate from living plants/animals contain phos-
pholipids. This is because all living plants/animals have cells, and
phospholipids are integral components of cell membranes. The
major animal-based sources of phospholipids include eggs, milks,
meats and marine phospholipids. Eggs of chicken, duck and turkey
all contain considerable amounts of phospholipids. Egg yolks are
especially rich sources of phospholipids, with a weight per cent up
to 10%, the majority of the phospholipids being PC (66%) and PE
(19%).27 Egg yolks are a common source of non-vegan food-grade
lecithin. Raw meats contain large amounts of biological mem-
branes and thus generally contain 0.5–1% phospholipids. In addi-
tion to muscle foods, animal organs contain even higher amounts
of phospholipids. For example, pig and chicken kidneys contain 2.9
and 2.5% phospholipids respectively.27 Seafood has similar phos-
pholipid concentrations as warm-blooded animals, but marine
phospholipids are much higher in omega-3 fatty acids (Table 1),
which makes them a promising functional ingredient in foods.6

Krill oil is a unique source of marine phospholipids that originate
from small marine crustaceans. Krill oil is high in phospholipids
and thus is used in highly bioavailable omega-3 supplements.28

Vegetable seeds and cereal grains are also rich sources of phos-
pholipids. These include soybean, corn, cottonseed, rapeseed,
sunflower, peanut and oats, with commercial lecithin being
obtained from some of these sources during oil refining (see
below). In addition, phospholipids are present in some vegetable-,
fruit- and carbohydrate-related food products such as spinach,
orange juice, lemon juice and wheat starch (Table 3).

Lecithin
Lecithin refers to a mixture of phospholipids extracted from animal
(e.g. eggs) and vegetable (e.g. soybean, sunflower, rapeseed and
cottonseed) sources. Soybean has been the primary commercial
source of food-grade lecithin because it is economical to produce
and can be used in vegan applications. Lecithin is not only an
important additive in foods but also in cosmetics and lubricants. In
the food industry, lecithin is the most important natural emulsifier,
with an estimated world market of 150 000–170 000 t. In addition
to the use of lecithin as a food emulsifier, manufacturers often also
expect to receive the benefit of its antioxidant activity.

Production
Soybean lecithin is a co-product of soybean oil processing. Figure 2
is a schematic description of the operations for lecithin produc-
tion. Crude soybean oil contains 1.5–3% phospholipids, which
can decrease oil quality owing to their susceptibility to browning
during heating and their ability to trap water in the oil to form
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Figure 1. Phospholipid structures.

cloudiness.29 Phospholipids are removed by the degumming pro-
cess, which utilizes a weak acid solution to partition out of the oil
and into the water fraction. The lecithin fraction would be dried
and in some cases bleached to remove the natural brown color of
lecithin.

The composition of lecithin can be modified by means of sol-
vent extraction as well as chemical and enzyme modification to
produce specialty, value-added products.8 For example, crude
dried lecithin contains 30–40% neutral oil, which can be modified
to 2–3% with solvent extraction. The product is called de-oiled
lecithin. This is often done with acetone, which can selectively
extract neutral oil (triacylglycerides) out of the lecithin. Indi-
vidual phospholipids have different solubility properties. For
example, PC dissolves well in ethanol, while PI does not.30 Taking
advantage of this difference, PC-enriched lecithin can be pro-
duced. Increasing the PC content of lecithin results in increased

hydrophilicity, which is preferred in oil-in-water emulsions such
as salad dressings. Besides modifications with solvent extraction,
chemical modification (e.g. hydrogenation) is used to improve
the oxidative stability, color and odor of lecithin. Hydrogenated
lecithin is currently used in cosmetics, dyes and lubricants. One
example of enzyme-modified lecithin is lyso-lecithin. This product
requires phospholipase A2, which hydrolyzes the fatty acid of
phospholipids at the sn-2 position. With the removal of the fatty
acid chain from phospholipids, lyso-lecithin exhibits increased
hydrophilic and emulsifying properties under lower pH values and
a broader range of temperatures and salt concentrations.30

Composition
The fatty acid composition of lecithin differs depending on the
source (Table 1). However, it is worth noting that lecithins with a
variety of phospholipid compositions are commercially available
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Table 1. Fatty acid composition (g kg−1) of phospholipids from different sources

Fattyacid

Chicken
egg
yolk

Bovine
whole
milka

Chicken
breast
muscleb Pig Cattle Tunaa, c Salmond

Soybean
lecithina

Egg
lecithina

10:0 4
12:0 13
14:0 287 57 8.0 3.0 2.0 14.3 57.8
14:1 2.0
14:2 14
15:0 15 6.8
16:0 16.5 347 237 166 146 193 130 112 350
16:1 10 18 8.0 8.0 20.9 73.3
16:2 8.0
17:0 20 12.3
18:0 141 95 119 121 110 36 315 119 134
18:1 313 267 211 94 158 129 141 86 304
18:2 163 150 207 314 220 7.0 342 586 180
18:3 8.0 6.0 7.0 4.9 11.2 99
20:0 4.7
20:1 6.4 70.9
20:2 3.5
20:3 9.0 18 2.9
20:4 53.8 94 105 100 49.3 11.5 32
20:5 8.0 4.0 10 8.0 57.5 32.2
21:5 4.4
22:1 57.2
22:4 0.6
22:5 10 20.1
22:6 26.8 12 416 194
UnS/Se 1.25 0.8 1.66 1.85 1.94 3.09 2.99 3.29 1.07
Ref. 120 121 122 123 123 124 125 126 126

a The values are of phosphatidylcholine (PC).
b Chickens are 21 days old and fed a diet with no added fat.
c The species is yellowfin. The values are in mol%.
d The species is anadromous Atlantic salmon and the age is 77 days after hatching.
e The ratio of unsaturated fatty acids to saturated fatty acids.

Table 2. pKa of different functional groups of phosphatidylcholine
(PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS)

Phospholipid pKa (phosphate) pKa (amino) pKa (carboxyl)

PC 0.8a

PE 0.5a 9.6c

PS 2.6b 9.8c 3.6c

a Data from Moncelli et al.24 A phospholipid monolayer model was
used. The values were measured by differential capacity of an elec-
trode coated with phospholipid monolayers.
b Data from Petelska and Figaszewski.25 A phospholipid bilayer mem-
brane model was used. The value was measured by acid–base titra-
tion.
c Data from Tsui et al.127 The value for PE was determined by surface
potential measurements of PE–PC mixed vesicles. The values for PS
were determined by potentiometric titrations and surface potential
measurements of PS–PC mixed vesicles.

(such as the different types of lecithin mentioned above) and
lecithin mixtures still contain some portion of compounds other
than phospholipids (Table 4).

Uses
The molecular characteristics of the phospholipids dictate the
application of lecithin. The presence of both hydrophilic and
lipophilic groups within a phospholipid molecule makes it
surface-active. This surface-active property plus the natural
nature of lecithin contribute to emulsification, anti-spattering,
wetting, anti-staling, dough-conditioning and antioxidant func-
tions in foods. Emulsifiers are used in many food products owing
to their ability to stabilize oil and water dispersions. The emulsifi-
cation property of lecithin depends on its affinity for oil or water
molecules, which can be identified as hydrophilic–lipophilic
balance (HLB). The HLB ranges from 0 to 20, with a higher value
representing higher hydrophilic affinity. By modifying lecithin
composition (e.g. de-oiled, PC-enriched and enzyme-hydrolyzed
lyso-lecithin), different HLB values can be created for different
applications. For example, standard crude lecithin and de-oiled
lecithin with 45% PC have HLB values of 3.5 and 6.5 respectively.30

Another use of lecithin that directly relates to its emulsification
property is anti-spattering. In margarine, which is a water-in-oil
emulsion, spattering happens when water droplets coalesce dur-
ing heating. Lecithin surrounds water particles to slow down this
coalescence and thus reduce spattering. Lecithin also serves as a
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Table 3. Phospholipid content of common foodsa

Food PL PC PE PS PI SPM LPC LPE CL PG Ref.

Chicken whole egg 34.9 770 166 24 16 27

Bovine whole milk 0.2 327 285 141b 230 18 121

Beef 7.0 493c 180 139d 46 64 27

Pork 6.0 429 267 49 68 75 29 83 128,129

Chicken breast 4.0 610 194 40 67 55 130

Chicken thigh 6.0 500 228 50 73 77 130

Salmon (head) 5.4 547 140 104 25 83 14 131

Tuna 6.0 379 210 54 85 40 215 27,124

Soybean 20 450 263 50e 141 35f 132

Corn germ 11 307 142 271e 187 7.0 133

Rapeseed 15 487 83 184 134

Peanut 6.0 435 81 40e 242 27

Lemon juice 0.3 387 355 55e 161 135

Orange juice 0.3 323 387 130e 65 135

Wheat starch 7.0 809 106 136

Spinach 2.0 236 229 89e 70 312 27

Soybean lecithin 386 164 06 192 12 137

Egg lecithin 754 183 19 25 12 138

Abbreviations: PL, total phospholipids; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; PI, phosphatidylinositol; SPM,
sphingomyelin; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; CL, cardiolipin; PG, phosphatidylglycerol.
a The values of total phospholipids are in g kg−1 total food. The values of individual phospholipids are in g kg−1 total phospholipids.
b The value includes PI.
c The value includes LPC.
d The value includes phosphatidic acid (PA) and CL.
e The values include PA.
f The value includes PG.

Figure 2. Schematic description of lecithin production.

wetting agent in powdered or granular products. For example, the
addition of lecithin helps cocoa powder disperse easily in water.
Another advantage of lecithin is its ability to form complexes
with starch and protein. One example is the ability of lyso-lecithin
to form a lipid–amylose complex that decreases wheat starch
retrogradation.33 Also, linking to wheat gluten through hydro-
gen bonds makes lecithin a good dough conditioner in that it
can improve bread elasticity, baking volume and fermentation
tolerance.34 Another attractive trait of lecithin is its antioxidant
properties.35 – 37 However, application of lecithin for the purpose

Table 4. Composition of different types of soybean lecithin (g kg−1)a

Component Crude lecithin
De-oiled
lecithin

PC-enriched
fraction

Phospholipids (total) 470 740 510
PCb 319 324 745
PEb 234 230 157
PIb 213 216 59
PAb 85 81 20
Othersb 149 149 20

Triacylglycerides 370 30 370
Glycolipids 110 170 90
Carbohydrates 35 55 25
Water <10 <10 <10

Abbreviations: PC, phosphatidylcholine; PE, phosphatidyleth
anolamine; PI, phosphatidylinositol; PA, phosphatidic acid.
a Adapted from van Nieuwenhuyzen and Tomás.8
b The values are in g kg−1 total phospholipids.

of inhibiting lipid oxidation is not always successful. This will be
discussed in more detail in later sections.

LIPID OXIDATION MECHANISMS
Unsaturated lipids undergo oxidation in the presence of oxygen
in a pathway which involves free radical chain reactions (Fig. 3).
These reactions can be divided into three stages, namely initiation,
propagation and termination.38 An initiator such as light, heat,
transition metal or reactive oxygen species is required to initiate
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L1H L + O2 LOO + L2H LOOH + L2

-scission reaction

Volatile aldehydes, alcohols and ketones

LO + OH-

Figure 3. Schematic description of lipid oxidation chain reaction.

the reaction to convert a fatty acid substrate (L1H) to a free radical.
After the initiation happens, an alkyl radical (L•) is formed and
the reaction enters the propagation phase. In the propagation
step, the alkyl radical reacts with bi-radical triplet oxygen (O2) to
form a peroxyl radical (LOO•). This reaction is diffusion-limited
because it is a radical–radical reaction with minimal activation
energy. The peroxyl radical (LOO•) abstracts hydrogen from a
new unsaturated fatty acid substrate (L2H) and thus causes the
formation of an additional alkyl radical which can enter a new
round of propagation reactions. The peroxyl radical itself forms
lipid hydroperoxide (LOOH), which is a primary oxidation product.
The susceptibility of the fatty acid substrate to lose hydrogen
(LH→ L•) increases with increasing unsaturation, which is why
more unsaturated lipids are more easily oxidized. Finally, the
reaction will not terminate until two radicals combine to form
a non-radical species. However, in food systems, the termination
step is not important, because most foods are rancid before there
is significant termination.

The development of oxidative rancidity originates from the for-
mation of volatile secondary oxidation compounds resulting from
the decomposition of lipid hydroperoxides (LOOH), known as
𝛽-scission reactions. Lipid hydroperoxides (LOOH) decompose in
the presence of heat, ultraviolet radiation and transition metals to
form alkoxyl radicals (LO•). Alkoxyl radicals are so energetic that
they can abstract electrons from the covalent bonds adjacent to
the alkoxyl radical to cleave the aliphatic chain, resulting in the for-
mation of low-molecular-weight volatile compounds such as alde-
hydes and ketones. 𝛽-Scission reactions are greatly accelerated by
transition metals such as iron and copper, which is why transition
metals are so important in lipid oxidation in foods.39 More details
on products from the decomposition of lipid hydroperoxides have
been reported.38

PHOSPHOLIPIDS IN LIPID OXIDATION
Phospholipids as oxidation substrates
Owing to the presence of unsaturated fatty acids in phospholipids,
phospholipids themselves are susceptible to lipid oxidation. In
fact, in many foods the phospholipids are more unsaturated than
the triacylglycerides since they must provide fluidity in cell mem-
branes. Examples of food systems that involve phospholipid as an
oxidation substrate are meats and dried milk products.

Meats are susceptible to lipid oxidation not only because they
are exposed to oxygen and contain unsaturated fatty acids, both
of which are major substrates of lipid oxidation, but also because
they contain prooxidative metals, enzymes and reactive oxygen
species. The total lipid content of meats varies depending on

species, animal diet, muscle groups and types of processing,
as summarized elsewhere.27,40 Phospholipids in muscle are very
susceptible to lipid oxidation because they are highly unsatu-
rated and are more exposed to prooxidants than triacylglycerides
because they are within membranes, which have a very high sur-
face area.41,42 Generally, the phospholipid content of muscle is
about 0.5%.43 Red meats have greater proportions of phospho-
lipids than white meats, which in part is due to higher levels of
mitochondria.44

Oxidation in meats leads to negative impacts on flavor40,43 – 45

and protein integrity,46 – 48 including discoloration.49,50 Keller and
Kinsella41 observed the loss of unsaturated PC and PE with increas-
ing thiobarbituric acid (TBA) values in raw and cooked beef patties
during frozen storage. This was especially true during frozen stor-
age where they found that the total lipids of hamburgers remained
constant while the amount of PC and PE decreased. The loss of
PC and PE was accompanied by an increase in TBA of ground
beef during the first 2 weeks. Igene et al.46 found that phospho-
lipids oxidized before triacylglycerides during frozen storage of
lipid-free muscle fibers where phospholipids and triacylglycerides
were added. Igene et al.53 also reported that PE was associated
with high susceptibility to oxidation and was important in the
autoxidation of cooked meat. Pikul et al.54 found that the phospho-
lipid fraction of chicken meat contributed approximately 90% of
malonaldehyde during lipid oxidation.

Individual phospholipids have varying degrees of susceptibility
to lipid oxidation due to differences in polar head group and level
of unsaturation. Pikul and Kummerow55 found that, in chicken
meat, PC and PE produced 70–77% of malondialdehyde, followed
by 16–25% from PI and PS. Yin and Faustman56 found that, in a
liposome model system where PC and PE had the same fatty acid
composition, PE liposomes oxidized faster than PC liposomes.
The rapid loss of PE during oxidation of muscle cell membranes
could be due to its higher level of fatty acid unsaturation than
PC.54 In addition, PE loss could also be due to the ability to
regenerate 𝛼-tocopherol. In general, the fat content of meat
does not greatly influence lipid oxidation rates.57 This further
supports that phospholipids are the major lipid substrates rather
than triacylglycerides and thus fat concentrations do not impact
oxidation rates.

Food products that have low lipid concentrations, such as
nonfat dry milk, can also be susceptible to rancidity caused by
phospholipid.58,59 Polar phospholipids are essential components
in milk as they, together with proteins, form milk fat globule
membranes (MFGMs) that surround the lipid droplets secreted
by the mammary gland cells. During processing, the MFGMs can
partition into the aqueous phase of milk and are thus present in
nonfat dry milk and whey.60 Two major milk phospholipids, PC
and PE, are about one-third polyunsaturated and thus have poor
oxidative stability.61 PC in milk can be hydrolyzed by milk lipase
to generate lyso-PC and unsaturated free fatty acids, which can
undergo further oxidative deterioration and yield off-flavors.62

Volatile lipid oxidation compounds, including C6 –C14 aldehy-
des, have been identified in nonfat dry milk,58,59 whey protein
isolate and whey protein concentrate.61 Hexanal accounted for
over 90% of total aldehydes in the latter two products.63 This
high concentration of hexanal was believed to result from the
oxidation of linoleic acid of phospholipids. This is because milk
fat only contains 2% linoleic acid while the phospholipid from
MFGMs contains up to 6%.63 Again, phospholipids in dried dairy
products are unstable owing to their high unsaturation and
surface area.
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Prooxidant properties of phospholipids
Bulk oil is an example of a food system where phospholipids act
as antioxidants and in some situations as prooxidants. Bulk oil is
a heterogeneous system that contains more than just triacylglyc-
erides, including 200–800 ppm water and a variety of amphiphilic
minor compounds such as monoacylglycerides, diacylglyc-
erides, free fatty acids, phospholipids, phytosterols and oxidation
products.3 The combination of amphiphilic molecules and water
in the triacylglycerides will lead to the spontaneous formation
of nanostructures. For example, phospholipids in bulk oils form
association colloids such as reverse micelles. Gupta et al.64 found
that native soybean phospholipids could form reverse micelles in a
mixture of hexane and soybean oil containing less than 3% water.
Danino et al.65 later applied cryo transmission electron microscopy
(cryo-TEM) in a similar system (soybean phospholipids/soybean
oil/hexane/water) for direct visualization of phospholipid reverse
micelles and reported the size of the aggregates to be 5–9 nm.
Shtykova et al.66 reported reverse micelles formed by dilinoleoyl
PC (DLPC) and dilinoleoyl PE (DLPE) in hexane. By synchrotron
small-angle X-ray scattering, they found spherical aggregates
with an outer radius of 1.5 nm. They attributed the smaller size of
reverse micelles to the low water content in their system (<0.1%).
The authors also found that the amount of reverse micelles
increased during the oxidation of phospholipids. Subramanian
et al.67 reported the presence of reverse micelle structures in
crude soybean oil and high-oleic sunflower oil containing 245 and
400 ppm water respectively. Recently, evidence of reverse micelles
formed by phospholipids in oils stripped of their polar compounds
was observed by means of small-angle X-ray scattering.68,69

Reverse micelles can act as nano-reactors that can alter chemical
reaction rates by bringing hydrophilic and lipophilic compounds
into close contact, allowing increased interactions.70 Kasaikina
and co-workers71 – 75 used different surfactants in non-aqueous
media, including bulk oil, as a simple self-assembling model to
investigate the impact of physical structures on lipid oxidation.
They indicated that surfactants in heterogeneous systems could
spontaneously group into micro/nano-structures such as reverse
micelles and that lipid hydroperoxides could act as co-surfactants.
The ability of hydroperoxides to reduce interfacial tension and
thus be amphiphilic was also confirmed by Nuchi et al.76 Trunova
et al.71 reported that both cationic reverse micelles formed by
cetyltrimethylammonium bromide (CTAB) and anionic reverse
micelles formed by sodium dodecyl sulfate (SDS) increased the
decomposition of ethylbenzene and limonene hydroperoxides.70

In another reverse micelle system that used AOT as surfactant
(AOT/water/hexadecane), the authors found that lipid oxidation
rates of methyl linolenate were altered upon the addition of
cumene hydroperoxides, water, oleic acid or PC.77

The presence of phospholipid reverse micelles in bulk oils
creates oil–water interfaces where hydrophilic (e.g. iron) and
amphiphilic (e.g. lipid hydroperoxides) prooxidants and triacyl-
glyceride substrate are driven into close contact with each other,
resulting in increased lipid oxidation rates (Fig. 4). Chen et al.68,78,79

reported the impact of reverse micelles formed by dioleoyl PC on
soybean oil oxidation. To minimize the influence of minor com-
ponents present in commercially refined oil, they used stripped
soybean oil so that it contained ultra-low polar lipid (i.e. free
fatty acids, phospholipids, monoacylglycerides and diacylglyc-
erides) and antioxidant (i.e. tocopherols) concentrations. They
found that dioleoyl PC could spontaneously form reverse micelle
structures when its concentration was above its critical micelle
concentration and that the reverse micelles would accelerate

lipid oxidation. In contrast, when dibutyryl PC was added at the
same concentration as dioleoyl PC, no prooxidant effects were
observed. They suggested that the lack of prooxidant effect of
dibutyryl PC was due to its short fatty acid chains, which were too
short and thus not lipophilic enough to form the reverse micelle
structures.68 A similar prooxidant activity of PE was also reported
by Cui et al.80 In their study, they found that dioleoyl PE promoted
lipid oxidation of stripped soybean oil by forming reverse micelles,
while dihexanoyl PE was unable to form reverse micelles and
thus had no impact on lipid oxidation rates. They also reported
that the critical micelle concentration of dioleoyl PC and dioleoyl
PE decreased with increasing temperature and that the critical
micelle concentration decreased when dioleoyl PC and dioleoyl PE
were combined to form mixed reverse micelles. Dioleoyl PC and
dioleoyl PE mixed reverse micelles were also prooxidant and they
decreased the effectiveness of 𝛼-tocopherol and trolox upon their
addition into stripped oils.12,78 In addition, prooxidative reverse
micelles could be formed in stripped oil by a combination of mul-
tiple polar/amphiphilic minor components found in commercial
refined oils, such as phospholipids, free fatty acids, phytosterols
and diacylglycerides.98 The prooxidant activity of phospholipids
has also been reported in other systems. For instance, Hudson and
Mahgoub81 found that addition of PC and PE to lard promoted
oxidation as measured by oxygen absorption induction periods.
Yoon and Min14 found that 300 ppm of phospholipids increased
lipid oxidation in stripped soybean oil. Lee and Choe82 found
that chlorophyll b increased oil oxidation as well as chlorophyll
b degradation by promoting singlet oxygen production. The
addition of PC and PE retarded the decomposition of chlorophyll
b. In this way, chlorophyll b could promote more photooxidation
of canola oil because chlorophyll b was protected by PC and PE
and could contribute to facilitate photooxidation.

Antioxidant properties of phospholipids
The importance of understanding the food system when inves-
tigating the antioxidant properties of phospholipids should be
emphasized. For example, bulk oils are often treated as homoge-
neous by many researchers, but this is an incorrect assumption,
because different oil systems contain different minor components,
which will cause phospholipids to function differently. King et al.83

reported antioxidant properties of individual phospholipids in
a salmon oil model system. However, the salmon oil used in
their study contained 280 ppm tocopherols, which made it hard
to conclude whether the antioxidant activity of phospholipids
came from the phospholipids themselves or from synergism with
tocopherols. If the latter was the reason, one would not expect
phospholipids to be antioxidant in another salmon oil where
tocopherols were depleted. A similar case was where egg yolk
phospholipids inhibited lipid oxidation of docosahexaenoic acid
(DHA)-rich oil; however, the oil contained 3000 ppm tocopherols.84

The importance of understanding the food system to learn what
roles phospholipids play is also evidenced by Yoon and Min,14

who reported different activities of phospholipids in different oil
environments. The authors found that phospholipids acted as
antioxidants when 1 ppm ferrous iron was added into stripped
soybean oil which was depleted of tocopherols and other polar
compounds. However, in the absence of added iron, the phospho-
lipids exhibited prooxidant activity. This again emphasized the
importance of understanding the food system when investigating
the antioxidant activity of phospholipids. Reasons for the above
differences will be presented in the following subsections.
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Figure 4. Bulk oil containing phospholipid reverse micelles.

Chelation
Theoretically, phospholipids can bind prooxidative metals through
the negative charges present on the phosphate head group and
thus inhibit lipid oxidation. A simple test can be conducted to
determine the metal-binding ability of phospholipids.9 Briefly,
phospholipid liposomes or microsomes incubated with metals
followed by centrifugation to precipitate the liposomes can be a
model test. Unbound metals are then determined in the aqueous
phase. Using this method, iron was found to bind phospholipid
membranes of microsomes and liposomes in the absence of
chelators.85 Zago and Oteiza86 also reported that ferrous iron
bound to PC/PS liposomes and that addition of zinc could dis-
place iron from the membrane. They further suggested that zinc
preferentially bound to PS over PC because PS has an additional
carboxyl group and thus is more negatively charged. Dacaranhe
and Terao87 reported that the iron-binding capacity of individual
phospholipids in egg yolk PC unilamellar liposomes was in the
order PA≥ PS≥ PG> PE= PC by a method similar to that described
earlier. They further determined that iron-promoted decomposi-
tion of PC hydroperoxides in unilamellar liposomes was inhibited
by the addition of PS. Likewise, Yoshida et al.9 claimed that both
saturated and unsaturated PS protected egg yolk PC liposomes
from oxidation by binding free iron. Viani et al.88 used a PC lipo-
some inserted with arachidonic acid and found that addition of
PA significantly retarded iron-induced oxidation. In an oil-in-water
emulsion system where sardine oil was stabilized with Triton
X-100 in Tris-HCl buffer, the authors found that addition of PA and
PS effectively inhibited iron-induced lipid oxidation.89 Cardenia
et al.15 also believed that the chelating property was responsible
for the observed antioxidant activity of PC in stripped soybean
oil-in-water emulsion at pH 7 where Tween 20 was used as emulsi-
fier. They reported that at pH 3, which was near or even below the
pKa of PC, PC was not charged and thus unable to chelate metals
and consequently its antioxidant activity disappeared. In a bulk

oil system where 1 ppm ferrous iron was added, it was found that
phospholipids (PC, PE, PI, PA and PG) acted as antioxidants as they
chelated iron.14

The potential for phospholipids to bind iron does not always
guarantee that they will inhibit lipid oxidation. One reason for
increased oxidation is based on increased iron solubility. For
example, EDTA and organic acids can chelate iron and promote
its solubility, which in turn increases metal–lipid interaction and
lipid oxidation.90 Different reactivity of metals bound to chelators
could also influence the ability of chelators to act as antioxidants.
For example, in a liposome system, EDTA, citrate and adeno-
sine triphosphate (ATP) all removed iron bound to phospholipid
membranes, but only EDTA and citrate inhibited lipid oxidation,
presumably because the iron bound to ATP was still reactive.83 It
is possible that metals bound to phospholipids are still reactive
and can accelerate lipid oxidation. For example, Tampo91 reported
that iron-promoted lipid oxidation was affected by the surface
charge of liposomal membranes and that PS was most sensitive
to iron-promoted oxidation. Gal et al.92 also found that increasing
the ratio of PS or PA to PC in liposomes produced more negative
charges, which resulted in more copper being bound to the
membrane surface and more lipid oxidation. Brett and Rumsby93

reported that PS, PC and PE increased TBA formation in the order
PS> PC> PE after exposure to hydroxyl radical. Fukuzawa et al.94

found that, during lipid oxidation of egg yolk PC induced by a
xanthine/xanthine oxidase system, the oxidation was slow in neu-
trally charged egg yolk PC liposomes and rapid when negatively
charged dicetylphosphate was added. Similarly, lipid oxidation of
rat liver PC liposomes was accelerated by dicetylphosphate.94,95

One reason for the contradicting reports of prooxidant and
antioxidant activities of phospholipid-bound metals could be due
to different metal types and concentrations in different studies.
For example, Gal et al.92 found that increasing copper concentra-
tion decreased the prooxidant activity of PS. They suggested that
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copper at high concentrations might cause lateral phase separa-
tion of PS and PC in mixed liposomes, where most of the copper
bound to PS-rich domains and thus was less available to oxidize
PC substrates. Alternatively, copper at low concentrations might
bind to both the amine and carboxyl groups of PS to form a
2:1 PS–copper complex, while at higher concentrations it could
form a 1:1 complex. In general, chelators such as EDTA are more
effective when the chelator concentration exceeds the metal con-
centration, because the binding of multiple chelators to a metal
can tie up all the metal coordination sites and make the metal
unreactive.96

Antioxidative properties of phospholipid Maillard reaction
products
Maillard reactions are very important to the food industry because
they can either positively or negatively impact food aroma, taste,
color and nutritional attributes. The Maillard reaction occurs in the
presence of carbonyls (e.g. reducing sugars, ascorbic acid and lipid
oxidation aldehydes) and free amine groups (e.g. lysine).97 The
antioxidant properties of Maillard reaction products from reducing
sugars and amino acids have been studied extensively since they
can scavenge free radicals98 – 100 and act as metal chelators.101,102

At first glance, one might not expect Maillard reactions to be
important in bulk oils. However, phospholipids such as PE have
a primary amine group that can serve as a Maillard reaction
substrate. In addition, carbonyls produced from the 𝛽-scission
reactions of lipid oxidation (e.g. aldehydes and ketones) can
provide the other substrate allowing Maillard reactions to occur.
One of the reasons why phospholipids are removed during
the degumming step of oil refining is to decrease browning.
More details of these reactions were described by Zamora and
Hidalgo.103

Alaiz et al.104 examined the antioxidative property of amine
groups in stripped soybean oil, with octylamine, methylhepty-
lamine and dimethylhexylamine representing primary, secondary
and tertiary amine groups. The authors found that primary
and secondary amines inhibited lipid oxidation while tertiary
amine had no effect. They further identified several oxidized
lipid/amine reaction products such as pyrrole derivatives that
were formed by the reaction between octylamine (primary amine)
and 4,5-epoxy-2-heptenal (a lipid oxidation product) in the oil
samples and attributed the inhibitory effects of primary and
secondary amines to these Maillard reaction products. Similarly
to octylamine, PE also contains a primary amine group and was
also shown to react with 4,5-epoxy-2-heptenal to generate similar
antioxidative Maillard reaction products.105,106 PC with a tertiary
amine group, on the other hand, did not show an inhibitory effect
on lipid oxidation in a manner similar to dimethylhexylamine.10

Since these Maillard products also produced color compounds,
the oxidative stability of the oil was correlated with its yellow-
ness index.10 King et al.107 also reported a relationship between
the oxidative stability of salmon oil and its color intensity from
Maillard-type reaction products.

Bandarra et al.108 suggested that the synergism between PC/PE
and 𝛼-tocopherol in sardine oil could be due to Maillard reaction
products measured at 430 nm. In a marine phospholipid liposome
system, Maillard reaction in the presence of 𝛼-tocopherol was
again confirmed through measurement of Strecker aldehydes,
color changes and pyrrole content and proved to suppress the
formation of volatile lipid oxidation.109 Shimajiri et al.110 reported
antioxidant activity of amine-containing phospholipids (PC, PE
and SPM) and further suggested that the presence of 𝛼-tocopherol

was essential to the reaction that produced antioxidative Maillard
reaction products.

Synergism with tocopherols
Many of the antioxidant properties of phospholipids reported in
the literature are related to their ability to inhibit lipid oxidation
synergistically with primary antioxidants, especially tocopherols.
Although many studies reported increased oxidative stability of
food products when phospholipids and tocopherols were added
together, the evidence of synergism is better demonstrated in
studies showing that phospholipids alone do not inhibit lipid
oxidation, but when they are in combination with tocopherols a
strong antioxidant effect is observed. For instance, in perilla oil
that was depleted of mixed tocopherols and stored in the dark
at 37 ∘C, neither 500 ppm PC, PE nor PS affected lipid oxidation.
However, when 366 and 866 ppm mixed tocopherols were present,
PE and PS prolonged the oxidation lag phase of the oil.111 When
canola oil underwent singlet oxygen-induced lipid oxidation at
10 ∘C, neither PC nor PE at 50 ppm decreased lipid hydroperoxide
formation. Nevertheless, upon the addition of either 50 or 100 ppm
𝛼-tocopherol, synergistic activities were observed.112 Takenaka
et al.149 found that 1% unsaturated PE and PC were prooxidative
when added alone in stripped bonito oil that was stored in the dark
at 40 ∘C. However, when combined with 500 ppm 𝛼-tocopherol,
PE exhibited synergistic antioxidant activity, while PC still had no
effect. This absence of phospholipid antioxidant activity when
used alone but enhanced antioxidant activity when present with
𝛼-tocopherol was also supported by the same research group in
another study.105 In stripped soybean oil, PE alone promoted lipid
oxidation, but it inhibited lipid oxidation upon the addition of
𝛼-tocopherol.12

Synergism between phospholipids and tocopherols could be
due to the ability of phospholipids to (1) form antioxidative Mail-
lard reaction products in the presence of tocopherols, (2) alter
the physical location of tocopherols and/or (3) regenerate toco-
pherols. As for Maillard reaction mechanism hypotheses, several
studies reported increased formation of phospholipid Maillard
products in the presence of tocopherols,10,102 – 105 which has been
discussed above.

Phospholipids can alter the physical location and thus the effec-
tiveness of tocopherols. The physical location of antioxidants is
known to influence their activity. For example, Huang et al.113

showed that the distribution of 𝛼-tocopherol and trolox was
different in different lipid systems (e.g. triacylglycerides, methyl
linoleate and linoleic acid in bulk or emulsified form), which
resulted in differences in antioxidant activities. Losada-Barreiro
et al.114 examined the impact of emulsifiers with different HLB and
at different concentrations on the distribution of antioxidants in
oil-in-water emulsions. They found that increasing emulsifier con-
centration and decreasing HLB both promoted the incorporation
of 𝛼-tocopherol and propyl gallate into the interfacial region of the
emulsion. In biological membranes that consist of saturated and
unsaturated phospholipids, cholesterol, sphingomyelin and pro-
teins, 𝛼-tocopherol is believed to concentrate at a polyunsaturated
phospholipid domain.115

As both tocopherols and phospholipids have surface activity
properties, their combination could influence the physical loca-
tion of tocopherols as well as other primary antioxidants, and
the resulting change in location could impact their antioxidant
activity. Koga and Terao116 examined the impact of 𝛼-tocopherol
and its phosphatidyl derivative (𝛼-tocopherol conjugated to the
head group of PC) on lard oxidation. They found that, while both
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Table 5. Synergism between phospholipids and primary antioxidants

Phospholipid(s) Antioxidant(s) System Ref.

PC, PE Ethoxyquin Refined menhaden oil 139

PC, PE 𝛼-Tocopherol, quercetin Lard 81

PC, PE Polyhydroxyl flavonoids Lard 140

PC, PE, PI Mixed tocopherols Refined soybean oil 141

PE, PS, not PCa Mixed tocopherols Refined perilla oil 111

SPM, LPC, PC, PEb, c Endogenous mixed tocopherols Salmon oil 107

PE, ethanolamine, PS, not PC 𝛼-Tocopherol Sardine and mackerel lipids 142

PS, PE, soybean lecithin, not PC 𝛼-Tocopherol Methyl linolenate 143

PE, PS, PCc Mixed tocopherols Fish oil 144

Egg yolk phospholipid Endogenous mixed tocopherols DHA-rich oil 83

PE, PC, CLb, c 𝛼-Tocopherol Sardine oil 108

Soybean lecithin Endogenous mixed tocopherols Rapeseed, soybean, walnut, palm oil
and lard

145

PE, not PC Endogenous mixed tocopherols Refined olive oil 10

Soybean lecithin Endogenous mixed tocopherols Virgin olive oil 146

PE Gallic acid, propyl gallate, caffeic acid,
𝛼-tocopherol, BHA, BHT, TBHQ

Lard 147

PE Propyl gallate Lard 148

PE, not PCa 𝛼-Tocopherol Bonito oil 149

Soybean lecithin 𝛼-Tocopherol Fish oil 150

PE, PCa 𝛼-Tocopherol Canola oil 112

Soybean lecithin, rapeseed lecithin,
sunflower lecithin, not soybean PC

𝛼-Tocopherol Ethyl linoleate 37

PE, PC, SPMa 𝛼-Tocopherol Fish oil 110

PE, not PCa 𝛼-Tocopherol, trolox Stripped soybean oil 12

Abbreviations: PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; SPM, sphingomyelin; LPC,
lysophosphatidylcholine; CL, cardiolipin; BHA, butylated hydroxyaniline; BHT, butylated hydroxytoluene; TBHQ, tert-butylhydroquinone; DHA,
docosahexaenoic acid.
a Studies where phospholipids alone had no antioxidant affect but showed synergism with 𝛼-tocopherol.
b Studies where Maillard reaction products were measured as color index and correlated with oxidative stability.
c Studies where the antioxidant activity was ordered and was as the sequence in the table.

chemicals had the same radical-scavenging ability, the phos-
phatidyl derivative of 𝛼-tocopherol had better antioxidant activity
than 𝛼-tocopherol alone. They suggested that this improve-
ment was due to better accessibility of the functional group
of 𝛼-tocopherol to the site where iron-dependent oxidation
reactions took place. In another study, the same authors mon-
itored the oxidation of methyl linoleate by measuring methyl
linoleate hydroperoxides. They found that, in the presence of
a water-soluble compound that generates free radicals only in
the aqueous phase, PC/PE had no impact alone but increased
𝛼-tocopherol antioxidant activity, showing a synergistic activity.
In this case, PC/PE increased the consumption of 𝛼-tocopherol,
meaning more 𝛼-tocopherol interacted with free radicals (proox-
idants) present only in the aqueous phase. In contrast, when a
lipid-soluble compound that generates free radicals only in the
lipid phase was used, PC/PE had no impact on the consumption of
𝛼-tocopherol, meaning 𝛼-tocopherol interaction with prooxidant
was minimal. These results together suggested that phospholipids
could alter the physical location of 𝛼-tocopherol and bring it into
close proximity to the site of greatest oxidative stress.11

Since oxidized tocopherols (i.e. 𝛼-tocopherolquinone,
𝛼-tocopherolhydroquinone and epoxy-𝛼-tocopherolquinone)
have been reported to accelerate lipid oxidation117,118 and since
oxidized tocopherols cannot scavenge free radicals, regeneration
of oxidized 𝛼-tocopherol would help inhibit lipid oxidation by
(1) eliminating prooxidative oxidized 𝛼-tocopherol and (2)

re-forming antioxidative 𝛼-tocopherol. Regeneration of
𝛼-tocopherol by phospholipids is at least partially respon-
sible for the observed synergism between tocopherols and
phospholipids. While many studies mention tocopherol regener-
ation by phospholipids, few actually explain how this occurs.
Oxidation–reduction potential is one potential parameter
to determine the possibility that tocopherol can be regen-
erated by phospholipids. However, direct electron transfer
between phospholipid and tocopherol is unlikely since they
have a similar reduction potential of around 600 mV (data
not shown). In contrast, there are several reports of phospho-
lipids containing a primary amine group, such as PE and PS,
interacting with 𝛼-tocopherolquinone, an oxidation product
of 𝛼-tocopherol.12,37,119 Doert et al.37 monitored the reaction
between 𝛼-tocopherolquinone and different types of phospho-
lipid (PC, PE, PI, PA and PS) in toluene at 100 ∘C. They found
that all tested phospholipids except PC were able to convert
𝛼-tocopherolquinone to 𝛼-tocopherol. The authors identified an
intermediate PE–𝛼-tocopherone condensation product by exam-
ining reaction products of PE and 𝛼-tocopherolquinone with mass
spectrometry. They further suggested that PE–𝛼-tocopherone
would subsequently undergo heterolytic cleavage to form a carbe-
nium ion which regenerated 𝛼-tocopherol. This reaction between
PE and 𝛼-tocopherolquinone was also recently confirmed in a
stripped soybean oil and medium-chain triacylglyceride sys-
tem at a lower temperature of 55 ∘C.12 The synergism between
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phospholipids and primary antioxidants (mainly tocopherols)
reported in the literature is summarized in Table 5.

CONCLUSION
Many foods contain a wide variety of phospholipid combina-
tions. In addition, the commercial phospholipid product lecithin is
widely applied to many food products for its wide-ranging func-
tional properties, including antioxidant activity. However, owing
to their high degree of unsaturation and large surface area, phos-
pholipids can readily react with prooxidants (e.g. transition met-
als), thus serving as lipid oxidation substrates and resulting in
the development of off-flavors in food products such as meats.
This is also the case for food products such as MFGMs in dried
nonfat milk and whey products, which have low lipid concen-
trations but non-negligible phospholipid fractions. Phospholipids
can also promote lipid oxidation in bulk oils owing to their surface
activity and thus can, alone or together with other polar compo-
nents present in bulk oils, form association colloids that increase
interactions between oxidizable substrates and prooxidative met-
als. However, phospholipids can also act as antioxidants through
one or more combinations of the following activities: chelating
prooxidative metals, forming antioxidative Maillard reaction prod-
ucts, changing the location of primary antioxidants or regenerat-
ing primary antioxidants. Thus, taking into account all the possibil-
ities of how phospholipids behave in different food environments
is essential to understand their antioxidant/prooxidant role before
they can be utilized to inhibit lipid oxidation reactions.
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